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Multicomponent fluids of hard hyperspheres in odd dimensions
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Mixtures of hard hyperspheres in odd-space dimensionalities are studied with an analytical approximation
method. This technique is based on the so-called rational function approximation and provides a procedure for
evaluating equations of state, structure factors, radial distribution functions, and direct correlation functions of
additive mixtures of hard hyperspheres with any number of components and in arbitrary odd-dimension space.
The method gives the exact solution of the Ornstein-Zernike equation coupled with the Percus-Yevick closure,
thus, extending the solution for hard-sphere mixtures [J. L. Lebowitz, Phys. Rev. 133, A895 (1964)] to arbitrary
odd dimensions. Explicit evaluations for binary mixtures in five dimensions are performed. The results are
compared with computer simulations, and a good agreement is found.
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I. INTRODUCTION

Systems made of hard bodies, i.e., impenetrable particles
interacting solely through hard-core repulsions constitute
useful simple fluid models [1]. Multicomponent hard-sphere
mixtures serve as important reference systems in condensed
matter and are relevant for understating the behavior of
complex fluids with additional interparticle interactions, such
as those in colloidal systems. These simple models capture
the main features of the packing effects at short distances as
they also occur in fluids governed by additional attractive in-
teractions. Besides, the knowledge of the structural properties
of hard-sphere fluids is a prerequisite for treating attractive
interactions perturbatively and within a density-functional
theory approach.

The study of d-dimensional hard-sphere fluids may prove
to be a useful guide for investigating the solution of the three-
dimensional (3D) problem, apart from its own importance at
a fundamental level. This explains the continued interest on
hard-hypersphere systems found in the literature throughout
the years [2–74]. However, multicomponent fluids at dimen-
sion d > 3 have received much less attention, and the available
information is rather sparse. The performed studies reduce to
some evaluations of equations of state and virial coefficients
[18,30,34,44], phase-transition analyses [37], and computer
simulations [40]. To our knowledge, none of the widely used
mechanical-statistical theories (e.g., integral equation theories)
have been applied to these systems.

The Percus-Yevick (PY) theory [75] is one of the classical
approximations of liquid-state theory and, certainly, one of
the most widely used. In the case of hard particles, exact PY
solutions have been found for single-component fluids in odd
dimensions, d = 1 [76], d = 3 [77,78], d = 5 [3,7], d = 7
[45,62], d = 9,11 [65], and also recently for even dimensions,
d = 2 [79] and d = 4,6,8 [67]. Nevertheless, in the case of
mixtures, PY solutions were provided only for the 3D fluid
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[80,81], apart from the exact solution known for the mixture
of hard rods [82]. The present paper is an attempt to cover the
gap on hard particle mixtures at dimensions higher than three
using the so-called rational function approximation (RFA).

The RFA approach was originally developed for hard-
sphere fluids [83]. The method was successfully applied to
other related systems [84], such as hard-sphere mixtures [81],
sticky hard spheres [85–87], square-well fluids [88,89], pene-
trable spheres [90], and one-component hyperspheres [65,69].
As we showed in Ref. [65], the RFA method, in its simplest
version, recovers the exact PY solution for one-component
hypersphere fluids in any space of odd dimension.

The aim of this paper is to extend the RFA theory to additive
mixtures of hyperspheres in odd-dimensional Euclidean space.
It is shown that the RFA method yields the exact solution
of the Ornstein-Zernike (OZ) equation with the PY closure.
While the method is generalized to any odd dimension, we
focus, in particular, on the solution for the five-dimensional
(5D) system. For this system, we analyze some of its
thermodynamic and structural properties in the case of binary
mixtures and compare them with available simulation data.

The remainder of this paper is organized as follows.
Section II briefly describes some basic quantities of the
equilibrium theory for multicomponent fluids of hard hy-
perspheres. In Sec. III, we introduce a Laplace functional
associated with the fluid structure factors and derive its general
properties. In Sec. IV, we present the extension of the RFA
method to mixtures. Explicit formulation for the 3D and
5D cases are given in Sec. V, where compelling arguments
about the equivalence to the PY solution are offered. Detailed
evaluations for binary mixtures in d = 5 are presented in
Sec. VI. Section VII is devoted to the conclusions. The most
technical aspects of the paper are relegated to the appendices.

II. GENERAL BACKGROUND

Here, it is useful to give some definitions that will be used
in the following. Let ρ be the total number density of an N -
component hypersphere mixture, let {xi} (with i = 1, . . . ,N )
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be the set of mole fractions, and let {σi} be the set of diameters.
The overall packing fraction is η = ∑N

i=1 ηi , where

ηi = vdρxiσ
d
i (2.1)

is the partial packing fraction due to species i. Here, vd is
the volume of a d-dimensional sphere of unit diameter. For
d = odd,

vd = (π/2)(d−1)/2

d!!
. (2.2)

The structure factor Sij (k) for the particle pair (i,j ) is given
by

Sij (k) = xiδij + ρxixj ĥij (k), (2.3)

where

ĥij (k) =
∫

drhij (r)e−ik·r (2.4)

is the Fourier transform of the total pair correlation function
hij (r), related to the radial distribution function (rdf) gij (r) by

hij (r) = gij (r) − 1. (2.5)

The compressibility factor Z may be written as

Z ≡ p

ρkBT
= 1 + 2d−1η

μd

N∑
i,j=1

xixjσ
d
ij gij (σ+

ij ), (2.6)

where p is the pressure, kB is the Boltzmann constant, and T

is the temperature,

μm ≡
N∑

�=1

x�σ
m
� (2.7)

denotes the moments of the diameter distribution, and gij (σ+
ij )

is the contact value of the rdf, σij being the minimum possible
distance between particles i and j . For additive mixtures
considered here, one has

σij = σi + σj

2
. (2.8)

In Eq. (2.6), we have used η = vdρμd .
The isothermal susceptibility χ is given by

χ−1 ≡ 1

kBT

(
∂p

∂ρ

)
T ,{xi }

= 1 − ρ

N∑
i,j=1

xixj ĉij (0), (2.9)

where ĉij (k) is the Fourier transform of the direct correlation
function cij (r), which is defined by the OZ equation,

ĥij (k) = ĉij (k) + ρ

N∑
�=1

x�ĥi�(k)̂c�j (k). (2.10)

In matrix form, the OZ relation can be rewritten as (see, e.g.,
Ref. [81])

I − c̃(k) = [I + h̃(k)]−1, (2.11)

where I is the N × N unit matrix and c̃(k) and h̃(k) are N ×
N matrices with elements ρ

√
xixj ĉij (k) and ρ

√
xixj ĥij (k),

respectively. The compressibility equation of state (2.9) can
be written as

χ−1 =
N∑

i,j=1

√
xixj [I − c̃(0)]ij

=
N∑

i,j=1

√
xixj [I + h̃(0)]−1

ij , (2.12)

where, in the last step, use has been made of Eq. (2.11). In
particular, in the case of binary mixtures (N = 2), χ takes the
form

χ = [1 + ρx1ĥ11(0)][1 + ρx2ĥ22(0)] − ρ2x1x2ĥ
2
12(0)

1 + ρx1x2[̂h11(0) + ĥ22(0) − 2ĥ12(0)]
.

(2.13)

The zero wave number value of ĥij (k) can be expressed as

ĥij (0) = d2dvdHij,d−1, (2.14)

where

Hij,m =
∫ ∞

0
drhij (r)rm (2.15)

is the mth moment of hij (r).

III. THE LAPLACE FUNCTIONAL Gi j (s)

A. Definition

In analogy to the case of one-component fluids [65], we
introduce the Laplace functional of the rdf in a Euclidean
space of odd dimension d as

Gij (s) =
∫ ∞

0
drrgij (r)θn(sr)e−sr , (3.1)

which is defined in terms of the reverse Bessel polynomial
θn(t) of degree n = (d − 3)/2:

θn(t) =
n∑

�=0

ωn,�t
�, ωn,� = (2n − �)!

2n−�(n − �)!�!
. (3.2)

More details of these polynomials and their properties can be
found in Ref. [65]. Here, we recall that the Fourier transform
of the total correlation functions can be expressed in terms of
Gij (s) as (see Appendix A)

ĥij (k) = νd

[
Gij (s) − Gij (−s)

sd−2

]
s=ik

, (3.3)

where

νd ≡ (−2π )(d−1)/2. (3.4)

The structure factors readily follow from Eq. (2.3). We note
that the knowledge of Gij (s) allows us to obtain all the
structural and thermodynamic properties of a multicomponent
hard d-sphere fluid.

B. Gi j (s) at long and short wave numbers

Being gij (r < σij ) = 0 for hard-hypersphere fluids, from
Eq. (3.1), one obtains at long s [65],

lim
s→∞ s(5−d)/2eσij sGij (s) = σ

(d−1)/2
ij gij (σ+

ij ). (3.5)
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This equation determines the contact values of the ra-
dial distribution function, and we will use this to ob-
tain the virial equation of the state of the fluid through
Eq. (2.6).

On the other hand, from Eqs. (3.1) and (A6),
Gij (s) may be written in terms of the total correlation
function as

Gij (s) = (d − 2)!!

s2
+

∫ ∞

0
drrhij (r)θn(sr)e−sr . (3.6)

The Taylor expansion of e−sr yields [65]

Gij (s) = (d − 2)!!

s2
+

∞∑
m=0

αn,mHij,m+1s
m, (3.7)

where the numerical coefficients αn,m are given by

αn,m =
min(n,m)∑

�=0

(−1)m−�

(m − �)!
ωn,�. (3.8)

The first n coefficients αn,m with m = 2q + 1 = odd (q =
0, . . . ,n − 1) vanish [65]. Therefore,

Gij (s) = (d − 2)!!

s2
+

∞∑
m=0

αn,2mHij,2m+1s
2m

+
∞∑

m=n

αn,2m+1Hij,2m+2s
2m+1. (3.9)

As a consistency test, note that Eq. (2.14) is reobtained
from Eqs. (3.3) and (3.9), making use of Eq. (2.2) and
αn,2n+1 = (−1)n+1/(2n + 1)!!. Therefore, the expansion of
Gij (s) in powers of s allows one to identify Hij,d−1 from
Eq. (3.9). This, in turn, gives the compressibility equation of
state via Eqs. (2.12) and (2.14).

To summarize, the behaviors of Gij (s) at long and short s

are directly connected to the thermodynamic variables Z and
χ , respectively.

C. Gi j (s) at low density

The lowest terms in the density expansion of the rdf,

gij (r) = g
(0)
ij (r) + ρg

(1)
ij (r) + O(ρ2), (3.10)

are

g
(0)
ij (r) = �(r − σij ), (3.11)

g
(1)
ij (r) = �(r − σij )

∑
�

x��σi�,σj�
(r), (3.12)

where �(x) is Heaviside’s step function and �a,b(r) is the
intersection volume of two hyperspheres of radii a and b whose
centers are separated by a distance r � a + b. In Laplace
space, one has

Gij (s) = G
(0)
ij (s) + ρG

(1)
ij (s) + O(ρ2), (3.13)

FIG. 1. (Color online) Scaled overlap volume �σ1,σ2 (r)/�σ1,σ1 (0)
of two hyperspheres with radii σ1 and σ2 � σ1 as a function of
the center distance r , for Euclidean space with an odd dimension
between 1 and 11 (lines starting from the straight line), and for several
values of the size ratio σ2/σ1. The lower panel corresponds to two
identical hyperspheres. The limit σ2 → ∞ with σ1 fixed represents a
hypersphere of radius σ1 crossing a flat wall.

with

G
(0)
ij (s) = θn+1(σij s)e−σij s

s2
, (3.14)

G
(1)
ij (s) =

N∑
�=1

x�G
(1)
ij�(s), (3.15)

G
(1)
ij�(s) ≡

∫ ∞

σij

drrθn(sr)�σi�,σj�
(r)e−sr . (3.16)

In Eq. (3.14), use has been made of Eq. (A7). To obtain
G

(1)
ij�(s), we first need the overlap volume �a,b(r). An explicit

expression for the latter quantity, valid for arbitrary radii and
d = odd, is derived in Appendix B [see Eqs. (B10) and (B16)].
Figure 1 shows graphs of the scaled intersection volume
between two hyperspheres of radii σ1 and σ2 � σ1 as a function
of the center separation r (in rescaled units) for the first six
odd dimensions (d = 1,3, . . . ,11), and for several size ratios
σ2/σ1.

Inserting Eq. (B10) into the definition of G
(1)
ij�(s), we get

G
(1)
ij�(s) = (2π )(d−1)/2

∫ σi�+σj�

σij

dr
R

(σi�,σj�)
4n+4 (r)

rd−3
θn(sr)e−sr ,

(3.17)

where we have taken into account that σij � |σi� − σj�| =
|σi − σj |/2. It can be checked that G

(1)
ij�(s) has the following

structure:

G
(1)
ij�(s) = νd

sd−2

[
G

(0)
i� (s)G(0)

j� (s) + Qij�(s)

s4
e−σij s

]
, (3.18)
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where Qij�(s) is a polynomial of degree 3n + 4 = (3d − 1)/2,
which can be further decomposed as

Qij�(s) = sd+1Qij�(s) − θn+1(σi�s)
n+1∑
m=0

ωn+1,m(σj�s)m

×
2n+3−m∑

q=0

(−σ�s)q

q!
, (3.19)

where Qij�(s) is a polynomial of degree n = (d − 3)/2. Note
that Qij�(s) = Qji�(s), but Qij�(s) �= Qji�(s).

It is worth pointing out that all the equations in this section
and in Sec. II are exact.

IV. THE RFA

In this section, we describe the RFA method to obtain
the functional Gij (s), which, in turn, allows us to obtain the
structural and thermodynamic properties of the hypersphere
mixture. The method presented here is, on one hand, an
extension to mixtures of the one recently applied to one-
component systems of hyperspheres [65] and, on the other
hand, an extension to hyperspheres of the one already proposed
for mixtures of hard spheres (d = 3) [81].

The approximation we propose consists of assuming the
following functional form:

Gij (s) = e−σij s

s2
[L(s) · B−1(s)]ij , (4.1)

where L(s) and B(s) are N × N matrices given by

L(s) =
n+1∑
m=0

Lmsm, (4.2)

B(s) = I + ρ

n+1∑
m=0

�m(s) · Lm. (4.3)

Here, Lm, 0 � m � n + 1, are N × N matrices whose ele-
ments may depend on the fluid density, the particle diameters,
and the mole fractions of the system, but are independent of s.
Therefore, L(s) has a polynomial dependence on s of degree
n + 1 = (d − 1)/2. Besides, �m(s) are diagonal matrices with
elements given by

[�m(s)]ii = νdxiσ
d−m−δ
i s−δφd−m−δ(σis), (4.4)

with

φm(x) ≡ 1

xm

[
m∑

�=0

(−x)�

�!
− e−x

]
. (4.5)

The series expansion of B(s) and its asymptotic long-s value
are given in Appendix C. The parameter δ in Eq. (4.4)
encompasses two different conditions of normalization for
B(s), specifically [see Eqs. (C8) and (C11)],

lim
s→0

B(s) = I (δ = 0), lim
s→∞ B(s) = I (δ = 1). (4.6)

These cases constitute two alternative choices of the analytical
representation for Gij (s) which, however, yield identical
physical results (each one with its particular quantities Lm).

In the functional form (4.1) for Gij (s), we are using the
constraints derived in Secs. III B and III C. In particular, as
shown in Appendix D, Eq. (4.1) is consistent with the exact
low-density expansion given by Eqs. (3.13), (3.14), (3.15),
(3.18), and (3.19).

The number n + 2 of terms in the representations of L(s)
and B(s), Eqs. (4.2) and (4.3), is the minimum one required
to verify the correct behavior of Gij (s) at large s. In fact,
Eqs. (3.5) and (4.1) yield

σn+1
ij gij (σ+

ij ) = lim
s→∞ s−(n+1)[L(s) · B−1(s)]ij

= [Ln+1 · B−1(∞)]ij , (4.7)

with B(∞) given by Eq. (C11). With the normalization choice
δ = 1, the contact values gij (σ+

ij ) are directly related to the
components of Ln+1,

σ
(n+1)
ij gij (σ+

ij ) = (Ln+1)ij (δ = 1). (4.8)

Now, we want to determine the n + 1 coefficients Lm. This
is done by requiring consistency with Eq. (3.9). First, let us
rewrite Eq. (3.7) as

s2

(2n + 1)!!
Gij (s) = 1 +

∞∑
m=0

(
Gm

)
ij

sm−2, (4.9)

where we have introduced the matrices Gm as(
Gm

)
ij

≡ αn,mHij,m+1

(2n + 1)!!
. (4.10)

Next, we note that

eσij s =
∞∑

m=0

(2m)ij sm, (4.11)

where

(2m)ij ≡ σm
ij

m!
. (4.12)

Consequently,

s2

(2n + 1)!!
eσij sGij (s) =

∞∑
m=0

(Km)ij sm, (4.13)

with

Km ≡ 2m +
m−2∑
�=0

G� ⊗ 2m−�−2, (4.14)

where the symbol ⊗ denotes a matrix product element to
element: (A ⊗ B)ij ≡ AijBij .

Apart from the introduced notation, Eq. (4.13) is totally
equivalent to Eq. (3.7). Now, according to the RFA form (4.1),

n+1∑
m=0

L̃msm =
( ∞∑

m=0

Kmsm

)
·
( ∞∑

k=0

Bks
k

)
, (4.15)

where

L̃m ≡ Lm

(2n + 1)!!
(4.16)
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and the matrices Bk are given by Eqs. (C5) and (C6). From a
power analysis of Eq. (4.15), one obtains

�∑
k=0

K�−k · Bk = L̃�, (4.17)

with the convention L̃� = 0 if � > n + 1. If we choose δ = 0,
the first relation in Eq. (4.17) (i.e., � = 0) is trivially solved
and yields

(L0)ij = (2n + 1)!! (δ = 0). (4.18)

Since, as mentioned following Eq. (3.8), the first n

coefficient αn,m with m = odd � 2n − 1 vanish, we have

G1 = G3 = · · · = G2n−1 = 0. (4.19)

The property (4.19) can be used, together with Eq. (4.17) with
� = even � 2n + 2, to express the matrices G2m, 0 � m � n,
in terms of the matrices L� by means of the recursion relation

G2m = L̃2m+2 −
m+1∑
k=1

2k∑
�=0

[G2(m−k) ⊗ 22k−�] · Bl , (4.20)

where we must adopt the convention
(
G−2

)
ij

≡ 1. Similarly,
from Eq. (4.17) with � = odd � 2n + 1, one obtains

L̃2m+1 =
m+1∑
k=1

2k−1∑
�=0

[G2(m−k) ⊗ 22k−�−1] · B�, (4.21)

with 0 � m � n. Once the matrices G2m are obtained in terms
of L� via Eq. (4.20), Eq. (4.21) becomes a closed system of n +
1 = (d − 1)/2 matricial algebraic equations for the unknowns
L1,L2, . . . ,Ln+1. Therefore, the problem of finding Gij (s) as
given by Eq. (4.1) is reduced to solving Eqs. (4.20) and (4.21).
In the case of hard-sphere mixtures (d = 3), it is possible to
find an analytical solution, as proved in Ref. [81].

The solutions of Eq. (4.21) that are physically meaningful
are those that verify the correct behavior in the limit ρ → 0.
For δ = 0, we find from Eqs. (3.13), (3.14), and (4.1),

lim
η→0

(Lm)ij = ωn+1,mσm
ij , (4.22)

where the coefficients ωn+1,m of the reverse Bessel polynomial
θn+1(t) are given by Eq. (3.2). Alternatively, when all particle
diameters adopt the same value (say σij = 1 ∀i,j ), we must
recover the pure-fluid solution, which only depends on the
density or packing fraction (but not on the mole fractions),
i.e.,

(Lm)ij |σij =1 = am(η), (4.23)

where the functions am(η) are defined in Ref. [65]. Appendix E
shows that the one-component solution [65] is actually
recovered from the approach (4.1).

Figure 2 illustrates the elements of the matrix L2, as
obtained from the physical solution of Eq. (4.21), for a 5D
binary mixture (d = 5, n = 1) as functions of the diameter
σ2 (with σ1 = 1) for x2 = 1

4 and several density values. The
dashed lines correspond to the limit of zero density, as given
by Eq. (4.22), while the symbols show the solution for a
one-component fluid [see Eq. (4.23)], with a2(η) given by
Eq. (E10) of Ref. [65].

FIG. 2. (Color online) Matrix element of L2 for a binary mixture
at d = 5 as functions of the diameter σ2 (σ1 = 1) for x2 = 1

4 and
different values of the packing fraction. From top to bottom, the
curves correspond to η = 0, 0.01, 0.02, 0.05, 0.1, and 0.15. The
pure-fluid solutions are indicated by symbols.

Once the solutions of Eq. (4.21) are obtained, they may be
used in Eq. (4.7) to obtain the contact values of the pair radial
distribution functions and, subsequently, the compressibility
factor in the so-called virial route using the equation of state
(2.6). Its expression reads

Zv = 1 + 2d−1η

μd

N∑
i,j=1

xixjσ
(d+1)/2
ij [Ln+1 · B−1(∞)]ij .

(4.24)

Furthermore, the isothermal susceptibility χ of the fluid
may be evaluated by means of the thermodynamical for-
mula (2.9), using the relation resulting from Eq. (2.14) and
the definition of Gm in Eq. (4.10),

ĥ(0) = 2(−2π )(d−1)/2(d − 2)!!G2n+1, (4.25)

with G2n+1 given by

G2n+1 = −
n+2∑
k=1

2k−1∑
�=0

[G2(n−k+1) ⊗ 22k−�−1] · Bl , (4.26)

which proceeds from Eq. (4.17) at � = 2n + 3, taking into
account that L̃2n+3 = 0. The values of the isothermal suscep-
tibility can then be used to obtain the compressibility factor in
the so-called compressibility route as

Zc(η) =
∫ 1

0
dxχ−1(ηx). (4.27)

Of course, the structure factors and total correlation
functions can be obtained easily with Eqs. (2.3) and (3.3),
once the solutions Lm have been substituted into Eq. (4.1).
Notice that, as shown in Appendix D, Eq. (4.1) is exact to first
order in ρ so that the first three terms of an expansion of the
right-hand side of Eq. (2.3), in powers of ρ, are exact within
the RFA method.
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V. EXPLICIT EXPRESSIONS

In this section, we briefly revise the RFA solution for mix-
tures of hard spheres (d = 3, n = 0) and derive results for 5D
hyperspheres (d = 5, n = 1). The 3D analysis from the present
framework is useful as a guide for subsequent applications of
the RFA method to mixtures in higher dimensions. Here, we
use the version of the RFA approach based on the choice δ = 0.

For simplicity, henceforth, we introduce the following
matrix notation:

[[Ai]]αβ ≡ Aα, [[Aj ]]αβ ≡ Aβ,
(5.1)

[[Ak]]αβ ≡ Aαδαβ, [[Aij ]]αβ ≡ Aαβ.

This means that, given a list A = {A1,A2, . . . ,AN }, [[Ai]]
represents the N × N square matrix made by repeating the
list A as columns so that all the elements of a given row
are equal. Analogously, [[Aj ]] = [[Ai]]† (where † indicates the
transpose of a matrix) is obtained by repeating the list A as
rows so that all the elements of a given column are equal. If the
elements of A are placed along the main diagonal, one gets the
diagonal matrix [[Ak]]. The meaning of [[Aij ]] is self-evident.
We will also use the notation [[1]] to refer to a matrix with
all the elements equal to 1. Note the properties [[Ck]] · [[Aj ]] =
[[CiAj ]], [[Ck]] · [[Ai]] = [[CiAi]], and [[Aj ]] · [[Ck]] = [[CjAj ]],
[[Ai]] · [[Ck]] = [[AiCj ]]. Some inversion properties involving
these matrices are proved in Appendix F.

A. Hard-sphere mixtures

For d = 3 (n = 0), Eq. (4.1) becomes

Gij (s) = e−σij s

s2
[(L0 + L1s) · B−1(s)]ij , (5.2)

with

B(s) = I + ρ[�0(s) · L0 + �1(s) · L1], (5.3)

where L0 and L1 are the unknowns. From Eq. (4.18), we have
L0 = [[1]], and Eq. (4.21) yields

(I + [[2ηj ]]) · L1 = [[σij ]] + ημ4

2μ3
[[1]], (5.4)

with μm defined by Eq. (2.7). Using Eq. (F1), it is straightfor-
ward to obtain

L1 = [[σi]]

2
+ [[σj ]]

2(1 + 2η)
− ημ4

2μ3(1 + 2η)
[[1]]. (5.5)

This closes the determination of Gij (s).
In order to evaluate the contact values of gij [see Eq. (4.7)],

σijgij (σ+
ij ) = [L1 · B−1(∞)]ij , (5.6)

we must determine B(∞). From Eq. (C11) (with δ = 0),

B(∞) = I + [[�i]] + [[�iσj ]], (5.7)

with

�i ≡ 3η

1 + 2η

μ4

μ3

ηi

σi

− ηi, (5.8)

�i ≡ − 3

1 + 2η

ηi

σi

. (5.9)

Using the relation (F4), it results

B−1(∞) = I + 1

γ
{α[[�i]] − (1 + a)[[�iσj ]]

− (1 + β)[[�i]] + b[[�iσj ]]}, (5.10)

where

a ≡ tr([[�i]]) = −η

(
1 + β

μ4μ2

μ2
3

)
, (5.11)

b ≡ tr([[�i]]) = β
μ2

μ3
, (5.12)

α ≡ tr([[�iσj ]]) = −ημ4

μ3
(1 + β), (5.13)

β ≡ tr([[�iσj ]]) = − 3η

1 + 2η
, (5.14)

γ ≡ (1 + a)(1 + β) − αb = (1 − η)2

1 + 2η
. (5.15)

The matrix products on the right-hand side of Eq. (5.6) are

[[σi]] · [[�i]] = a[[σi]], [[σj ]] · [[�i]] = α[[1]],

[[σi]] · [[�iσj ]] = a[[σiσj ]], [[σj ]] · [[�iσj ]] = α[[σj ]],

[[1]] · [[�i]] = a[[1]], [[1]] · [[�iσj ]] = a[[σj ]],

(5.16)

plus similar results in the case of [[�i]]. Taking into account
the preceding results, one obtains from Eq. (5.6),

gij (σ+
ij ) = 1

1 − η
+ 3η

2(1 − η)2

μ2σiσj

μ3σij

. (5.17)

Its application in Eq. (2.6) gives the pressure equation in the
virial route obtained by Lebowitz [80].

On the other hand, thanks to Eq. (5.5), it is possible to solve
Eqs. (4.25) and (4.26) analytically. The result is

ĥ(0)

π
= η

8

[
9η2(μ4/μ3)3

(1 + 2η)2
− 6ημ4μ5/μ

2
3

1 + 2η
+ μ6

μ3

]
[[1]]

+ η
(1 + 2η)μ5/μ3 − 3η(μ4/μ3)2

(1 + 2η)2
[[σij ]]

− 1

8

[[
σ 3

i + σ 3
j

]]
+ η(μ4/μ3)(

[[
σ 2

ij

]] + [[σiσj ]]) − [[
σ 2

i σj + σiσ
2
j

]]
2(1 + 2η)

(5.18)

The use of Eq. (5.18) into Eq. (2.13) yields the PY solution for
the isothermal susceptibility χ , which agrees with that given
by Ashcroft and Langreth [91] for a binary mixture of hard
spheres.

B. 5D mixtures

For a fluid of hyperspheres in d = 5 (n = 1), the functional
Gij (s) takes the form

Gij (s) = e−σij s

s2
[(L0 + L1s + L2s

2) · B−1(s)]ij , (5.19)

with

B(s) = I + ρ[�0(s) · L0 + �1(s) · L1 + �2(s) · L2]. (5.20)
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According to Eq. (4.18), L0 = 3[[1]]. Besides, Eq. (4.21) at
m = 0 yields [92]

L1 = 3[[σij ]] + 3

1 − 6η

×
(

2η
μ6

μ5
[[1]] + 3η[[σj ]] − 10[[ηj/σj ]] · L2

)
. (5.21)

This expresses L1 in terms of L2. From Eq. (4.20), with m = 0,
we find

G0 = −η

[
9μ7/μ5

14
+ 4η(μ6/μ5)2

1 − 6η

]
[[1]] − 2η(μ6/μ5)[[σij ]]

1 − 6η

− 3η[[σiσj ]]

2(1 − 6η)
− 1

2
[[σij ]]2 + Q2 · L2, (5.22)

where

Q2 ≡ I
3

+ 3[[ηj ]] + 20ημ6[[ηj/σj ]]

μ5(1 − 6η)
+ 5[[ηjσi/σj ]]

1 − 6η
.

(5.23)

Finally, using Eq. (4.21) with m = 1, and the relations (5.21)
and (5.22), we obtain the following quadratic equation for L2:

0 = Q0 + Q1 · L2 + Q2 · L2 · (P0 + P1 · L2) , (5.24)

where

P0 ≡ 1

2
[[σk]] + 2[[ηiσi]] + 3[[ηiσj ]]

1 − 6η
+ 12ημ6[[ηi]]

μ5(1 − 6η)
, (5.25)

P1 ≡ − 60

1 − 6η
[[ηiηj /σj ]] − 10[[ηk/σk]], (5.26)

Q0 ≡ −η

[
20η2(μ6/μ5)3

(1 − 6η)2
+ 4ημ6μ7/μ

2
5

1 − 6η
+ μ8

8μ5

]
[[1]]

− η
10η(μ6/μ5)2 + (1 − 6η)μ7/μ5

(1 − 6η)2
[[σij ]]

− 2ημ6

μ5(1 − 6η)

[[
σ 2

ij

]] − 3η

2(1 − 6η)
[[σiσjσij ]]

− η
(1 + 24η)μ6

4μ5(1 − 6η)2
[[σiσj ]] −

[[
σ 3

ij

]]
3

, (5.27)

Q1 ≡ 10ημ6/μ5

1 − 6η
[[ηj ]] + [[σk]]

6
+ 5[[σiηj ]]

2(1 − 6η)
+ 2

3
[[ηjσj ]]

+ η
100η(μ6/μ5)2 + 10(1 − 6η)μ7/μ5

(1 − 6η)2
[[ηj/σj ]]

+ 25ημ6/μ5

(1 − 6η)2
[[σiηj /σj ]] + 5

[[
σ 2

i ηj /σj

]]
2(1 − 6η)

. (5.28)

Due to the fact that Eq. (5.24) is quadratic in L2, the
evaluation of the structure functions is now considerably more
complex than in the 3D case. In general, solutions of Eq. (5.24)
must be worked out numerically.

Binary systems can be completely specified by the total
packing fraction η, the concentration of one component (say
x2), and the diameter ratio σ2/σ1. For arbitrary and finite values
of these parameters, Eq. (5.24) yields four solutions L2 that can
be obtained analytically, one of which being the physical root
that verifies the convergence conditions (4.22) and (4.23).

C. Direct correlation functions

The knowledge of the Laplace functions Gij (s) allows one
to obtain the direct correlation functions via Eqs. (2.11) and
(3.3). Although we have not attempted a formal proof, we have
checked that, in the binary case, the structural form of ĉij (k) is

ĉij (k) = 1

k2d
[Pij (ik)eiσij k + Pij (−ik)e−iσij k

+Qij (ik)ei(σi−σj )k/2 + Qij (−ik)ei(σj −σi )k/2],

(5.29)

where Pij (s) and Qij (s) are polynomials of degrees (3d −
1)/2 and d − 1, respectively. Moreover, the quantity enclosed
by square brackets is of order k2d so that ĉij (0) is finite, as
required by Eq. (2.12) and enforced through Eq. (3.9). The
direct correlation functions in real space, cij (r) are obtained
from Eq. (5.29) by means of Eq. (A2). The important point
is that, upon application of the residue theorem, the structure
given by Eq. (5.29) implies that cij (r) = 0 for r > σij [65].
Since the RFA also complies with the physical requirement
gij (r) = 0 for r < σij , we recover the two conditions precisely
defining the PY closure to solve the OZ equation. Therefore,
we find that the RFA developed in this paper yields the PY
solution for hard-hypersphere mixtures of odd dimensions.
This is a remarkable result since both approaches (RFA and
PY) are, in principle, rather independent.

VI. RESULTS FOR 5D BINARY MIXTURES

Here, we consider a mixture of two types (i = 1,2) of 5D
spheres with arbitrary diameters σi and concentrations xi . For
simplicity, we fix σ1 = 1.

Figure 3 compares the compressibility factors calculated
from the virial (Zv) and compressibility (Zc) routes [cf.
Eqs. (4.24) and (4.27), respectively] with those from computer
simulations (molecular dynamics) [40] and a semiempirical
equation of state [34] for a mixture with a diameter ratio
σ2/σ1 = 1

4 and mole fractions x2 = 1
4 , 1

2 , and 3
4 . We observe

that Zc and Zv bound both the simulation data and the
proposal of Ref. [34], with Zc slightly above and Zv slightly
below. The agreement is very good at low densities (packing
fraction lower than 0.1) and reasonably good over the whole
density range (0 � η < 0.19) of fluid phase predicted for
the one-component system. In general, the compressibility
route gives better results than the virial one. A similar
relation Zv < Z < Zc, with Z being the actual compressibility
factor, has been observed for the PY solution of the pure
5D system [65]. Figure 3 also includes the interpolation
formula Z = 2

5Zv + 3
5Zc [38]. This Carnahan-Starling-like

recipe presents very good agreement with simulation data
and is practically indistinguishable from the semiempirical
equation of state proposed in Ref. [34], except for x2 = 3

4 and
η > 0.15. Unfortunately, no simulation data are available in
those cases.

Next, it is instructive to examine the size ratio dependence
of the compressibility factor. Figure 4 compares values of
Zv obtained from the RFA-PY solution via the virial route
with those calculated from the analytical expression given in
Ref. [34]. These evaluations correspond to a packing fraction
η = 0.15 and a set of molar fractions ranging from x2 = 1

32
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FIG. 3. (Color online) Compressibility factor as a function of the
packing fraction η for a binary mixture at d = 5 with σ2/σ1 = 1

4
and mole fractions x2 = 1

4 , 1
2 , and 3

4 (indicated on the plot). RFA-
PY results obtained from the virial and the compressibility routes
(solid lines on the right and left of the shaded area, respectively)
are compared with predictions of an analytical equation proposed in
Ref. [34] (short dashed lines) and simulation results from Ref. [40]
(symbols). The long dashed lines represent the interpolation Z =
2
5 Zv + 3

5 Zc.

to x2 = 1
4 . As the concentration x2 decreases, we find, as

expected, that the compressibility factor comes to have a
weaker dependence on σ2. The general trends of Zv versus
σ2 for different mole fractions x2 qualitatively agree with
the predictions of the equation of state proposed in Ref. [34]
(there are no simulation data available for this analysis). The
differences between both calculations (at most 9%) are similar
to those observed before.

Now, we analyze the structure and correlation functions.
Instead of the conventional structure factors Sij , we consider
some combinations of them, which may easily be associated
with fluctuations of the thermodynamic variables [91,93]:

SNN (k) = S11(k) + S22(k) + 2S12(k), (6.1)

SNc(k) = x2S11(k) − x1S22(k) + (x2 − x1)S12(k), (6.2)

Scc(k) = x2
2S11(k) + x2

1S22(k) − 2x1x2S12(k). (6.3)

In the limit of small wave number (k → 0), SNN and Scc

become the mean square fluctuations in the particle number
and concentration, respectively, whereas SNc is the correlation
between these two fluctuations.

In Fig. 5, we plot the number-concentration structure factors
for a packing fraction η = 0.15, a diameter ratio σ2/σ1 = 1

4 ,
and decreasing values of the particle-2 concentration, x2 = 1

2 ,
1
4 , 1

8 , 1
16 , and 1

32 . As expected, Scc and SNc reduce smoothly to
zero with x2 for all wave numbers, whereas the number-number
structure factor SNN converges to the static structure factor of
the one-component fluid in this limit (dashed line). Notice that
SNN and Scc are positive for all k by definition. The main
modifications of the structure factor SNN with increasing x2

FIG. 4. (Color online) Compressibility factor obtained from the
RFA-PY method for a binary mixture at d = 5, as a function of
the particle diameter σ2 (σ1 = 1) for η = 0.15 and mole fractions
x2 indicated on the plot (solid lines). Predictions of the analytical
equation from Ref. [34] are shown with dashed lines.

are the variation of height of the main peak, with its position
very weakly altered, and an increase of the values at short k.

Evaluations of the direct correlation functions defined (in
the Fourier space) by the OZ equation (2.10) are shown in
Fig. 6. The results correspond to an equimolar mixture for
different diameter ratios from σ2/σ1 = 1

2 to nearly equivalent
hypersphere sizes σ2/σ1 = 31

32 . In the limit σ2/σ1 → 1, the

FIG. 5. (Color online) Number-concentration structure factors
SNN , SNc, and Scc, as obtained from the RFA-PY method for a binary
mixture in d = 5 dimensions with diameter ratio σ2/σ1 = 1

4 , packing
fraction η = 0.15, and mole fractions x2 = 1

2 , 1
4 , 1

8 , 1
16 , and 1

32 (solid
lines). As x2 is reduced, the curves converge to the solution of the
pure fluid (dashed lines).
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FIG. 6. (Color online) Direct correlation functions obtained from
the RFA-PY method for an equimolar (x1 = x2 = 1

2 ) binary mixture
in d = 5 dimensions at η = 0.15 and various diameter ratios, σ2/σ1 =
1
2 (dotted line), 3

4 (dashed line), 7
8 (long dashed line), 15

16 (dashed-
dotted line), and 31

32 (long dashed-dotted line). The pure-fluid solution
is displayed for comparison (solid line).

three correlation functions cij (r) become identical and match
the pure-fluid values. Figure 6 clearly shows that the direct
correlation functions cij (r) vanish for r > σij , thus, confirming
that the RFA method yields solutions of the PY closure to the
OZ equation, as discussed in Sec. V C.

Figures 7 and 8 show the radial distribution functions
gij (r) of a highly asymmetric binary 5D-sphere mixture with
σ2/σ1 = 1

4 and x2 = 1
4 , at the reduced densities ρσ 5

1 = 1.4
and ρσ 5

1 = 2.0, respectively. The selected densities lie in the

FIG. 7. (Color online) Radial distribution functions for a binary
mixture in d = 5 dimensions with parameters x2 = 1

4 , σ2/σ1 = 1
4 ,

and density ρσ 5
1 = 1.4 (η = 0.172 774). (Solid lines) Results from

the RFA-PY method. (Symbols) Computer simulations [40].

FIG. 8. (Color online) As in Fig. 7, but for ρσ 5
1 = 2.0 (η =

0.246 820).

proximity of the phase transition for the pure one-component
fluid (ηf = 0.19) predicted by Michels and Trappeniers [6].
We see that the RFA-PY solution at η ≈ 0.17 gives reasonable
good values for all pair functions throughout the r region (see
Fig. 7). At a higher packing fraction η ≈ 0.25, we observe,
in Fig. 8, that similar quantitative trends in g22 and g12 are
followed by both simulations and RFA-PY solutions. However,
there are discrepancies particularly severe in the values of g11

corresponding to pairs of big particles. The strong oscillations
observed in the simulation data of g11 can be considered as
a signature of a solid phase at this density [40], which is not
captured by the RFA-PY solution.

VII. CONCLUSIONS

In this paper, we have extended the RFA method to multi-
component systems of hard hyperspheres in odd dimensions.
The main features of this approach are based on simple phys-
ical considerations on Laplace functionals Gij (s) of the radial
distribution functions, which are closely related to the structure
functions of the fluid. The basic physical requirements upon
which the method is based are: (i) The radial distribution
functions take finite values at contact and vanish inside
the core, which implies that lims→∞[s(5−d)/2eσij sGij (s)] =
finite; (ii) the isothermal compressibility is finite, which
implies lims→0[Gij (s) − (d − 2)!!/s2] = finite; and (iii) the
first three terms in the series expansion in powers of density
of the structure factors are exact. Condition (iii) involves the
evaluation of the overlap volume of two arbitrary d spheres.
For space of odd dimensionality, we have found the exact,
analytical, and closed-form expression for the overlap volume
of two hyperspheres of arbitrary sizes as a function of the
center distance [cf. Eqs. (B10) and (B16)]. We have been able
to perform this evaluation thanks to the use of reverse Bessel
polynomials and Fourier analysis.

The primary result of the present paper has been to provide
a theoretical method for the evaluation of thermodynamic
and structural quantities of multicomponent mixtures of hard
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hyperspheres at odd dimensions. We have shown that this
approach gives the exact solution of the OZ equation with
the PY closure. From that perspective, our paper extends, on
one hand, the Lebowitz solution for 3D-sphere mixtures [80]
to higher dimensions and, on the other hand, the PY solution
for one-component hyperspheres [3,7,45,62] to the case of
mixtures.

Although the theory here developed is general and applies to
any odd-dimensional hard-hypersphere fluid with an arbitrary
number of components, the results in this paper concentrate
on 5D binary mixtures. We have checked that the virial (Zv)
and compressibility (Zc) routes to the compressibility factor
under- and overestimate, respectively, the simulation data,
the interpolation approximation Z = 2

5Zv + 3
5Zc providing

excellent results. In addition, reasonable agreement between
RFA-PY results and simulation data for the radial distribution
functions are found at densities lower than that of the
fluid-solid phase transition predicted for a pure fluid at this
dimension.

The implementation of the RFA method developed here
involves as many unknowns as the minimum number required
by the physical conditions and that is why it coincides with
the PY solution. However, as done for 3D mixtures [81] and
for d-dimensional one-component systems [65], one can go
beyond the PY level by adding an extra matricial term Ln+2

in Eqs. (4.2) and (4.3), and by replacing I with (1 + us)I in
Eq. (4.3). The elements of Ln+2 and the parameter u are free
and can be fixed, for instance, by imposing given expressions
for the contact values gij (σ+

ij ) and the thermodynamically
consistent isothermal susceptibility χ .

We expect that the results presented in this paper can
stimulate simulation studies on multicomponent systems of
hard hyperspheres. We also plan to undertake the investigation
of possible fluid-fluid demixing transitions predicted by the
equations of state obtained here within the RFA-PY approach.
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APPENDIX A: FOURIER TRANSFORM

In odd-dimensional spaces, the Fourier transform of an
arbitrary radial function μ(r) and the inverse operation can
be evaluated in terms of the reverse Bessel polynomial θn(t)
of degree n = (d − 3)/2 as [65]

μ̂(k) = (2π )(d−1)/2

kd−2
i

∫ ∞

−∞
drrμ(r)θn(ikr)e−ikr , (A1)

μ(r) = (2π )−(d+1)/2

rd−2
i

∫ ∞

−∞
dkkμ̂(k)θn(ikr)e−ikr . (A2)

Alternatively,

μ̂(k) = (2π )(d−1)/2

kd−2
2 Im{Fn[μ(r)](−ik)}, (A3)

μ(r) = (2π )−(d+1)/2

rd−2
2 Im{Fn[μ̂(k)](−ir)}, (A4)

where Fn is a Laplace functional defined by

Fn[μ(r)](s) ≡
∫ ∞

0
dx xμ(x)θn(sx)e−sx . (A5)

From an integral relation on θn(t), one arrives at [65]

Fn[1](s) = θn+1(0)

s2
= (2n + 1)!!

s2
, (A6)

Fn[�(r − a)](s) = θn+1(as)e−as

s2
. (A7)

APPENDIX B: COVOLUME OF TWO HYPERSPHERES

The overlap volume of two hyperspheres of radii a and b,
whose centers are a distance r = |r|, can be evaluated as

�a,b(r) =
∫

d r ′�(a − |r ′|)�(b − |r ′ − r|). (B1)

Henceforth, without loss of generality, we assume a � b. The
right-hand side of Eq. (B1) is a convolution. Thus, in Fourier
space, Eq. (B1) reads

�̂a,b(k) = �̂a(k)�̂b(k), (B2)

where we have called

�̂a(k) ≡
∫

dr�(a − r)e−ik·r. (B3)

Now using Eqs. (A3), (A6), and (A7), and taking into account
that �(a − r) = 1 − �(r − a), we get

�̂a(k) = (2π )(d−1)/2

kd−2
2 Im

[
(2n + 1)!!

s2
− θn+1(as)e−as

s2

]
s=−ik

= (2π )(d−1)/2

kd
i[θn+1(−ika)eika − θn+1(ika)e−ika].

(B4)

Therefore,

�̂a,b(k) = (2π )d−1

k2d
[θn+1(ika)θn+1(−ikb)eik(b−a)

+ θn+1(−ika)θn+1(ikb)e−ik(b−a)

− θn+1(−ika)θn+1(−ikb)eik(b+a)

− θn+1(ika)θn+1(ikb)e−ik(b+a)]. (B5)

We can obtain �a,b(r) using the inverse Fourier transform
(A2). Integration on the complex plane and the application of
the residue theorem yield

�a,b(r) = (2π )(d−1)/2

rd−2

[
R

(a,b)
4n+4(r)�(b + a − r)

−R
(−a,b)
4n+4 (r)�(b − a − r)

]
, (B6)
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with

R
(±a,b)
4n+4 (r) = Res

t=0

[
θn+1(∓ta)θn+1(−tb)θn(tr)et(b±a−r)

t4n+5

]
= 1

(4n + 4)!

[
∂4n+4
t θn+1(∓ta)θn+1(−tb)

× θn(tr)et(b±a−r)]
t=0 . (B7)

Equation (B7) implies that R
(±a,b)
4n+4 (r) are polynomials of de-

gree 4n + 4 = 2d − 2. If r < b − a, the smaller hypersphere
will be fully contained within the bigger one so that �a,b(r)
will be equivalent to the volume of the former, i.e.,

�a,b(r) = (2a)dvd = 2ad (2π )(d−1)/2

d!!
, r � b − a.

(B8)

Thus, according to Eq. (B6), the difference between the
polynomials R

(±a,b)
4n+4 takes the following expression (for any

r):

R
(a,b)
4n+4(r) − R

(−a,b)
4n+4 (r) = 2a2n+3r2n+1

(2n + 3)!!
. (B9)

Therefore, the final result is

�a,b(r) =

⎧⎪⎪⎨⎪⎪⎩
(2π)(d−1)/2

d!! 2ad, r � b − a,

(2π )(d−1)/2 R
(a,b)
4n+4(r)
rd−2 , b − a � r � b + a,

0, r � b + a.

(B10)

Let us now obtain an explicit expression for the polynomial
R

(a,b)
4n+4(r). According to Eq. (B7), it is the coefficient of t4n+4 in

the expansion of θn+1(−ta)θn+1(−tb)θn(tr)et(b+a−r) in powers
of t . First, note that

θn+1(−ta)θn+1(−tb) =
2n+2∑
�=0

c
(a,b)
n,� t�, (B11)

where

c
(a,b)
n,� = (−1)�

min(�,n+1)∑
�1=max(0,�−n−1)

ωn+1,�1ωn+1,�−�1a
�1b�−�1 .

(B12)

Next,

θn+1(−ta)θn+1(−tb)θn(tr) =
3n+2∑
�=0

d
(a,b)
n,� (r)t�, (B13)

with

d
(a,b)
n,� (r) =

min(�,n)∑
�1=max (0,�−2n−2)

ωn,�1c
(a,b)
n,�−�1

r�1 . (B14)

Finally, the coefficient of t� in the t expansion of
θn+1(−ta)θn+1(−tb)θn(tr)et(b+a−r) is

�∑
�1=max(0,�−3n−2)

(a + b − r)�1

�1!
d

(a,b)
n,�−�1

(r). (B15)

Setting � = 4n + 4 and inserting Eq. (B14), one obtains

R
(a,b)
4n+4(r) = (a + b − r)n+2

3n+2∑
�=0

(a + b − r)3n+2−�

(4n + 4 − �)!

×
min(�,n)∑

�1=max(0,�−2n−2)

ωn,�1c
(a,b)
n,�−�1

r�1 . (B16)

Thus, for example, at d = 3,5 (respectively, n = 0,1) one finds

R
(a,b)
4 (r) = (a + b − r)2

24
[r2 + 2(a + b)r − 3(b − a)2],

(B17)

R
(a,b)
8 (r) = (a + b − r)3

1920
[3r5 + 9(a + b)r4

− 2(a2 − 18ab + b2)r3 − 2(b − a)2(a + b)r2

+ 15(b − a)4r + 5(b − a)4(a + b)]. (B18)

It can be checked that R
(a,b)
4n+4(r) admits the following structure:

R
(a,b)
4n+4(r) = (a + b − r)n+2

[
r2n+1P

(a,b)
n+1 (r)

+ (b − a)2K
(a,b)
2n (r)

]
, (B19)

where P
(a,b)
n+1 (r) and K

(a,b)
2n (r) are polynomials of degree

n + 1 and 2n, respectively. Clearly, in the case of identical
hyperspheres (a = b), R

(a,a)
4n+4(r) adopts the known expression

R
(a,a)
4n+4(r) = (2a − r)n+2r2n+1P

(a,a)
n+1 (r), (B20)

with P
(1,1)
n+1 (r) given by Eqs. (B7) and (B8) of Ref. [65].

APPENDIX C: PROPERTIES OF B(s)

The series expansion of the function φ(x) defined by
Eq. (4.5) is

φm(x) = −
∞∑

�=1

(−1)m+�

(m + �)!
x�. (C1)

Therefore, Eq. (4.4) yields

�m(s) =
∞∑

�=1−δ

Cd+�−ms� (δ = 0,1), (C2)

where the diagonal matrices Cm are

(Cm)ii = −(−2π )(d−1)/2xi

(−σi)m

m!
. (C3)

Thus, the series expansion of the matrix B(s) defined by
Eq. (4.3) is

B(s) =
∞∑

�=0

B�s
� (C4)

with

B0 =
⎧⎨⎩

I (δ = 0),

I + ρ
n+1∑
m=0

Cd−m · Lm (δ = 1),
(C5)

B� = ρ

n+1∑
m=0

Cd+�−m · Lm (� � 1). (C6)
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According to Eqs. (C2) and (C4),

lim
s→0

�m(s) =
{

0 (δ = 0),
Cd−m (δ = 1), (C7)

lim
s→0

B(s) =
⎧⎨⎩

I (δ = 0),

I + ρ
n+1∑
m=0

Cd−m · Lm (δ = 1).
(C8)

As for the behaviors in the limit s → ∞, it is straightforward
from Eqs. (4.3)–(4.5) to get

lim
x→∞ φm(x) = (−1)m

m!
, (C9)

lim
s→∞ �m(s) =

{−Cd−m (δ = 0),
0 (δ = 1), (C10)

lim
s→∞ B(s) =

⎧⎨⎩I − ρ
n+1∑
m=0

Cd−m · Lm (δ = 0),

I (δ = 1).
(C11)

APPENDIX D: THE RATIONAL FUNCTION
APPROXIMATION IN THE LOW-DENSITY LIMIT

Let us consider the low-density expansions of Lm and B(s),

Lm = L(0)
m + ρL(1)

m + O(ρ2), (D1)

B(s) = I + ρB(1)(s) + O(ρ2), (D2)

where

B
(1)
ij (s) =

n+1∑
m=0

[�m(s)]ii
[
L(0)

m

]
ij

. (D3)

Insertion into Eq. (4.1) yields Eq. (3.13) with

G
(0)
ij (s) = e−σij s

s2

n+1∑
m=0

[
L(0)

m

]
ij

sm, (D4)

G
(1)
ij (s) = e−σij s

s2

n+1∑
m=0

[
L(1)

m − L(0)
m · B(1)(s)

]
ij

sm. (D5)

Comparison between Eqs. (3.14) and Eq. (D4) implies that[
L(0)

m

]
ij

= ωn+1,mσm
ij . (D6)

Now, let us consider the matrices L(1)
m . It is convenient to

express their elements as

[
L(1)

m

]
ij

=
N∑

�=1

x�L
(1)
m,ij�. (D7)

Using Eqs. (4.4) and (4.5), one can recast Eq. (D5) into the
form (3.15) with

G
(1)
ij�(s) = e−σij s

s2

n+1∑
m=0

L
(1)
m,ij�s

m + νd

sd−2
G

(0)
i� (s)G(0)

j� (s)

− νd

e−σij s

sd+2
θn+1(σi�s)

n+1∑
m=0

ωn+1,m(σj�s)m

×
d−m−δ∑

q=0

(−σ�s)q

q!
. (D8)

Comparison with Eqs. (3.18) and (3.19) allows us to identify

n+1∑
m=0

L
(1)
m,ij�s

m = νdsQij�(s) (δ = 0), (D9)

n+1∑
m=0

L
(1)
m,ij�s

m = νdsQij�(s) − νdθn+1(σi�s)
n+1∑
m=0

ωn+1,m

(d − m)!

× σm
j�(−σ�)d−m (δ = 1). (D10)

Therefore, the RFA proposal (4.1)–(4.5) is consistent with
the exact result to first order in density.

APPENDIX E: PURE-FLUID LIMIT

Here, we consider σij = σ = 1 ∀i,j , within the case δ =
0. Then, ρ�m(s) = λdφd−m(s)[[ηk]], and one can expect that
Lm = am[[1]], with am being a certain constant. Here, we use
the matrix notation defined in Eq. (5.1) and have defined

λd ≡ νd

vd

= (−1)(d−1)/22d−1d!!. (E1)

Thus,

L(s) =
∑
m

amsm[[1]], (E2)

and

B(s) = I + λd

n+1∑
m=0

φd−m(s)am[[ηi]]. (E3)

Using the mathematical property (F1) and taking into account
that tr([[ηi]]) = η,

B−1(s) = I − λd

∑n+1
m=0 φd−m(s)am

1 + λdη
∑n+1

m=0 φd−m(s)am

[[ηi]]. (E4)

From Eqs. (E2) and (E4), it readily follows:

L(s) · B−1(s) =
∑n+1

m=0 amsm

1 + λdη
∑n+1

m=0 φd−m(s)am

[[1]]. (E5)

Finally, Eq. (4.1) becomes

Gij (s) = e−s

s2

∑
m amsm

1 + λdη
∑n+1

m=0 φd−m(s)am

, ∀i,j. (E6)

This coincides with the PY solution of the one-component
fluid in d = 2n + 3 dimensions, as derived from the RFA in
Ref. [65].

APPENDIX F: INVERSION OF MATRICES

Let us consider square matrices defined following the
notation of Eq. (5.1). Then, as proved in the following, one has

(I + [[Aj ]])−1 = I − [[Aj ]]

1 + a
, (I + [[Ai]])

−1 = I − [[Ai]]

1 + a
,

(F1)

(I + [[CiBj ]])−1 = I − [[CiBj ]]

1 + β
, (F2a)

(I + [[BiCj ]])−1 = I − [[BiCj ]]

1 + β
. (F2b)
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(I + [[Aj ]] + [[CiBj ]])−1 = I + 1

γ

{
α[[Bj ]] − (1 + a)[[CiBj ]]

− (1 + β)[[Aj ]] + b[[CiAj ]]
}
,

(F3)

(I + [[Ai]] + [[BiCj ]])−1 = I + 1

γ
{α[[Bi]] − (1 + a)[[BiCj ]]

− (1 + β)[[Ai]] + b[[AiCj ]]},
(F4)

where

a ≡ tr([[Aj ]]) = tr([[Ai]]), α ≡ tr([[CiAj ]]) = tr([[AiCj ]]),

(F5)

b ≡ tr([[Bj ]]) = tr([[Bi]]), β ≡ tr([[CiBj ]]) = tr([[BiCj ]]),

(F6)

γ ≡ (1 + a)(1 + β) − αb. (F7)

Equations (F1) and (F2) follow immediately from the prop-
erties [[Aj ]] · [[Aj ]] = a[[Aj ]], [[Ai]] · [[Ai]] = a[[Ai]], [[BiCj ]] ·
[[BiCj ]] = β[[BiCj ]], and [[CiBj ]] · [[CiBj ]] = β[[CiBj ]].

The proof of Eqs. (F3) and (F4) is somewhat more involved.
We first multiply (I + [[Aj ]])−1 by I + [[Aj ]] + [[CiBj ]] [see
Eq. (F1)],

(I + [[Aj ]])−1 · (I + [[Aj ]] + [[CiBj ]])

= I + [[CiBj ]] − [[Aj ]] · [[CiBj ]]

1 + a
= I + [[C ′

iBj ]], (F8)

where, in the last step, we have used that [[Aj ]] · [[CiBj ]] =
α[[Bj ]] and have introduced

C ′
i ≡ Ci − α

1 + a
. (F9)

Thus, the left inverse of I + [[Aj ]] + [[CiBj ]] is

(I + [[C ′
iBj ]])−1 · (I + [[Aj ]])−1

=
(

I − [[C ′
iBj ]]

1 + β ′

)
·
(

I − [[Aj ]]

1 + a

)
, (F10)

where

β ′ ≡ tr([[C ′
iBj ]]) = β − αb

1 + a
, (F11)

and use has been made of Eqs. (F1) and (F2a). Taking the
property [[C ′

iBj ]] · [[Aj ]] = b[[C ′
iAj ]] into account, Eq. (F10)

becomes

(I + [[C ′
iBj ]])−1 · (I + [[Aj ]])−1

= I − [[Aj ]]

1 + a
− [[C ′

iBj ]]

1 + β ′ + b

γ
[[C ′

iAj ]], (F12)

where we have used (1 + β ′)(1 + a) = γ . Finally, from
Eq. (F9), it is straightforward to see that the right-hand side of
Eqs. (F3) and (F12) coincide.

An analogous method can be used to prove that the right-
hand side of Eq. (F3) is also the right inverse of I + [[Aj ]] +
[[CiBj ]]. Multiplying the latter matrix by (I + [[Aj ]])−1 [see
Eq. (F1)], one gets

(I + [[Aj ]] + [[CiBj ]]) · (I + [[Aj ]])−1 = I + [[CiB
′
j ]], (F13)

with
B ′

j ≡ Bj − b

1 + a
Aj . (F14)

Thus, the right inverse of I + [[Aj ]] + [[CiBj ]] is

(I + [[Aj ]])−1 · (I + [[CiB
′
j ]])−1

= I − [[Aj ]]

1 + a
− [[CiB

′
j ]]

1 + β ′ + α

γ
[[B ′

j ]]. (F15)

Here, we have used β ′ = tr([[CiB
′
j ]] and [[Aj ]] · [[CiB

′
j ]] =

α[[B ′
j ]]. Replacement of Eq. (F14) makes the right-hand side

of Eq. (F15) coincide with the right-hand side of Eq. (F3).
This completes the proof of Eq. (F3). Equation (F4) is just the
transpose of Eq. (F3). Finally, note that Eq. (F3) reduces to
Eqs. (F1) and (F2a) by particularizing to Ci = 0 and Ai = 0,
respectively.
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