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In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at sim-
ulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum
(smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength
criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the
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numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby,
the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents
are evaluated and compared against experimental data. The attention also focuses on the evaluation of
the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orienta-

tion on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand.
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1. Introduction

The development of innovative composites based on further en-
hancing of cementitious materials represents a new challenging
and interesting field of the Material Science and the Structural
Engineering. Most significant examples are the High Performance
Concretes (HPC) and, particularly, the Steel Fiber Reinforced Con-
crete (SFRC) (Gettu, 2008; Li et al., 1998a, 1998b; Mirsayah and
Banthia, 2002). Actually, the application of SFRC in civil and mil-
itary constructions have significantly increased in the last decades
(and that trend still continues). The well-known deficiencies of
cement-based materials like concretes, i.e., low strength and brit-
tle response in low confinement and tensile regimes, can be mit-
igated by adding short steel fibers randomly distributed into the
cementitious mortar. The major advantages of SFRC, as compared
with plain concretes, is its higher residual tensile strength accom-
panied with elevated toughness in post-cracking regime (Naaman
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and Reinhardt, 2006; Nguyen et al., 2010; di Prisco et al., 2009).
Since fiber bridging mechanisms mainly take place under cracked
regime of concrete matrix, the mechanical behavior of uncracked
members is practically not influenced by the addition of fibers be-
yond the limited increase of the elastic stiffness.

In the last years, many constitutive theories were proposed for
failure analysis of SFRC. Most of them follow the Smeared Crack
Approach (SCA) and, particularly, the flow theory of plasticity (Hu
et al., 2003; Seow and Swaddiwudhipong, 2005) and the contin-
uum damage theory, see also the work by Li and Li (2001). Besides
the SCA-based proposals, several constitutive models and theoret-
ical formulations are based on the Discrete Crack Approach (DCA).
In the DCA the kinematic of cracking is modeled by means of
the displacement field in discontinuities or interfaces in the finite
element discretization, see also the contributions by Prasad and
Krishnamoorthy (2002) and Etse et al. (2012).

The failure behavior of SFRC was evaluated not only at the
macroscopic level of observation but also at the mesoscopic one.
We may here refer to the contributions by Leite et al. (2004) and
Schauffert and Cusatis (2012) who considered the effect of fibers
dispersed into a Lattice Discrete Particle Model (LDPM), by Oliver
et al. (2012) who highlighted the macroscopic response in terms
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of the meso-structural phenomenon associated with the fiber-
matrix bond-slip action, by Gal and Kryvoruk (2011) who proposed
a mesoscale two-step homogenization approach and the propos-
als by Radtke et al. (2010) and Cunha et al. (2012) whereby the
SFRC has been considered as a two-phase material. A discrete crack
model to predict failure behavior of SFRC based on “Mixture The-
ory” concepts allowing both macroscopic and mesoscopic analysis
has been proposed by the authors (Caggiano et al., 2012; Etse et al.,
2012).

During the last decades, the well-known microplane theory has
largely been used for predicting the mechanical behavior of quasi-
brittle materials such as concrete or rocks. Pioneer contributions
of the microplane theory in constitutive formulations for concrete
materials are represented by the works by BaZant and Gambarova
(1984), Bazant and Oh (1985), Carol et al. (1992), and more re-
cently by Carol and Bazant (1997), Kuhl and Ramm (2000) and
Cervenka et al. (2005). A well-established thermodynamically con-
sistent approach has been described by Carol et al. (2001) and
Kuhl et al. (2001). Other relevant microplane-based contributions
can be found in several applications including concrete failure pre-
diction under cyclic loads (OZbolt et al., 2001), numerical analyses
of compressed concrete columns confined with carbon fiber rein-
forced polymers (Gambarelli et al., 2014), the mechanical response
of polycrystalline shape memory alloys (Brocca et al.,, 2002), mi-
cropolar continua formulation in the spirit of Cosserat Media (Etse
and Nieto, 2004; Etse et al., 2003), strain-softening nonlocal mod-
els (Bazant and Di Luzio, 2004; Di Luzio, 2007), large strains (Carol
et al., 2004), as well as non-linear hardening-softening behavior of
fiber reinforced concretes (Beghini et al., 2007; Caner et al., 2013).
Although (Caner et al., 2013) these describe the behavior and frac-
turing of SFRC under not only uniaxial but also general multiax-
ial loading, they mainly include the fiber pull-out and breakage
effects.

The present work formulates a novel thermodynamically con-
sistent fracture-based microplane model for simulating the failure
behavior of SFRC. The constitutive formulation at the microplane
level is described in terms of normal and shear stresses vs. re-
lated micro-strains. Fiber effect on the composite failure behavior
is taken into account through both a bond-slip formulation and a
dowel model depending on the relative orientations between fibers
and microplanes. The general basis of the proposed microplane
theory for SFRC are presented in Section 2. Section 3 is related to
the application of the well-known “Mixture Theory” by Truesdell
and Toupin (1960) to describe the mechanical behavior of SFRC,
following previous contributions by Oliver et al. (2008) and Vrech
et al. (2010). Particularly, Section 3.1 reports the constitutive laws
employed at microplane level featuring the fracture-based soft-
ening formulation for plain concrete, while the model descrip-
tion of the fiber-to-concrete interactions, approximating through-
out debonding mechanisms and dowel effects of fibers crossing
cracks, are highlighted in Sections 3.2-3.4. All constitutive laws
of the different constituents are formulated within the thermody-
namic framework. This encompasses both the elastic and inelastic
portions of the internal material laws of the proposed constitu-
tive theory. Finally, Section 4 covers the numerical analysis with
the proposed constitutive model. The predictive capabilities and
soundness of the proposal at constitutive level are addressed and
discussed against experimental tests available in scientific litera-
ture. Section 4 also includes the numerical sensitive analysis of the
model predictions regarding the variation of fiber direction, fiber
content, bond-slip and dowel mechanisms.

2. Thermodynamically consistent microplane theory

A thermodynamically consistent elasto-plastic constitutive
model based on the microplane theory is proposed for simulat-
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Fig. 1. Strain components at the microplane level.

ing the failure behavior of SFRC. Kinematic assumptions as well as
constitutive equations are presented in the following subsections.

The microplane approach originally proposed by BaZant and
Oh (1983) consists in the formulation of constitutive laws at mi-
croplane level defining the mechanical behavior of planes (the mi-
croplanes) generically orientated. Then, the macroscopic response
shall be achieved through the consideration of appropriated ther-
modynamically consistent homogenization process over the re-
sponses in all microplanes.

2.1. Kinematic assumptions

Assuming kinematic constraints, the normal and tangential
strains at microplane level, ¢y and er, respectively, are computed
by means of the following relationships:

en=N:&e™ e =T:eM°¢ (1)

being &M the macroscopic strain tensor projected on a mi-
croplane characterized by its normal direction n, see Fig. 1.
The projection tensors are defined as

N=non, T=n-FP"-nenan (2)

being Y™ the symmetric part of the fourth-order identity tensor.

In the elasto-plastic regime and assuming small strains, both
macro- and microscopic strains are computed according to the
Prandtl-Reuss additive decomposition. Particularly, at microplane
level, normal and tangential strain rates are obtained as

8N:8§l+8[€l’ €T=€e—r+€¥ (3)
where the supra-indexes e and p denote elastic and plastic compo-
nents, respectively.

2.2. Thermodynamically consistent homogenization

Starting point for the formulation of thermodynamically con-
sistent homogenization, relating the field variables on the mi-
croplanes with the macroscopic ones, is the definition of the
macroscopic Clausius-Duhem inequality for isothermal processes
as

gjmac — amac : émac _ Ipmuc > 0 . (4)

It sets that the macroscopic dissipation 2™, computed as the
subtraction between the stress power, ¢™d¢ : ¢Md¢  and the evolu-
tion of the free-energy per unit mass of material 1/)"1“5, cannot be-
come negative; being 6™ the macroscopic stress tensor.

Assuming the macro free-energy potential as the integral of
the micro free-energy on a spherical region of unit volume £,
the micro-macro free-energy relationship, according to Carol et al.
(2001), can be expressed as

mac __ 3
v —E/desz (5)
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being v = (&5, €%, k) the free-energy potential at microplane
level, expressed in terms of the elastic strain components and the
vector of internal variables k. The evolution law of the micro free-
energy, regarding the kinematic projection of Eq. (1), is given by

Y = (Noy +T" - o7) : 6™ — 2 (6)
with the constitutive stresses computed as
oy oy
oON=+—, O7r=—+— 7
N=en T e; (7)

and the microscopic dissipation 2, that satisfies the following
condition:

o oy . N
j_—87~x_0 (8)
being
_y
b= (9)

the dissipative micro-stresses.

According to Coleman and Noll (1963) and Coleman and Gurtin
(1967), the Clausius-Duhem inequality of Eq. (4) leads to the defi-
nition of the macroscopic stress tensor in terms of the microscopic
stress components

omac awmac
- pemac

To avoid the difficulties involved in the analytical solution of Eq.
(10), Bazant and Oh (1985) proposed integration techniques, which
dealt with the numerical solution of the integral over all possi-
ble spatial directions by a weighted sum over a finite number of
microplanes

3 T
_E/QNG,H-T .07 dQ. (10)

Nmp

o™~ [Noy +T" . o7 W (11)
I=1

being nmp the adopted number of microplanes and w' the corre-
sponding weight coefficients.

2.3. Microplane elasto-plastic constitutive formulation

Assuming a decoupled form of the microscopic free-energy po-
tential corresponding to the elasto-plastic regime, it can be ex-
pressed as the sum of both elastic and plastic counterparts

v =y(eg. er) + P () (12)
being x the scalar internal state variable related to the isotropic
hardening/softening behavior.

The elastic contribution is computed as

e 1 e\2 1 e e
Yl = jEN(EN) + §ET &r-€r (13)

where the elastic normal and tangential micro-modules, Ey and Er,
are defined according to Leukart (2005) as

10
Eyn=3K, Er= 3 2K (14)
being K and G the bulk and shear macroscopic moduli, respectively.
The fully uncoupled normal and tangential stress components
at microplane level, conjugated to the corresponding micro-strains

are obtained regarding Eqs. (7) and (13) as

or = ETEET . (15)
According to the plasticity flow theory, the evolution laws of

the plastic strain components and the internal variable, under con-

sideration of a convex yield function @ and a plastic potential o*,
result

on = Eney,

: : 0D~ : 0D
D P _ ¢ =
Ey =2~ on’ eT_AaGT, K_Aa¢

(16)

being } the non-negative plastic multiplier parameter. Comple-
mentary, the classical Kuhn-Tucker loading/unloading and the con-
sistency conditions must be considered

®<0, A<0, ®L=0; dPi=0. (17)

From the Prandtl-Reuss additive decomposition of the total
strain tensor into the elastic and plastic components of Egs. (3) and
combining Eqs. (9), (15) and (16) follow the constitutive equations
in rate form

On = Of — }\EN% , (18)
o7 = 0% — XET% , (19)
. 09 .

¢ = ﬁK . (20)

3. Composite constitutive formulation for SFRC

In this section, the microplane constitutive formulation for SFRC
based on the Mixture Theory by Truesdell and Toupin (1960) is
presented. Main assumption of this theory is that in every in-
finitesimal volume the kinematic field of the equivalent continuum
and that one of each mixture constituent agree. Thus, the stress
vector of the mixture is defined as
t, =omo™ + wf[ol\{n +ol. ny | (21)
being ™ and o the weighting functions depending on the vol-
ume fraction of each constituent, with m and f referring to con-
crete matrix and fibers, respectively. The concrete matrix stress
vector is computed as ™ = [o' of']; then, a,{ and 0{ mean the
bond-slip and dowel stresses due to the post-cracking interaction
between fibers and mortar. These stress components are defined
in the normal and tangential directions of the fibers, respectively,
same as the vectors n and ny.

3.1. Fracture energy-based thermodynamic model for plain concrete

This section is aimed at describing the fracture energy-based
plasticity formulation for plain concrete which relates the normal
and tangential micro-stress components with the corresponding
microstrains.

Contrarily to Caner et al. (2013), which establish four dif-
ferent boundaries for normal, tangential, volumetric and devia-
toric stresses, a unique function based on the parabolic Drucker-
Prager yield criterion is proposed in this work for the maximum
strength surface at microplanes, incorporating normal and tangen-
tial stresses, as can be observed in Fig. 2.

The mathematical expression of the parabolic failure criterion
for plain concrete in terms of the normal and tangential micro-
stresses o' and of', respectively, is

O™ = ||o7||* +mooll —co=0. (22)

The calibration of the frictional and cohesive parameters mg
and ¢p in terms of the uniaxial tensile strength ft' and the simple
shear strength fs/ leads to

_f

fe
In the post-peak regime, the yield criterion softens and it is de-
fined as

mo and ¢y = f.>. (23)

" = [|of'||* + Mmoo — ¢™ =0 (24)
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Fig. 2. Yielding criterion, post-cracking and plastic potential evolutions for plain
concrete.

being ¢™ the softening dissipative stress in terms of the internal
state variable ™. The strength degradation during post-peak pro-
cesses is controlled by ¢™, see Fig. 2.

The plastic flow rule of the model encompasses three different
regions in the stress space, as follow:

- tensile regime (oy' > 0): associated rule is considered, i.e.
q)*m — (Dm.

- low-confinement regime (0 > o' > ay;, with o g the compres-
sive stress corresponding to the zero concrete dilatancy): volu-
metric non-associated flow is considered, with

m2

&M = dm _2my N _ 0 (25)
Ogil

- medium and high confinement regime (oy; > o'): the plastic
potential corresponds to the isochoric plastic flow, being

M — o™ 4 m0<% - a,(,") —0. (26)

The plastic component of the Helmholtz free-energy density in
Eq. (12) for the concrete component of the mixture is defined as

Co . hf
mp _ 9 exp (—aref)  with =51 27
14 o p(—aye’) ap =S (27)
being &/ the equivalent fracture strain defined as
8¢)*m
f_ ,m
el =M —r 28
o (28)

while u; represents the maximum crack opening displacement in
mode I type of failure and hy the characteristic length associated
to the active fracture process under general mode II type of failure,
computed as

_ M
-z

being h; the characteristic length in mode I type of failure. The
fracture energy-based characteristic lengths hy and h; represent
the distance between active cracks. Thus, under mode I type of
failure the maximum value h; of the characteristic length is ob-
tained. Under mode II or mixed failure mode the dependence of hy
on h¢ is defined in terms of the ratio between the fracture ener-
gies Rg = G'f’/G}. R¢ is computed in terms of the acting confining

h, (29)

pressure on the microplanes represented by p* = o7/ f., being f;
the uniaxial compressive strength of concrete, see Vrech and Etse
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h

f
hfmax= ht 4
= hfmin
—p*
-1.5 0 1.5 3
Fig. 3. Variation of hy with the confinement pressure.
(2009), as
Gl 1 pr>0,
Re(p) = E{ =159.74+49.74 sin (2p* - %) -15<p <0,
r 100 pr<-15.
(30)
Summarizing:

- Mode I type of failure — hy = hy;
- Mode II type of failure — h¢ = ht/Rg.

The variation of hy with increasing confining pressure is shown
in Fig. 3.

The dissipative stress obtained combining Eqs. (9) and (27)
results

™ = coexp (ask™). (31)

3.2. Thermodynamically consistent crack-bridging effects of fibers
crossing cracks

Steel fibers crossing active opened cracks, bring relevant bridg-
ing effects on the overall SFRC post-peak toughness. In this work,
the bond-slip mechanism between fibers and concrete matrix is
taken into account by means of the axial (tensile) fiber stress a,{.
Besides, the dowel effect is considered as a shear transfer mecha-
nism within active cracks. Simple one-dimensional, thermodynam-
ically consistent elasto-plastic constitutive models are proposed in
the followings subsections for both interaction mechanisms.

3.3. One-dimensional thermodynamic bond-slip model

The proposed elasto-plastic bond-slip constitutive model is de-
fined by means of the following equations:

v = %Ef(el(,'e)z + 1H,{,(/(,C)z (free-energy potential) (32)

2
615 = Ef(e;“,{,’e - 81{,"’) (constitutive relation) (33)
dJI{, = |cr,€| — (cryf +¢,{,) <0 (yield function) (34)
k] =) (internal variable evolution) (35)
@ = H] k! (softening law) (36)

where eN’e and 81{,"’ are the elastic and plastic axial strains, re-

spectively, Ef the elastic module, ajf the equivalent yield stress and
H,{, the hardening/softening parameter; whereas K§ is the internal
variable, conjugated to the dissipative stress d),{;.
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Fig. 4. Pull-out of a single fiber.

According to Oliver et al. (2008), slipping-fibers and fiber-
concrete interfaces define a serial system, whereby the fiber to-
tal strain e,{, is assumed as the sum of the proper fiber deforma-
tion €4 and the interface sliding &, 8,{, = g4 4 gl. Whereas the fiber
stress o,{ is identical on each component a,{ = ,3 = o,{,. The mate-
rial mechanical features of this serial system defining the consid-
ered bond-slip model result

1

_ . 37
1/E4 +1/E! (37)
o] = min[o; o] (38)
d  if gd i
T HN’ if oy <0,
Hy = {H,’\,, otherwise (39)

where the superscripts d and i denote fiber and interface,
respectively.

3.3.1. Pull-out analysis of a single fiber

Pull-out analysis of a single fiber is reported in this subsection.
Particularly, Fig. 4 deals with an isolated fiber loaded by an axial
force, P;. The fiber is embedded in a cementitious matrix for a I,
length measure. Thus, the equilibrium scheme proposed in Fig. 4,
is used to simulate the complete slipping behavior.

The following basic equations are used for analyzing the overall
fiber-to-concrete debonding process:

* Equilibrium:

doglx] _ 4r4]x]

& T T d;
fiber at a certain value of the abscissa x, T, the shear bond
stress and dy the diameter of the fiber.

being o the axial stress of the

Fiber constitutive law in the axial direction: oy[x] = Ed%, with
E? the elastic steel modulus and s[x] the slip between fiber and
surrounding concrete mortar based on the assumption of Fig. 4.

* Bi-linear bond constitutive law: Ta[X] =
—kg s[x] s[x] < se
{~tya+ks(s[x] —se)  se <s[x] <s,, where kg and —ks repre-
0 S[X] > sy

sent the slope of the elastic and softening branches of the
bond-slip relationship, respectively, and 7y, ¢ is the maximum
shear stress. Thus, se = Tlf—; and s, represent the elastic and the

ultimate slips, respectively.

As schematically reported in Table 1 and based on the approach
proposed by Caggiano and Martinelli (2012), different states of the
bond response can be defined. Particularly, the fiber-to-concrete in-
terface is in elastic bond state (E) if s[x] < se, in softening state (S)
when s < s[x] < s, or the bond is crushed if s[x] > s,. A combina-
tion of these three stress states can actually occur throughout the
bonding length during the pull-out process of the single fiber (see
Table 1).
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Table 1
Bond response of the fiber-concrete joint depending on the slip s[x] de-
veloped throughout the embedment length.

Slips Type of joint adherence

S[X] < se VX € [~lemp, O]

S[X] =< SeVX € [_lembv _Ie]

Se < S[X] <syVx e [—l,0]

Se < S[X] < Su VX € [—lemp, 0]
S[X] = se VX € [~lemp. —le]

Se < S[X] <syVx e[l 1]
S[x] > sy Vx e [-1,,0]

Se < S[x] < suVx € [~lomp, —lu]
s[x] > sy Vx e [-1,,0]

S[X] > sy VX € [—lemp, O]

Elastic response (E)

Elastic-softening response (ES)
Softening response (S)

Elastic-softening-debonding (ESD)

Softening-debonding response (SD)
Debonding failure (D)

Being —l (0 < lo < loyp) and —1,(0 < I < loyp) the abscissas of the points
in which the local slip s[x] is equal to the elastic limit (se) and the ulti-
mate value (sy), respectively.

Fully elastic behavior of fibers is assumed. This is strictly true
in the case of synthetic fibers, while can be accepted for steel ones
when the length I, results in the condition that P, 4 < aydAf,
being oyd the yielding stress and Ay the area of the fiber cross
section.

The proposed unified formulation has been intended as a key
element to be employed in the 1D model proposed in Section 3.3
to explicitly simulate the mechanical behavior of FRC by taking
into account the discrete nature of such materials and the contri-
butions of the various constituents within the framework of the
so-called meso-mechanical approach.

In particular, the equivalent yield stress O'yf , the harden-

ing/softening parameter Hl{; and E of Egs. (37)-(39) follow from
the bond-slip model outlined in this subsection. For the sake
of simplicity, the description of the complete analytical pull-out
model is omitted in this work but may be obtained from Caggiano
and Martinelli (2012). Thereby the complete bond model repre-
senting the interaction between fibers and surrounding mortar un-
der pull-out action is described. On the other hand, the link be-
tween Section 3.3 and 3.3.1 have been outlined in Caggiano (2013).

3.4. Constitutive model for fiber dowel effect

The following one-dimensional elasto-plastic formulation is
considered to take into account the dowel effect of fibers crossing
open cracks in cementitious matrix.

The thermodynamically consistent constitutive model proposed
in this work is based on the following equations

1

Wi = %Gf el el EH{(/{Tf)2 (free-energy potential) (40)

6{ =G/ (s{‘e - e{’p) (constitutive relation) (41)

®f =|of | —(t] +¢/) <0  (yield function) (42)
k!l =)  (internal variable evolution) (43)
¢¥ = H{ /'ch (softening law) (44)

being e’Tc’e and e{'p the elastic and plastic shear strain, respectively,
K{ the internal variable conjugated to the dissipative stress q&{ and
H{, once again, the hardening/softening parameter. The adopted

dowel stiffness Gy and the equivalent strength ‘L’yf characterizing
the dowel mechanism, are based on the definition of both stiff-
ness and strength of a generic fiber embedded in a concrete matrix
and subjected to a transverse force. This formulation is developed
in analogy to a “semi-infinite” beam on a Winkler foundation fol-
lowing the empirical work by El-Ariss (2007) and the experimental



342 S. Vrech et al./International Journal of Solids and Structures 81 (2016) 337-349

contributions by Dei Poli et al. (1992), Soroushian et al. (1987) and
Dulacska (1972).

3.4.1. Dowel stiffness

To have a more understanding of the dowel stiffness G/, the
following differential equation for the deflection equilibrium of a
Winkler’s beam can be written as
d*A(x)

9 with 34— Kk

@ 4Ed]
being A(x) the deflection of the beam, k. the elastic stiffness of the
spring foundation modeling the surrounding cementitious matrix,
E? and J; are the elastic modulus of the steel and the inertia of the
fiber, respectively, and finally A, represents a characteristic length
of the Winkler beam.

The fiber is analyzed as a “semi-infinite” beam on Winkler
foundation, then the following equations govern the problem

A(x) = A; e 7% cos(AeX) + Ay e 7% sin(LyX)
My(x) = 2E4Js A2 e X[A, cos(AwX) — A sin(Ayx)]
Vy(x) = —2E4Js A2 e *X[(Ay — A) sin(ApX)
+(A1 +Ay) cos(Apx)] (46)

being My and V, the bending moment and the dowel action at [;/2
of the steel fiber, while A; and A, are constants deriving by the
boundary conditions.

The analytical solution of the semi-infinite Winkler's beam
problem is based on the assumption that the crack width is con-
sidered null and supposing that in x =0 the moment is null (in-
flection point). Then, considering an applied dowel force, V;, at the
loaded-end (x = 0), the following analytical displacement field is
obtained

e~ cos(Ay X)
223 Ed]q
Finally, the V; — A law in correspondence of the considered
crack (x = 0) takes the following analytical form

+4 A AX) =0 (45)

V, ) A )
V=3 El A - de = /Tf)Lg,EdjS == fo A EYs  (48)
f f f f
also expressed in terms of UTf - 8{ X—‘} - %) law, from which the

2
dowel stiffness, G/, can be derived. In Eq. (48) Ap=m L{Tf is the cross
sectional area of a single fiber.
Moreover, the elastic foundation stiffness of the surrounding
concrete, k., may be obtained from the empirical expression given
in Soroushian et al. (1987) as

ft
dfz /3

being f/ the compression strength of the surrounding cementitious
composite and x; a coefficient to be calibrated.

kc =K1

(49)

3.4.2. Dowel strength
Finally, the equivalent dowel strength ryf can be defined from
the dowel action as

v,
S Tdu (50)

being V; ,, the dowel force capacity which is obtained as proposed
from the following expression:

Vd.u = kclow d%\/ |fc/||0—551| (5])

being kg, a non-dimensional coefficient which according to
(Dulacska, 1972), for the case of RC components, is well described
by the value kg, = 1.27.

It should be noted that Eq. (51) describes the failure mechanism
of the fiber dowel by means of two effects: the local crushing of
the surrounding matrix and the yielding of the steel fiber.

4. Numerical analysis

This section illustrates the main features and capabilities of the
proposed formulation comparing some numerical results against
experimental data available in the literature. For the purpose of
these numerical analyses the algorithmic tangent operator of the
proposed thermodynamically consistent microplane model was im-
plemented at macroscopic levels. The departure point is the for-
mulation of the continuum elasto-plastic tangent operator for
microplane constitutive theories by Kuhl et al. (2001), which was
extended in this work for the numerical implementation of the
proposed model in the framework of the Mixture Theory. In Fig. 5
the flowchart of the numerical implementation of the proposed
microplane model is summarized.

Four types of tests were selected to evaluate the predictive ca-
pabilities of the proposed model for SFRC failure behavior: uniaxial
tensile, simple shear, uniaxial compression and triaxial compres-
sion tests. They activate both mode I and mode II type of fracture
and, therefore, are very appropriate to analyze the soundness of
the proposed mixture constitutive theory. Fig. 6 shows the consid-
ered boundary conditions of the four different tests pursued in this
work. The considered tests involve prismatic or cylindrical samples
(specific dimensions are provided in the description of each test)
under plane stress or cylindrical stress conditions, respectively. The
two-dimensional formulation by Park and Kim (2003) instead of
the spherical one was considered for the microplane distribution,
see Fig. 7.

4.1. Tensile test: verification with experimental data

First, numerical analyses of the uniaxial tensile test were car-
ried out on both plain concrete and SFRC. Two different types of
steel fibers were considered namely Dramix I and Il whose funda-
mental properties are given in Table 2. The regarded experimental
campaign by Li et al. (1998b) and Li and Li (2001) have been per-
formed on prismatic specimens with the dimensions 500 x 100 x
20 mm?>. The model parameters were adjusted according to the ex-
perimental data given by the authors, highlighted in the second
column of Table 3.

The comparison between model predictions and the experimen-
tal data by Li et al. (1998b) and Li and Li (2001) for the uni-
axial tensile test in terms of stress—strain diagrams are reported
in Fig. 8. The stress-strain responses of SFRC with uniformly dis-
tributed Dramix type Il steel fibers and fiber contents (py) of 3.0%,
3.5% and 4.0% are shown on the left hand side of Fig. 8, while the
graphics on the right hand side show the model predictions for
panels with Dramix type I fibers and fiber contents of 6.0%, 7.0%
and 8.0%.

The numerical predictions demonstrate very good agreement
with the experimental results. The proposed constitutive model is
able to reproduce the increment of toughness and strength in the
uniaxial tensile test with increasing fiber content.

It is worth noting that all the numerical curves in these anal-
yses were obtained by only changing the fiber content and/or the
fiber type according to the properties given by Li et al. (1998b) and
Li and Li (2001).

4.2. Tensile test: fiber orientation sensitivity
In this section the sensitivity of the proposed thermodynam-

ically consistent microplane theory regarding the orientation of
fibers in concrete is evaluated. To this end, four different types of
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Fig. 5. Flowchart of local Newton’s method used for step-by-step integration of the microplane model.

uniaxial
compression

triaxial
compression

direct tension simple shear

Fig. 6. Load configurations and restraint conditions for uniaxial tension, simple
shear, uniaxial and triaxial compression tests.

fiber distributions were considered in the uniaxial tensile test, as
shown in Fig. 9: uniform or homogeneous distribution of fibers,
elliptical distribution of fibers, fibers concentrated in one direction
(one microplane at 25°), and fibers located in certain directions
(microplanes). In all four cases a total of 42 microplanes were con-
sidered while the fiber content was py = 7.0%.

The results in Fig. 10 show that the mechanical response cor-
responding to the elliptical distribution of fibers is the one that
best matches the uniaxial tensile experimental results by Li et al.
(1998b) and Li and Li (2001) performed on SFRC samples. The sec-
ond most accurate prediction is obtained with the uniform distri-
bution of fibers.

Fig. 7. Two-dimensional microplane model proposed by Park and Kim (2003).

4.3. Tensile test: softening behavior

The tensile stress-crack width relationship for SFRC with uni-
formly distributed fibers (pf = 2.4%) by Abrishambaf et al. (2015)
and the corresponding numerical predictions are shown in Fig. 11.
This figure depicts the envelope and average curves from the uni-
axial tensile test, performed on prismatic probes with dimensions
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Fig. 9. Types of fiber directional distributions in the uniaxial tensile test: (a) uniform distribution; (b) elliptical distribution; (c) fibers concentrated in one microplane; (d)

fibers concentrated in certain microplanes.

Table 2
Characterization of Dramix fibers.
Density [g/cm®]  Diameter [mm]  Length [mm]  o[GPa]  EY[GPa]
Dramix type | 7.8 0.5 30 1.20 200
Dramix type II 7.8 0.5 50 120 200
Table 3
Characterization of material properties.
Tensile Tensile Shear Shear Compression

Tests
(Li et al., 1998b)

(Abrishambaf et al.,

(Mirsayah and

(Soltanzadeh et al.,

(Chern et al., 1992)

2015) Banthia, 2002) 2015)
Concrete properties
Elasticity modulus - E™[GPa] 39.5 34.15 25.0 36.0 20.0
Poisson modulus - v 0.2 0.2 0.2 0.2 0.2
Compressive strengh - f/ [MPa] 35.0 47.7 47.0 67.84 20.65
Zero dilatancy stress - og; [MPa] -7.0 -9.0 -9.0 -13.0 -5.0
Tensile rupture displacement - u, [mm] 0.151 0.160 0.167 0177 0.130
Crack spacing - h; [mm] 100 102 150 150 54
Steel fibers properties
Elasticity modulus - E¢ [GPa] 200.0 200.0 200.0 200.0 200.0
Yield stress - o [MPa] 1200.0 1100.0 828.0 1100.0 1100.0
Equivalent shear elastic modulus - G/ [GPa] 15.0 15.0 20.6 15.0 15.0
Equivalent shear strength - ryf [MPa] 332.0 441.67 321.0 441.67 330.0
Hardening/softening moduli - HJ, = H/ 0.0 0.0 0.0 0.0 0.0
Fiber-concrete interfaces properties
Elasticity modulus - E' [GPa] 200.0 200.0 200.0 200.0 200.0
Yield stress - U; [MPa] 216.0 198.0 149.0 198.0 180.0

110 x 102 x 60 mm?, as well as the numerical prediction of the
proposed microplane-based constitutive theory. The model param-
eters, based on the material data given by the authors, are sum-
marized in the third column of Table 3.

As can be observed in Fig. 11 the comparison with the exper-
imental results shows very good agreement regarding peak and
residual strengths, as well as pre- and post-peak behaviors. The
post-cracking stage of SFRC specimens by Abrishambaf et al. (2015)
are characterized by a crack-softening behavior which, as a matter
of fact, is well captured through the proposed microplane-based
model.

4.4. Simple shear test: contribution of the dowel mechanism

The capabilities and efficiency of the proposed microplane
model to capture the failure of SFRC is now analyzed by means
of the simple shear test. Numerical predictions are shown in terms
of shear loads vs. lateral displacements. A total of 42 microplanes
with random distribution of fibers have been considered. The
adopted material properties correspond to the experimental cam-
paign by Mirsayah and Banthia (2002), performed on 150 x 150 x
500 mm? beams. They are displayed in the fourth column of
Table 3.
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Fig. 11. Prediction of tensile stresses vs. crack opening displacement of uniaxial ten-
sile test by Abrishambaf et al. (2015). Fibers content p; = 2.4%.

Fig. 12 highlights the phenomenological effects of fibers when
added in cementitious matrix. The improvement of the composite
mechanical behavior in terms of thoughness and also (but slightly)
peak strength can be captured by the proposed smeared crack
based constitutive theory. Two different fiber contents, ie. py =
1.0% and 2.0%, have been considered. The results in Fig. 12 demon-
strate the efficiency of the combined microplane-mixture theories
to predict the failure behavior of SFRC.

Finally, the contribution of the dowel mechanism of fibers
crossing cracks on the overall response behavior is evaluated. To
this aim, the numerical simulation of the experimental shear test
by Soltanzadeh et al. (2015) is carried out considering the material
properties of the fourth column of Table 3.

Fig. 13 compares experimental data (dotted curves) and shear
load vs. lateral displacement curves obtained with the microplane-
mixture constitutive theory. Two cases are considered. On the one
hand, the fiber-mortar interaction is taken into account by means
of both fiber-to-concrete bond-slip and dowel mechanisms (blue
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Fig. 12. Shear loads vs. lateral displacements predictions. Comparison with experi-
mental results by Mirsayah and Banthia (2002).
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Fig. 13. Contribution of the dowel mechanism in the shear test. Shear load vs.
lateral displacement comparison with experimental results by Soltanzadeh et al.
(2015), py = 4%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

dashed curve). On the one hand, the fiber-mortar interaction is
modeled only by beans of the bond-slip mechanism while the con-
tribution of the dowel mechanism is neglected (red continuous
curve). As can be observed in Fig. 13, when only bond-slip inter-
action mechanism is taken into account both the shear strength
and the thoughness in post-peak decrease, demonstrating the rel-
evant role of the dowel mechanism in the failure behavior of SFRC
components under dominant shear.

4.5. Uniaxial and triaxial compression tests

In this section, the predictive capabilities of the proposed ma-
terial model to reproduce the failure behavior of SFRC are verified,
regarding uniaxial and triaxial compression tests. Variable content
of steel fibers are considered in the analyses.

Firstly, the numerical predictions of the uniaxial experimental
tests by Chern et al. (1992) performed on cylindrical specimens of
58 mm in diameter and 108 mm in height are considered. Corre-
sponding material properties are shown in last column of Table 3.
The numerical analysis were performed under cylindrical stress
conditions.

Fig. 14 shows the prediction of the proposed model to the uni-
axial compression tests for plain concrete and SFRC with 1.0% and
2.0% fiber content. The comparison with the experimental results
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shows very good agreement for both, plain concrete and SFRC, re-
garding peak strength, post-peak behavior and residual strength.
From Fig. 14 it can be concluded that the addition of steel fibers
to concrete considerably increases the toughness whereas slightly
increases the compressive strength and the strain at peak stress.

At this stage it should be noted, according to Nataraja et al.
(1999), Neves and de Almeida (2005) and Lee et al. (2015), that the
fiber influence on the maximum compressive strength is variable,
depending on matrix and fiber characteristics. Strain at peak stress
increases with concrete compressive strength, while toughness of
higher strength concrete is more sensitive to fiber reinforcement.

Finally, the triaxial compression experimental results by Chern
et al. (1992) on concrete cylinders of 100 x 200 mm? are consid-
ered (Fig. 15). These tests were performed with variable content of
fibers, i.e. pr = 0.0%, 1.0% and 2.0% and a lateral confinement of
70 MPa.

It is worth mentioning that while plain concrete and SFRC show
a pronounced decrease in stress after peak strength, SFRC exhibits
ductile behavior in cases of triaxial compression.
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Fig. 16. Numerical localization analysis at peak of the uniaxial tensile test.
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Fig. 17. Numerical localization analysis at residual stress state of the uniaxial tensile
test.

4.6. Discontinuous bifurcation condition

The critical condition for localized failure in the form of dis-
continuous bifurcation, as highlighted in the Appendix A, is ana-
lyzed for plain concrete and SFRC by means of numerical analysis
with the proposed model. Main purpose of this analysis is, on one
hand, to evaluate the effect of steel fibers on the performance of
the localization indicator or on the potential for localized failure.
On the other hand, this analysis allows to evaluate the sensitivity
of the fiber orientation on the critical condition for discontinuous
bifurcation.

Figs. 16 and 17 show the performance of the determinant
of the macroscopic normalized localization indicator det(Q) =
det(Q°P)/det(Qf) at peak and residual stress states of the uni-
axial tensile test by Abrishambaf et al. (2015). The four different
distributions of fiber orientations as shown in Fig. 9 are evalu-
ated regarding their localization indicator performances. The re-
sults demonstrate that the proposed microplane-mixture constitu-
tive theory is able to capture the effect of the fiber orientation on
the elastic properties degradation, not only regarding the amount
of the degradation but also its orientation. This is a relevant char-
acteristic of the proposed material theory.
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5. Conclusions

A thermodynamically consistent elasto-plastic microplane con-
stitutive theory aimed at predicting the failure behavior of Steel
Fiber Reinforced Concrete (SFRC) has been developed. The model
formulation, founded on a macroscopic smeared crack approach
and, particularly, on the full thermodynamic consistency, consid-
ers the well-known Mixture Theory to account for the presence of
fibers in concrete microplanes. The model also accounts for bridg-
ing interactions of fibers in concrete cracks in the form of fiber-to-
concrete bond-slip and dowel mechanisms. In this sense, the rel-
evant role of the dowel mechanism in the bridging interaction of
fiber in concrete when subjected to dominant shear was demon-
strated in this work.

The numerical analyses demonstrate that the constitutive pro-
posal captures the fundamental features of the mechanical be-
havior of SFRC. Very good agreements between numerical results
against experimental data available in scientific literature have
been achieved in terms of peak-strength and post-cracking tough-
ness.

A distinguish feature of the proposed constitutive theory is its
ability to evaluate non-homogeneous fiber distributions in the con-
crete matrix and moreover, their effect on both the post-peak
load-displacement behavior and orientation evolution of the criti-
cal localization direction in the form of discontinuous bifurcation.
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Appendix A. Analytical solution for localized failure
in microplane-based elasto-platicity

In the framework of the smeared crack approach, localized fail-
ure modes are related to discontinuous bifurcations of the equi-
librium path, and lead to loss of ellipticity of the equations that
govern the static equilibrium problem. The inhomogeneous or lo-
calized deformation field exhibits a plane of discontinuity that can
be identified by means of the eigenvalue problem of the acoustic
or localization tensor, see Ottosen and Runesson (1991). Analyti-
cal solutions for the discontinuous bifurcation condition, based on
original works by Hadamard (1903), Thomas (1961) and Hill (1962),
conduce to the macroscopic localization condition

det(Q?) =0 (52)
being Q°P the elasto-plastic localization tensor, define as

Q? =N-E°’.N, (53)
with N, the normal direction to the discontinuity surface. Ac-
cording to Kuhl (2000), in case of microplane-based plasticity the

macroscopic elasto-plastic tangent operator can be obtained anal-
ogously to the macroscopic stresses in Eq. (10), as

Eel’—da 3 / [N@MNJrTT-dGT]dQ. (54)
Q

= demac ~ 47 den der

Regarding the microplane constitutive formulation in
Section 2.3, the above equation can be expressed as

3 01
Eesz"—E / —[EnptwN+Er T - pur | ® [vNEnN+Er vy - T]dS2

oh
(55)
being
h=Eyvyun+Ervr - pur +H, (56)
with the isotropic hardening/softening modulus H and
) _87CI> 9P _Bﬁ _ 0o (57)
N_aO'N’ MN_BO'N’ T_a()’T’ T_aO’T.
The elastic macroscopic tangent operator is given by
Ee:i/ENN®N+ETTT.TdQ. (58)
4 Q

Then, the elasto-plastic localization tensor in Eq. (53), results
3 axa

ep_oe_
Q Q 4 /Q h

with the elastic localization tensor Q¢ = N - E¢- N and the traction
vectors computed as

a= [VNENN+ET V7 - T] N,
a =N [EyunN+ErT" - pr].
Due to the complex structure of the acoustic tensor for
microplane-based plasticity, the analytical assessment is not easy.

Instead, numerical solutions must be applied and Eq. (59) can be
rewritten as

e, (59)

(60)

Tmp «l I
a’ ®a
Qesze_Z[h,}w’. (61)
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