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Abstract
Animals can adapt their behavior to predictable temporal fluctuations in the environment through
both, memory-and-learning processes and an endogenous time-keeping mechanism. Hippocampus
plays a key role in memory and learning and is especially susceptible to oxidative stress. In
compensation, antioxidant enzymes activity, such as Catalase (CAT) and Glutathione peroxidase
(GPx), has been detected in this brain region. Daily rhythms of antioxidant enzymes activitiy, as
well as of glutathione and lipid peroxides levels, have been described in brain. Here, we
investigate day/night variations in lipoperoxidation, CAT and GPx expression and activity, as well
as the temporal fluctuations of two key components of the endogenous clock, BMAL1 and PER1,
in the rat hippocampus and evaluate to which extent vitamin A deficiency may affect their
amplitude or phase. Holtzman male rats from control, vitamin A-deficient and vitamin A-refed
groups were sacrificed throughout a 24-h period. Daily levels of clock proteins, lipoperoxidation,
CAT and GPx mRNA, protein, and activity, were determined in the rat hippocampus obtained
every 4 or 5 h. Gene expression of RARα and RXRβ was also quantified in the hippocampus of
the three groups of rats. Our results show significant daily variations of BMAL1 and PER1 protein
expression. Rhythmic lipoperoxidation, CAT, and GPx, expression and activity, were also
observed in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level, as well as the
amplitude of BMAL1 and PER1 daily oscillation, phase-shifted the daily peak of lipoperoxidation,
and had a differential effect on the oscillating CAT and GPx mRNA, protein, and activity.
Learning how vitamin A deficiency affects the circadian gene expression in the hippocampus may
have an impact on the neurobiology, nutritional and chronobiology fields, emphasizing for the first
time the importance of nutritional factors, such as dietary micronutrients, in the regulation of
circadian parameters in this brain memory-and-learning-related region.
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INTRODUCTION
Animals can adapt their behavior to predictable temporal fluctuations in the environment
such as day/night period, temperature, food and water availability, risk of predation, through
both, memory-and-learning processes and an endogenous time-keeping mechanism
(Pravosudov and Clayton, 2002; Panda et al., 2003; Wiskott et al., 2006; Maiti et al., 2008).
Time-of-day effects on learning and memory have been observed in human and rats
(Winocur and Hasher, 2004). Hippocampus plays a key role in memory and learning and is
especially susceptible to oxidative stress (Onodera et al., 2003; Cheng et al., 2004). In
compensation, there is wide evidence of antioxidant enzymes, Catalase (CAT), Glutathione
peroxidase 1 (GPx1) and Superoxide dismutase (SOD), activity in this brain region (Baydas
et al., 2002; Manikandan et al., 2005). Interestingly, daily rhythms of SOD, GPx, and
Glutathione reductase (GR) activities, as well as of glutathione (GSH) and malondialdehyde
(MDA) levels, have been demonstrated in brain (Pablos et al., 1998; Baydas et al., 2002).

Lipid peroxides, a damaging product of reactive oxygen species (ROS) reaction on cellular
lipids, are particularly elevated in brain (Noda et al., 1983; Triggs and Willmore, 1984). It
has been reported that oxidative damage and increase in lipoperoxidation may induce a
decline of cognitive function in cerebral cortex and hippocampus (Onodera et al., 2003) and
that some prooxidant agents such as propionic acid, aluminum, ozone and aging, provoke
oxidative stress and modify the antioxidant defense system causing an imbalance in the
cellular redox state and impairment of learning and memory in hippocampus (Pettenuzzo et
al., 2002; Gómez et al., 2005; Barhwal et al., 2007).

In the seventies, it was demonstrated that memory performances for associative learning
oscillate in a circadian fashion across time, with high memory retention at multiples of 24
hours post-learning (Holloway and Wansley, 1973). This fluctuation was absent in
suprachiasmatic nucleus (SCN)-lesioned rats, implicating the underlying role of the
endogenous biological clock (Stephan and Kovacevic, 1978).

Even though the mammalian central clock is located in the SCN, most of the tissues and
cells, if not all of them, have the molecular components of the circadian clock. The
molecular clock machinery works through two interacting transcription/translation-based
feedback loops, a positive and a negative one. The positive loop is constituted by the
heterodimeric basic helix-loop-helix-Per Arnt Sim (bHLH-PAS) transcription factor:
BMAL1:CLOCK (from Brain and Muscle ARNT Like protein 1: Circadian Locomoter
Output Cycles Kaput protein) which binds to Ebox enhancers (CANNTG) to activate the
transcription of other clock and clock-controlled genes (Reppert and Weaver, 2002). Thus,
in mammalian cells, the BMAL1:CLOCK heterodimer drives the rhythmic transcription of
three clock Period genes (Per1, Per2, and Per3), two clock Cryptochrome genes (Cry1 and
Cry2) as well as other clock and clock-controlled genes (Panda and Hogenesch, 2004). As
Per and Cry mRNAs are translated and proteins accumulate in the cytoplasm, they form
PER-CRY complexes which, once phosphorylated, translocate into the nucleus, interact with
BMAL1:CLOCK and inhibit BMAL1:CLOCK-mediated transcription of clock and clock-
controlled genes, a general mechanism conserved in many organisms (Reppert and Weaver,
2002; Panda and Hogenesch, 2004; Lee et al., 2004). Additionally, Rutter et al. (2001) have
shown that a high NAD(P)H/NAD(P)+ ratio, which can be the product of a well balanced
cellular redox state, favors BMAL1:CLOCK heterodimerization as well as its DNA binding
in an in vitro system.

Vitamin A is a micronutrient involved in a wide spectrum of biological functions. More
recently, a role for a vitamin A oxidized derivative, the retinoic acid (RA), has been
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established in phenomena related to higher cognitive function in the adult mouse brain
(Etchamendy et al., 2003, Husson et al., 2004).

Besides their role as antioxidants and radical scavengers (Palacios et al., 1996; Anzulovich
et al., 2000), Vitamin A and its derivatives, the retinoids, regulate most of the
developmental, physiological and cellular processes by activating retinoid nuclear receptors.
Thus, retinoids act through RA receptors (RARs, α, β and γ) and Retinoid X receptors
(RXRs, α, β, and γ), and while RARs bind both all-trans-RA (ATRA) and 9cis-RA, RXRs
only bind 9cis-RA (Heyman et al., 1992). It is now known that, in the case of RARs and
RXRs, transcription regulation is mediated either by RAR:RXR heterodimers or by
RXR:RXR homodimers, which bind to RAREs and RXREs, respectively, on their target
gene promoters (Soprano et al., 2004). Noteworthily, ATRA has been detected at relatively
high levels in the central nervous system of adult rats, and the hippocampus/cortex area
contains the highest proportion of RA in the brain (Werner and Deluca, 2002). Additionally,
high expression of the retinoid receptors, RARα, RARγ and RXRβ, has been observed in the
adult mouse hippocampus (Krezel et al., 1999, Zetterstrom et al. 1999) and it has been
demonstrated that vitamin A deficiency deteriorates LTP, leading to learning and memory
impairment, by reducing the expression of RARβ and RXRβ in the mouse and rat
hippocampus (Etchamendy et al., 2003, Mao et al., 2006).

Day-night cycles are known as the main zeitgeber for a wide number of living beings, but it
has been shown that also feeding cycles can entrain peripheral clocks, independent of light
entrainment (Brewer et al., 2005). While the mechanism could remain unknown, examples
of hormonal phase-shifting of circadian gene expression in peripheral organs begun to
emerge with Balsalobre et al. (2000). Indeed, there is some evidence that in a ligand-
dependent manner retinoid receptors can interact with the cellular clock machinery partners,
CLOCK, or its homolog MOP4, and inhibit BMAL1:CLOCK and/or BMAL1:MOP4
heterodimer-mediated expression of circadian responsive genes (McNamara et al., 2002).

Above observations raise the possibility that nutritional factors might have an effect on the
clock activity and circadian expression of target genes, for example, by modulating cellular
redox state and/or BMAL1:CLOCK DNA-binding activity. Considering, vitamin A
deficiency: a) produces oxidative stress, increasing lipid peroxidation levels and affecting
antioxidant enzymes activities (Anzulovich et al., 2000), b) reduces the availability of
retinoid nuclear receptors (Husson et al., 2003 and 2004) thus affecting the activity of
cellular clock machinery partners such as CLOCK and BMAL1 (McNamara et al., 2002),
and c) produces learning and memory impairments (Etchamendy et al., 2003, Mao et al.,
2006), our objective was to evaluate the effect of vitamin A deficiency on the daily variation
of clock gene expression, lipoperoxidation, and antioxidant defense systems, in the rat
hippocampus, a peripheral oscillator with a crucial role in cognitive function.

Here, we show daily rhythmic expression of BMAL1 and PER1 clock components, and
describe, for the first time at our knowledge, daily fluctuations in CAT and GPx expression
as well as in their enzymatic activities in the rat hippocampus. Vitamin A nutritional
deprivation not only modified BMAL1 and PER1 circadian expression, but also altered the
day-night cycles of lipoperoxidation and antioxidant enzymes expression and activities, in
this brain memory-and-learning-related region.

MATERIALS AND METHODS
Animal Model and Diet

Male Holtzman rats were bred in our animal facilities (National University of San Luis,
Argentina), and maintained in a 21–23°C controlled environment with a 12h-light:12h-dark
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cycle. They were weaned at 21 days of age and immediately assigned randomly to either the
experimental diet, devoided of vitamin A (vitamin A-deficient group) or the same diet with
4000 IU of vitamin A (8 mg retinol as retinyl palmitate) per Kg of diet (control group).
Feeding the animals with a vitamin A-free diet during three months, guarantees subclinical
plasma retinol concentration and depleted retinol stores in liver (Anzulovich et al., 2000;
Oliveros et al, 2000). At the end of the third month of treatment, half of the vitamin A-
deficient rats were subsequently fed on the complete diet during 15 days to induce repletion
of vitamin A (vitamin A-refed group). This group was used to study the reversibility of the
possible changes caused by the vitamin deficiency. Rats were given free access to food and
water throughout the entire experimental period. All experiments were conducted in
accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH Publications No. 80-23) and the National University of San Luis Committee’s
Guidelines for the Care and Use of Experimental Animals. Diets were prepared according to
the AIN-93 for laboratory rodents (Reeves et al, 1993). Both, vitamin A-deficient and
control diets had the following composition (g/kg): 397.5 cornstarch, 100 sucrose, 132
dextrinized cornstarch, 200 lactalbumin, 70 soybean oil, 50 cellulose fiber, 35 AIN-93
mineral mix, 10 AIN-93 vitamin mix (devoided of vitamin A for the vitamin A-deficient
diet), 3 L-cystine, 2.5 choline bitartrate, and 0,014 tert-butylhydroquinone. After the
treatment period, six rats from each group were sacrificed at different time points throughout
a 24-h period. Those time points are referred to as zeigeber times (ZT) with ZT=0 when
animal room light is on. Hippocampi were removed on an ice-chilled plate, weighed and
immediately placed in liquid nitrogen. All the experiments were repeated at least twice.

Tissue homogenates and antioxidant enzymes activity
Two pools of three left hippocampi each, extracted from control, vitamin A-deficient and
vitamin A-refed rats at every time point (ZT2, ZT7, ZT12, ZT17 and ZT22), were
homogenized in 1/5 (w/v) dilution in 120 mM KCl and 30 mM phosphate buffer, pH 7.2 at
4°C. Suspensions were centrifuged at 800 × g for 10 min at 4°C to remove nuclei and cell
debris. The pellets were discarded and supernatants were used to determine antioxidant
enzyme activities. CAT, GPx, and SOD activities were determined by the methods of Aebi
(1984), Flohe and Gunzler (1984), and McCord and Fridovich (1969), respectively. Briefly,
CAT activity was determined by measuring the decrease in the absorption at 240 nm when
100 μl of 3 mM H2O2 were added to a reaction medium containing 50 mM phosphate buffer
pH 7.3 and 1/500 dilution of enzymatic preparation. The pseudo-first-order reaction constant
k′ (k′= k[CAT]) of the decrease in the H2O2 absorption was determined and catalase activity
was calculated using k= 4.6 × 107 M−1 s−1 (Chance et al, 1979) and expressed in IU/mg
prot. One CAT unit is defined as the amount of enzyme required to decompose 1 μM of
H2O2/min. GPx activity was determined following NADPH oxidation at 340 nm in a
reaction medium containing 0.2 mM GSH, 0.25 U/ml yeast glutathione reductase, 0.5 mM
tert-butyl hydroperoxide and 50mM phosphate buffer (pH 7.2). SOD activity was
determined on the basis of its inhibitory effect on the rate of superoxide-dependent reduction
of cytochrome c by xanthine-xanthine oxidase at 560 nm. The reaction medium contained
50 mM phosphate buffer (pH 7.8), 50 μM xanthine, 20 μM cytochrome c and xanthine
oxidase to detect 0.025 absorbance units/min. One unit of SOD was defined as the amount
of enzyme that inhibits cytochrome c reduction by 50%. Protein was measured by the
method of Lowry et al. (1951) using bovine serum albumin (1mg/ml) as standard. All
reagents were from Sigma-Aldrich Co.

Lipoperoxidation levels
Two pools of three left hippocampi each, extracted from control, vitamin A-deficient and
vitamin A-refed rats at ZT2, ZT6, ZT10, ZT14, ZT18 and ZT22, were homogenized in 1/5
(w/v) dilution in 120 mM KCl and 30 mM phosphate buffer, pH 7.2 at 4°C. Suspensions
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were centrifuged at 800 x g for 10 min at 4°C to remove nuclei and cell debris. The pellets
were discarded and supernatants were used to determine TBARs. Lipid peroxidation was
quantified spectrophotometrically by determining MDA levels as thiobarbituric acid reactive
substances (TBARS) according to Draper and Hadley (1990).

mRNA isolation and RT-PCR
Total RNA was extracted from three pools of two right hippocampi each. Hippocampus
samples were isolated at ZT2, ZT6, ZT10, ZT14, ZT18 and ZT22 from control, vitamin A-
deficient and vitamin A-refed rats. All RNA isolations were performed using the Trizol
reagent (Invitrogen Co) as directed by the manufacturers. Gel electrophoresis and ethidium
bromide staining confirmed the integrity of the samples. Quantification of RNA was based
on spectrophotometric analysis at 260 nm. 3 μg of total RNA were reverse-transcribed with
200 units of MMLV Reverse Transcriptase (Promega Inc.) using random hexamers in a 25
μl reaction mixture and following manufacturer’s instructions. Transcript levels of CAT,
SOD and GPx were determined by RT-PCR and normalized to beta-actin as endogenous
control. Fragments coding for μ-actin, CAT, SOD and GPx were amplified by PCR in 50 μl
of reaction solution containing 0.2 mM dNTPs, 1.5 mM MgCl2, 1.25 U of Taq polymerase,
50 pmol of each rat specific oligonucleotide primer and RT-generated cDNA (1/5 of RT
reaction). The sequences of the specific primers are shown on Table 1. Samples were heated
in a thermalcycler (My Cycler, BioRad) to 94°C for 2 min, followed by 40 cycles of: (1)
denaturation, 94° C for 1 min; (2) annealing, 59° C during 1 min; (3) extension, 72°C for 1
min. After 40 reaction cycles, the extension reaction was continued for another 5 minutes.
PCR products were then electrophoresed on 2% (w/v) agarose gel with 0.01% (w/v)
ethidium bromide. The amplified fragments were visualized under ultraviolet (UV)
transillumination and photographed using a Cannon PowerShot A75 3.2MP digital camera.
The mean of gray value for each band was measured using the NIH ImageJ software (Image
Processing and Analysis in Java from http://rsb.info.nih.gov/ij/) and the relative abundance
of each band was normalized according to the housekeeping β-actin gene, calculated as the
ratio of the mean of gray value of each product to that of β-actin.

Real Time PCR
Relative quantification of RARα and RXRβ mRNA levels was performed by Real-Time
PCR using the ABI Prism® 7500 thermocycler (Applied Biosystems, USA). Before the real-
time PCR was performed, cDNA obtained by RT-PCR was diluted to 20ng/μl with nuclease-
free water. The diluted cDNA (5μl) was amplified in a 25μl final volume reaction mix
containing 1X SYBR Green I fluorescent dye (Applied Biosystems, USA) and 500 nM
gene-specific primers (Table 1). Reactions were subjected to one step of 95ºC for 5 min
followed by 40 cycles of 95ºC for 15 sec and 60ºC for 1 min. Relative expression of the real-
time PCR products was determined by the ΔΔCt method. This method calculates relative
expression using the equation: fold induction=2−[Δ ΔCt], where Ct is the threshold cycle, ie,
the cycle number at which the sample’s relative fluorescence rises above the background
fluorescence and ΔΔCt = [Ct gene of interest (unknown sample) − Ct housekeeping gene
(unknown sample)] − [Ct gene of interest (calibrator sample) − Ct housekeeping gene
(calibrator sample)]. In this case, β-actin was chosen as housekeeping gene and one of the
control samples as calibrator. Each sample was run in triplicate, and the mean Ct was used
in the ΔΔCt equation. Data for the normalized transcript levels of RARα and RXRβ are
shown as means ± S.E.M.

Immunobloting
Protein extracts were prepared from two pools of three left hippocampi each, obtained from
each group of rats at ZT2, ZT6, ZT10, ZT14, ZT18 and ZT22, in buffer C (20 mM HEPES,
pH 7.9, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.5 mM
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phenylmethylsulfonyl fluoride, 1 μg/ml leupeptin, 1 μg/ml of pepstatin, 1 mM sodium
fluoride, 5 sM sodium orthovanadate, and 25% glycerol). Aliquots containing 40 μg of total
protein were subjected to electrophoresis in 4–12% NuPageTM Bis-Tris gels (Invitrogen
Life Technologies, Carlsbad, CA), and then transferred to Immobilon-PTM transfer
membranes (Millipore, Bedford, MA). Immunoblot analyses were performed as described in
the manufacturers’ protocols for the detecting antibodies. Briefly, membranes were blocked
in Blotto (5% nonfat dry milk, 10 mM Tris-HCl, pH 8.0, and 150 mM NaCl) followed by 3h
incubation at RT with either goat anti-CAT, goat anti-GPx1, goat anti-BMAL1 or rabbit
anti-PER1 antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) in Blotto containing
0.05% thimerosal. After incubation with primary antibody, the membranes were washed in
TBS (10 mM Tris-HCl, pH 8.0, and 150 mM NaCl) containing 0.05% Tween-20, before
incubation with horseradish-peroxide-conjugated donkey anti-goat, or goat anti-rabbit, IgG
(Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1:10,000 in Blotto for 1 hour at room
temperature. After washing, antibody/protein complexes on membranes were detected using
Vectastain DAB Peroxidase Substrate kit from Vector Laboratories (Burlingame, CA) and
following the manufacturers indications. The mean of intensity of each band was measured
using the NIH ImageJ software (Image Processing and Analysis in Java from
http://rsb.info.nih.gov/ij/).

Scanning of antioxidant genes upstream regions for putative E-box, RARE and RXRE sites
To identify putative E-box, RAR (RARE), and/or RXR (RXRE) DNA consensus regulatory
sites, CAT, GPx and SOD gene regulatory regions, up to 2000 bp upstream of the translation
start codon, were scanned for significant matches using the MatInspector software (Quandt
et al., 1995) from Genomatix (http://www.genomatix.de).

Statistical Analysis
Time point data were expressed as means ± standard error of the mean (SE) and pertinent
curves were drawn. Time series were computed by one-way ANOVA followed by Tukey’s
post-hoc test for specific comparisons. A P value of less than 0.05 between time points was
considered to be significant.

RESULTS
Effect of vitamin A deficiency on antioxidant enzymes mRNA expression in the rat
hippocampus

First of all, to test whether vitamin A deficiency could have any effect on the antioxidant
enzymes transcript levels in the rat hippocampus, CAT, GPx and SOD mRNA expression
was analyzed by RT-PCR (Figure 1). We found vitamin A deficiency significantly
decreased CAT and GPx mRNA levels in the hippocampus of rat (P<0.05 and P<0.01,
respectively) and had no effect on SOD expression (data not shown), in comparison to
controls. Moreover, 15 days of vitamin A refeeding restored transcript levels of CAT and
GPx to control values.

Daily patterns of lipoperoxidation and antioxidant enzymes in the rat hippocampus
Once we confirmed vitamin A deficiency had an effect on CAT and GPx mRNA expression
levels, we continued to test whether lipoperoxidation and antioxidant enzymes expression
and activities followed a daily pattern in the hippocampus of rat. For that, samples were
obtained throughout a 24h-period from control, vitamin A-sufficient, rats. Tissue extracts
were prepared as described in the Materials and Methods section, and subjected to TBARS,
RT-PCR, immunobloting and activity assays. The results revealed that lipoperoxidation
(Figure 2, left panel) as well as mRNA expression, protein levels and activity of CAT
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(Figure 3A, B and C, left panels) and GPx (Figure 4A, B and C, left panels), follow a robust
diurnal rhythm in the hippocampus of control rats.

We found MDA levels peak at ZT22 (P<0.01), the end of the activity (and catabolic) phase
in rodents. This peak of lipoperoxidation overlaps with the highest level of CAT activity, at
ZT22 (P<0.005; Figure 3C, left panel), and concurs with the GPx activity peak at the end-of-
the-night/beginning-of-the-day, ZT22-ZT2, phase (P<0.001; Figure 4C, left panel).

Diurnal rhythms were also observed in CAT and GPx mRNA expression and protein levels.
Thus, the highest level of CAT mRNA expression is at ZT22 (P<0.001), preceding the
maximal protein level observed at ZT10 (P<0.005; Figure 3A and B, left panels). In the case
of GPx, transcript expression reaches its maximum at ZT2 (P<0.005) while protein level
does it at ZT10 (P<0.001; Figure 4A ad B, left panels).

Temporal pattern of lipoperoxidation in the hippocampus of vitamin A-deficient rats
Interestingly, we observed a 12-hour phase-shift in the daily pattern of lipoperoxidation in
the hippocampus of vitamin A-deficient rats, with MDA levels peaking at ZT10 (P<0.0001;
Figure 2, central panel). Refeeding vitamin A-deficient rats with the control diet, shortened
in 4 hours, but didn’t completely reverted, the phase-shift observed in vitamin A-deficient
animals in comparison to controls (Figure 2, right panel).

Temporal expression and daily activity of CAT in the hippocampus of vitamin A deficient
rats

Daily rhythms of CAT gene and protein expression as well as enzymatic activity were
essentially abolished, with no significant differences between values at different time points,
in the hippocampus of vitamin A-deficient rats (Figure 3A, B and C, central panels). Fifteen
days of vitamin A refeeding reverted the effects of vitamin A deficiency and recovered daily
rhythmicity of mRNA (P<0.001), protein levels (P<0.0001) and enzymatic CAT activity
(P<0.001), although we observed some phase shifts of maximums in comparison to controls
(Figure 3A, B and C, right panels).

Temporal expression and daily activity of GPx in the hippocampus of vitamin A deficient
rats

In this case, vitamin A deficiency phase-shifted the daily patterns of mRNA expression and
enzymatic activity of GPx (P<0.01 and P<0.001, respectively; Figure 4A and C, central
panels). Thus, GPx transcript level peak was phase shifted from ZT2 to ZT10 and GPx
activity from ZT22 to ZT12. Fifteen days of vitamin A refeeding, start reversing the vitamin
A deficiency effects on GPx expression and activity (Figure 4A and C, right panels).

Putative RARE, RXRE and E-box sites on CAT and GPx genes upstream region
Scanning of 2000 bp upstream of the translation start codon of CAT, GPx and SOD in the
Genomatix database (http://www.genomatix.de) revealed one RARE, two RXREs and five
putative clock-responsive E-box elements on the CAT gene upstream region, while five
RXREs and one E-box sites were found on the GPx gene upstream region (Figure 5). None
of these responsive sites was present on SOD promoter (data not shown). Interestingly, we
also found a retinoic acid-related orphan receptor a (RORa) responsive site (RORE) on the
GPx promoter.

RARα and RXRβ expression levels in the hippocampus of vitamin A deficient rats
Once we had knowledge about the presence of putative RARE, RXRE and E-box regulatory
sites on the promoter of the CAT and GPx genes, continued to study the mRNA expression
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of retinoid nuclear receptors in the hippocampus of control, vitamin A-deficient and vitamin
A-refed rats. Interestingly, vitamin A deficiency decreased the RXRβ transcript level
(P<0.001), but had no effect on the RARα mRNA expression. Refeeding vitamin A-
deficient animals with control diet during 15 days, increased RARa mRNA level (P<0.05)
but was not enough to restore the RXRβ mRNA expression to control level (P<0.001)
(Figure 6).

Daily rhythms of BMAL1 and PER1 expression in the hippocampus of vitamin A-deficient
rats

To test to which extent vitamin A deficiency could affect the circadian expression of key
clock factors, we analyzed the protein levels of BMAL1 and PER1 during a 24-h period, in
the hippocampus of control, vitamin A-deficient and vitamin A-refed rats. We observed
BMAL1 and PER1 protein expression varies throughout a day in the rat hippocampus, with
maximal protein levels at ZT22 and ZT2, respectively (Figure 7). Three months of vitamin
A deficiency, reduced in 20% and 37% the amplitude of BMAL1 and PER1 oscillation,
respectively (Figure 7). These effects were completely reverted after fifteen days of vitamin
A refeeding.

DISCUSSION
Vitamin A is indispensable for CAT and GPx transcript expression in the rat hippocampus

Vitamin A is linked to a variety of factors determining the susceptibility to oxidative stress.
Previous results from our lab indicate that three months of feeding the vitamin A-free diet
causes a well established vitamin A deficiency, with a significant reduction of the vitamin
levels in the rat liver and heart, associated to alterations in non enzymatic and enzymatic
antioxidant defense system (Anzulovich et al.,2000; Oliveros et al., 2000). Aerobic
organisms developed a complex and efficient network of antioxidant defenses to protect
themselves against deleterious effects of reactive oxygen species and maintenance of tissue
and cellular homeostasis. It has been demonstrated that vitamin A modulates the
upregulation of several major scavenger enzyme genes, such as glutathione transferase (Xia
et al., 1996). Similarly, in the current study, we found mRNA levels of CAT and GPx1 were
significantly lower in the hippocampus of vitamin A-deficient rats, compared to controls
(Figure 1). Since alterations in the antioxidant defense system in the hippocampus have been
seen to cause imbalance in the cellular redox state and impairment of learning and memory
(Pettenuzzo et al., 2002; Gómez et al., 2005), our observations made us wonder about the
participation of vitamin A in the circadian regulation of the antioxidant/pro-oxidant balance
in the hippocampus and its putative relevance in the daily cognitive function.

Relevance of daily rhythms of lipoperoxidation, antioxidant enzymes and clock proteins in
the hippocampus

Lipid peroxidation is a unique mode of oxidative injury which is triggered and promoted by
different radical and non-radical members of the ROS family, or by the catalytic
decomposition of preformed lipid hydroperoxides by several agents in different tissues (Niki
et al, 2005). Here, we observed lipoperoxidation follows a daily rhythm in the hippocampus
of control rats with a peak time of TBARS at the end of the catabolic-, thereafter ROS
producing, activity-phase in rats. Thus, such increase in the level of lipid peroxides at the
end-of-the-night/beginning-of-the-day could be explained as a consequence of oxidative
metabolism during the dark phase, as seen by Baydas et al. (2002) in rat cerebral tissue.
These observations are also consistent with temporal patterns of lipoperoxidation observed
by Subramanian et al. (2008) and Pandi-Perumal et al. (2008) in the brain.
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Diurnal rhythms of antioxidant GPx, SOD and GR activity have been observed in the rat
brain, particularly, in the cerebral cortex (Baydas et al., 2002). Moreover, Pablos et al.
(1998) found rhythms of GPx and GR in the hippocampus of chick. Here, we report, for the
first time at our knowledge, daily variation of CAT and GPx activity as well as rhythmic
CAT and GPx expression, at transcript and protein levels, in the rat hippocampus (Figures 3
and 4, A, B, and C, left panels).

It is well known that CAT eliminates H2O2, by reducing it to water and oxygen, and that
GPx helps to prevent the formation of hydrogen and organic hydroperoxides, thus protecting
the cell from damaging effects of those oxidizing species. As expected, temporal patterns of
CAT and GPx activities observed in the rat hippocampus were consistent with the rhythm of
lipoperoxidation. While the lowest CAT activity occurs during the light period and, at least
in part, brings lipid peroxidation into the maximal level, highest CAT and GPx activities,
practically concur with the nocturnal peak of lipoperoxidation. Thus, antioxidant enzymes
would have a complementary and proper timing for protecting hippocampus against
peroxides, maintaining lipoperoxidation at controlled fluctuating levels, with the lowest
MDA concentration occurring during the diurnal, anabolic, period in rats (Figure 2, left
panel). Studies made by Sani et al. (2006) and Baydas et al. (2002), have reported similar
observations for rhythmic CAT and GPx activity, with maximal levels occurring during the
dark phase in the mouse and rat brain. On the other hand, the location of enzymes activity
peaks during the night-feeding-period, may suggest the influence of feeding cycle, and
macro or micronutrients, such as proteins, carbohydrates, aspartate, glutamate or some
vitamins, on those rhythms, as seen by Selmaoui and Thibault (2002), Manivasagam and
Subramanian (2004) and Sivaperumal et al. (2007).

Interestingly, the nocturnal peaks of CAT and GPx antioxidant activity seen in the
hippocampus of our control rats would be in phase with the best time for performing
learning and memory tests seen by Winocur and Hasher (2004) in young rats.

On the other hand, daily variation in the expression and activity of the antioxidant systems,
as well as the presence of E-box BMAL1:CLOCK responding sites found on the CAT and
GPx promoters (Figure 5), suggest those antioxidant enzymes would be under the
endogenous clock control. Indeed, we found maximal CAT and GPx mRNA expression
follow BMAL1 protein peak at the end-of-the-night/beginning-of-the-day in the control rats
(Figures 3A, 4A and 7, left panels) while the lowest levels of CAT and GPx expression
occur after the negative regulator, PER1, protein peak (Figures 3A and 4A, left panels, and
7, right panel). Recently, Hirayama et al. (2007) provided an attractive link between the
regulation of the cellular reduction/oxidation (redox) state and the circadian control in the
Z3 zebrafish embryonic cell line, which contains an independent, light-entrainable circadian
oscillator. They showed that H2O2 acts as the second messenger coupling photoreception to
the zebrafish circadian clock, and that CAT shows oscillating expression and activity
patterns, antiphasic to Per1, Per2 and Cry1, expression. As shown in Figures 3 and 7 for
control animals, our findings are in agreement with their observations. Additionally,
Hirayama et al. (2007) observed that overexpression of CAT results in a reduced light-
dependent Cry1a and Per2 gene induction while inhibition of CAT function enhances light-
mediated inducibility of these clock genes. These and our findings would implicate the
existence of a mutual negative regulation between antioxidant enzymes and clock gene and
protein expression.

Differential effects of Vitamin A deficiency on daily oscillating patterns in the rat
hippocampus

Interestingly, we observed vitamin A deficiency exerts differential effects on the circadian
expression and activity of CAT and GPx. On one hand, daily oscillations of CAT transcript,
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protein and activity are shallower in the vitamin A-deficient rats in comparison to control
and vitamin A-refed groups (Figure 3, central panels). On the other hand, Vitamin A
deficiency did not abolish or attenuate rhythmicity, but clearly phase-shifted day-night
fluctuations of GPx mRNA expression and activity. Thus, a significant 8-h phase-shift of the
GPx mRNA maximum and a 14-h phase-shift of GPx activity were observed in the
hippocampus of vitamin A-deficient rats (Figure 4A and C, central panels). In both cases,
temporal changes in enzymatic activity follow changes in mRNA levels suggesting vitamin
A-deficiency affects the circadian expression of CAT and GPx at the transcriptional level.
Although others have tested and demonstrated the effects of nutritional factors, such as
aspartate, glutamate or changes in feeding schedule (Selmaoui and Thibault, 2002;
Manivasagam and Subramanian, 2004; Sivaperumal et al., 2007) on the circadian expression
of antioxidant enzymes, this would be, at least at our knowledge, the first published report
on the effects of vitamin A deficiency on the daily rhythmicity of CAT and GPx expression
and activity and its putative impact on the circadian functionality of a brain region.

The presence of different putative retinoid- and clock-responsive elements on the CAT and
GPx gene upstream regions shown in Figure 5, would explain, at least in part, a differential
regulation of these genes at transcriptional level as well as the distinct response to the
vitamin A deficiency seen in this study. Thus, CAT promoter seems more responsive and
sensitive to clock control through its five E-boxes. Shallower daily CAT expression and
activity could be either a consequence of the loss of BMAL1 and PER1 rhythmicity or,
taking into account Hirayama et al. (2007) findings, either the cause of the loss of clock
proteins oscillation.

In the case of GPx upstream region, besides a larger number of RXR sites, it has only one E-
box and one RORE sites. RORa in the SCN or other brain regions is a retinoid-related
orphan receptor recently incorporated to the molecular clock machinery (Sato et al., 2004),
which activates BMAL1 transcription in a 24-h cycle. It has been shown that RORa-
mediated transcription is activated synergistically by RAR in Pukinje cerebellar cells
(Matsui, 1997), evidencing a functional interaction between RORa and RAR transcription
factors. RARs operate as heterodimers with RXRs (Soprano et al., 2004). In these studies,
vitamin A deficiency had no effect on the RARα mRNA expression but significantly
reduced the RXRβ transcript level (Figure 6). Taking into account the presence of RXR
responsive sites on CAT and GPx genes upstream region (Figure 5), the lower availability of
RXRβ might affect some necessary transcriptional interactions to maintain rhythmic
expression of antioxidant enzymes genes; for example, affecting either RXR
heterodimerization, either RORa-mediated transcriptional activation of clock (BMAL1) or
clock-controlled (GPx) cycling genes. These last questions led us to test whether vitamin A
deprivation modifies the circadian expression of key endogenous clock proteins such as
BMAL1 and PER1, a positive and a negative clock transcription factor, respectively.

Interestingly, we observed vitamin A deficiency was able to reduce in a 20 and 37% the
BMAL1 and PER1 rhythms amplitude. Even thought there are many reports that associate
vitamin deficiencies with altered daily expression patterns, just a very few report the effect
of nutritional deficiencies on circadian clock gene expression, and only one determines the
effect of vitamin A deficiency on the oscillating Bmal1 and Per2 gene expression (Shiari et
al., 2006). Conversely to what we observed in the hippocampus of vitamin A deficient rats,
Shirai et al. (2006) found that circadian expression of clock genes is maintained in the liver
of Vitamin A-deficient mice. This lead us to suggest a tissue-specific role for vitamin A
given by a tissue-specific distribution of its nuclear receptors, that is RXRα, RARα and
RARβ being the most abundant in the liver (Ulven et al., 1998) and RXRβ, RARα, and
RARγ, being the ones in the hippocampus (Krezel et al., 1999, Zetterstrom et al. 1999).
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Thus, vitamin A deficiency might affect transcriptional and/or post-transcriptional
processes, either by affecting RARs- or RXRs-mediated transcriptional regulation of CAT
and GPx, either by affecting the formation of BMAL1:CLOCK heterodimer or its
interaction with the antioxidant enzymes promoters.

Recovering of daily clock proteins and antioxidant enzymes expression rhythms in the
hippocampus of vitamin A-refed rats

Even thought refeeding vitamin A-deficient animals with the control diet during 15 days was
not enough to restore the mRNA expression of RXRβ to control level (Figure 6), it was
sufficient for recovering daily rhythmicity of BMAL1 and PER1 protein levels (Figure 7).
These observations would allow us to explain the, in some cases complete in other partial,
recovering of vitamin A-refed rats. Interestingly, CAT circadian rhythms were almost
completely recovered after refeeding with the vitamin A-sufficient (control) diet. In this
case, a higher number of Ebox sites on the CAT gene 5′ regulatory region is in agreement
with the recovering of BMAL1 and PER1 circadian patterns (Figure 7). On the other hand,
studies of RAR null and RXR mutations, have shown a compensatory activity of other
RARs or RXRs when one RAR is not produced (Krezel et al., 1996) or one RXR is mutated
and not functional (Vivat-Hannah et al., 2003). In our case, vitamin A refeeding increased
RARα mRNA level and, as shown in Figure 5, CAT gene has, besides two RXREs, a RARE
site on its promoter. All above observations could explain daily CAT recovering from
vitamin A deficiency when animals were refed with the control diet. However,
lipoperoxidation and GPx circadian patterns were half-a-way restored in the vitamin A-refed
group, as expected since GPx gene promoter is richer in RXRE but lacks of RARE sites and
thereafter, it is probably more sensitive to the significant lowered and unrecovered RXRs
levels.

Conclusion
Throughout a whole 24-h cycle, our study shows that CAT and GPx expression and activity
present a daily rhythmicity in the rat hippocampus. This might reveal an interesting strategy
to respond to the challenge of daily oxidative stress in this brain region. Temporal patterns
of lipoperoxidation, CAT and GPx expression and activity, as well as daily oscillation of
clock BMAL1 and PER1 proteins, showed dramatic changes under the nutritional vitamin A
deficiency. Thus, the daily variation of physiological parameters and functions might be
under the control of both endogenous and external factors such as environmental or
nutritional ones. The presence of an endogenous biological clock is fundamental for life at
all levels of an organism and as we and others have shown hippocampus does not run away
from this.

Taken together, the results presented here would contribute to define, for the first time, a
possible role for vitamin A as a rhythm regulator in the establishment of circadian clock and
antioxidant enzyme systems. On the other hand, learning how vitamin A deficiency affects
the circadian expression of genes involved in the antioxidant defense system in the
hippocampus may have an impact on the neurobiology, nutritional, and chronobiology
fields, emphasizing for the first time the importance of nutritional factors such as dietary
micronutrients in the regulation of circadian parameters in the brain memory-and-learning-
related regions. We would also expect that emerging data from this and future studies would
highlight retinoid signalling pathways as potential novel therapeutic targets for cognitive as
well as for clock-related deficits.
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ATRA all-trans-retinoic acid

9cisRA 9-cis-retinoic acid

CAT catalase

GPx glutathione peroxidase

GSH glutathione

MDA malondialdehyde

RAR retinoic acid receptor

RARE retinoic acid responsive element, ROS, reactive oxygen species

RORE retinoid-related orphan receptor responsive element

RXR retinoid X receptor

RXRE retinoid X responsive element

SCN suprachiasmatic nucleus

SOD superoxide dismutase

TBARS thiobarbituric acid reactive substances
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Figure 1. CAT and GPx mRNA levels in the hippocampus of control, vitamin A-deficient and
vitamin A-refed rats
Bars represent mean ± standard error of four animals per group performed in duplicates.
Statistical analysis was performed using one-way ANOVA followed by Tukey test.
*P<0,02; **P<0,05.
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Figure 2. Day-night cycles of lipoperoxidation in the hippocampus of control, vitamin A-deficient
and vitamin A-refed rats
MDA was measured by the thiobarbituric acid method. Each value represents the mean ± SE
of two pools of three left hippocampi each. Horizontal bars represent the distribution of light
(open) and dark (closed) phases of the 24 h photoperiod. ZT is zeitgeber time, with ZT=0
when light is on. Statistical analysis was performed using one-way ANOVA followed by
Tukey test with *P<0,05; **P<0,01 and ***P<0,001 when compared indicated means with
the corresponding maximal value in each group.
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Figure 3. Daily rhythms of CAT mRNA expression (A), protein levels (B) and enzymatic activity
(C), in the hippocampus of control, vitamin A-deficient and vitamin A-refed rats
Each value on the curve represents the mean ± SE of three pools of two right hippocampi
each (mRNA levels), or two pools of three left hippocampi each (protein levels and
enzymatic activity), at a given ZT (with ZT=0 when light is on). Horizontal bars represent
the distribution of light (open) and dark (closed) phases of the 24-h photoperiod. Statistical
analysis was performed using one-way ANOVA followed by Tukey test with *P<0,05;
**P<0,01 and ***P<0,001 when indicated means were compared to the corresponding
maximal value in each group.
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Figure 4. Daily rhythms of GPx mRNA expression (A), protein levels (B), and enzymatic activity
(C), in the hippocampus of control, vitamin A-deficient and vitamin A-refed rats
Each value on the curve represents the mean ± SE of three pools of two right hippocampi
each (mRNA levels), or two pools of three left hippocampi each (protein levels and
enzymatic activity), at a given ZT (with ZT=0 when light is on). Horizontal bars represent
the distribution of light (open) and dark (closed) phases of the 24-h photoperiod. Statistical
analysis was performed using one-way ANOVA followed by Tukey test with *P<0,05;
**P<0,01 and ***P<0,001 when indicated means were compared to the corresponding
maximal value in each group.
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Figure 5. Schematic representation of RARE, RXRE and E-box sites on the 5′ regulatory region
of CAT and GPx genes
The accession # for the sequences taken from the PubMed database are: CAT (Acc#:
AH004967) and GPx (Acc#: AB004231). Arrows indicate the first translation codon, gray
boxes represent exons, white circles are RAREsites, dashed circles RXREs, black ovals
perfect E-box (CACGTG) sites and white ovals are E-box-like (CATATG, CATGTG or
CACTTG) sites. Grey oval on rGPx promoter represents a RORE site. Negative (−)
numbers indicate regulatory sites positions relative to the start of translation (+1).
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Figure 6. Transcript levels of RARα and RXRβ in the hippocampus of control, vitamin A-
deficient and vitamin A-refed rats
mRNA levels were determined by Real Time PCR and normalized to β-actin. Each bar
represents the mean ± SE of 4 samples in triplicates with *P<0,05 and ***P<0,001 in
comparison to control.
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Figure 7. Daily rhythms of BMAL1 and PER2 protein levels in the hippocampus of control,
vitamin A-deficient and vitamin A-refed rats
A) Densitometric quantitation of the Immunoblots representative data. Each value on the
curve represents the percentage (%) of maximal protein expression at a given ZT, with ZT=0
when light is on. Horizontal bars represent the distribution of light (open) and dark (closed)
phases of the 24-h photoperiod. B) Immunoblot analysis of protein extracted from control,
vitamin A-deficient, and vitamin A-refed rat hippocampi obtained at ZT2, ZT6, ZT10,
ZT14, ZT18 and ZT22.
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Table 1

Primer pairs used for RT-PCR (antioxidant enzymes genes) and Real Time PCR (retinoid receptors genes).

Gene name GenBank Accession No Forward primer 5′-3′ Reverse primer 5′-3′ Fragment size

CAT NM_012520 CGACCGAGGGATTCCAGATG ATCCGGGTCTTCCTGTGCAA 174 bp

GPx1 NM_030826 CGGTTTCCCGTGCAATCAGTT ACACCGGGGACCAAATGATG 225 bp

SOD NM_017051 AGCTGCACCACAGCAAGCAC TCCACCACCCTTAGGGCTCA 200 bp

RARα NM_031528 CGCCTGTGAGGGCTGTAAG ATGCCCACTTCGAAGCATTT 150 bp

RXRβ NM_206849 CGAAGCTCAGGCAAGCACTA TCCTGTACCGCCTCCCTTTT 200 bp
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