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a b s t r a c t

In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at sim-

ulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum

(smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength

criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the

failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also

defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for

the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the

form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formula-

tion is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory,

numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby,

the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents

are evaluated and compared against experimental data. The attention also focuses on the evaluation of

the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orienta-

tion on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

The development of innovative composites based on further en-

ancing of cementitious materials represents a new challenging

nd interesting field of the Material Science and the Structural

ngineering. Most significant examples are the High Performance

oncretes (HPC) and, particularly, the Steel Fiber Reinforced Con-

rete (SFRC) (Gettu, 2008; Li et al., 1998a, 1998b; Mirsayah and

anthia, 2002). Actually, the application of SFRC in civil and mil-

tary constructions have significantly increased in the last decades

and that trend still continues). The well-known deficiencies of

ement-based materials like concretes, i.e., low strength and brit-

le response in low confinement and tensile regimes, can be mit-

gated by adding short steel fibers randomly distributed into the

ementitious mortar. The major advantages of SFRC, as compared

ith plain concretes, is its higher residual tensile strength accom-

anied with elevated toughness in post-cracking regime (Naaman
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nd Reinhardt, 2006; Nguyen et al., 2010; di Prisco et al., 2009).

ince fiber bridging mechanisms mainly take place under cracked

egime of concrete matrix, the mechanical behavior of uncracked

embers is practically not influenced by the addition of fibers be-

ond the limited increase of the elastic stiffness.

In the last years, many constitutive theories were proposed for

ailure analysis of SFRC. Most of them follow the Smeared Crack

pproach (SCA) and, particularly, the flow theory of plasticity (Hu

t al., 2003; Seow and Swaddiwudhipong, 2005) and the contin-

um damage theory, see also the work by Li and Li (2001). Besides

he SCA-based proposals, several constitutive models and theoret-

cal formulations are based on the Discrete Crack Approach (DCA).

n the DCA the kinematic of cracking is modeled by means of

he displacement field in discontinuities or interfaces in the finite

lement discretization, see also the contributions by Prasad and

rishnamoorthy (2002) and Etse et al. (2012).

The failure behavior of SFRC was evaluated not only at the

acroscopic level of observation but also at the mesoscopic one.

e may here refer to the contributions by Leite et al. (2004) and

chauffert and Cusatis (2012) who considered the effect of fibers

ispersed into a Lattice Discrete Particle Model (LDPM), by Oliver

t al. (2012) who highlighted the macroscopic response in terms
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Fig. 1. Strain components at the microplane level.
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of the meso-structural phenomenon associated with the fiber–

matrix bond-slip action, by Gal and Kryvoruk (2011) who proposed

a mesoscale two-step homogenization approach and the propos-

als by Radtke et al. (2010) and Cunha et al. (2012) whereby the

SFRC has been considered as a two-phase material. A discrete crack

model to predict failure behavior of SFRC based on “Mixture The-

ory” concepts allowing both macroscopic and mesoscopic analysis

has been proposed by the authors (Caggiano et al., 2012; Etse et al.,

2012).

During the last decades, the well-known microplane theory has

largely been used for predicting the mechanical behavior of quasi-

brittle materials such as concrete or rocks. Pioneer contributions

of the microplane theory in constitutive formulations for concrete

materials are represented by the works by Bažant and Gambarova

(1984), Bažant and Oh (1985), Carol et al. (1992), and more re-

cently by Carol and Bažant (1997), Kuhl and Ramm (2000) and

Cervenka et al. (2005). A well-established thermodynamically con-

sistent approach has been described by Carol et al. (2001) and

Kuhl et al. (2001). Other relevant microplane-based contributions

can be found in several applications including concrete failure pre-

diction under cyclic loads (Ožbolt et al., 2001), numerical analyses

of compressed concrete columns confined with carbon fiber rein-

forced polymers (Gambarelli et al., 2014), the mechanical response

of polycrystalline shape memory alloys (Brocca et al., 2002), mi-

cropolar continua formulation in the spirit of Cosserat Media (Etse

and Nieto, 2004; Etse et al., 2003), strain-softening nonlocal mod-

els (Bažant and Di Luzio, 2004; Di Luzio, 2007), large strains (Carol

et al., 2004), as well as non-linear hardening–softening behavior of

fiber reinforced concretes (Beghini et al., 2007; Caner et al., 2013).

Although (Caner et al., 2013) these describe the behavior and frac-

turing of SFRC under not only uniaxial but also general multiax-

ial loading, they mainly include the fiber pull-out and breakage

effects.

The present work formulates a novel thermodynamically con-

sistent fracture-based microplane model for simulating the failure

behavior of SFRC. The constitutive formulation at the microplane

level is described in terms of normal and shear stresses vs. re-

lated micro-strains. Fiber effect on the composite failure behavior

is taken into account through both a bond-slip formulation and a

dowel model depending on the relative orientations between fibers

and microplanes. The general basis of the proposed microplane

theory for SFRC are presented in Section 2. Section 3 is related to

the application of the well-known “Mixture Theory” by Truesdell

and Toupin (1960) to describe the mechanical behavior of SFRC,

following previous contributions by Oliver et al. (2008) and Vrech

et al. (2010). Particularly, Section 3.1 reports the constitutive laws

employed at microplane level featuring the fracture-based soft-

ening formulation for plain concrete, while the model descrip-

tion of the fiber-to-concrete interactions, approximating through-

out debonding mechanisms and dowel effects of fibers crossing

cracks, are highlighted in Sections 3.2–3.4. All constitutive laws

of the different constituents are formulated within the thermody-

namic framework. This encompasses both the elastic and inelastic

portions of the internal material laws of the proposed constitu-

tive theory. Finally, Section 4 covers the numerical analysis with

the proposed constitutive model. The predictive capabilities and

soundness of the proposal at constitutive level are addressed and

discussed against experimental tests available in scientific litera-

ture. Section 4 also includes the numerical sensitive analysis of the

model predictions regarding the variation of fiber direction, fiber

content, bond-slip and dowel mechanisms.

2. Thermodynamically consistent microplane theory

A thermodynamically consistent elasto-plastic constitutive

model based on the microplane theory is proposed for simulat-
ng the failure behavior of SFRC. Kinematic assumptions as well as

onstitutive equations are presented in the following subsections.

The microplane approach originally proposed by Bažant and

h (1983) consists in the formulation of constitutive laws at mi-

roplane level defining the mechanical behavior of planes (the mi-

roplanes) generically orientated. Then, the macroscopic response

hall be achieved through the consideration of appropriated ther-

odynamically consistent homogenization process over the re-

ponses in all microplanes.

.1. Kinematic assumptions

Assuming kinematic constraints, the normal and tangential

trains at microplane level, εN and εT, respectively, are computed

y means of the following relationships:

N = N : εmac, εT = T : εmac (1)

eing εmac the macroscopic strain tensor projected on a mi-

roplane characterized by its normal direction n, see Fig. 1.

The projection tensors are defined as

= n ⊗ n, T = n · Isym − n ⊗ n ⊗ n (2)

eing Isym the symmetric part of the fourth-order identity tensor.

In the elasto-plastic regime and assuming small strains, both

acro- and microscopic strains are computed according to the

randtl–Reuss additive decomposition. Particularly, at microplane

evel, normal and tangential strain rates are obtained as

˙ N = ε̇e
N + ε̇p

N
, ε̇T = ε̇e

T + ε̇p
T

(3)

here the supra-indexes e and p denote elastic and plastic compo-

ents, respectively.

.2. Thermodynamically consistent homogenization

Starting point for the formulation of thermodynamically con-

istent homogenization, relating the field variables on the mi-

roplanes with the macroscopic ones, is the definition of the

acroscopic Clausius–Duhem inequality for isothermal processes

s

mac = σmac : ε̇mac − ψ̇mac ≥ 0 . (4)

It sets that the macroscopic dissipation Dmac, computed as the

ubtraction between the stress power, σmac : ε̇mac, and the evolu-

ion of the free-energy per unit mass of material ψ̇mac, cannot be-

ome negative; being σmac the macroscopic stress tensor.

Assuming the macro free-energy potential as the integral of

he micro free-energy on a spherical region of unit volume �,

he micro–macro free-energy relationship, according to Carol et al.

2001), can be expressed as

mac = 3

4π

∫
ψ d� (5)
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eing ψ = ψ(εe
N
,εe

T
,κ) the free-energy potential at microplane

evel, expressed in terms of the elastic strain components and the

ector of internal variables κ. The evolution law of the micro free-

nergy, regarding the kinematic projection of Eq. (1), is given by

˙ =
(
NσN + T T · σT

)
: ε̇mac − D (6)

ith the constitutive stresses computed as

N = ∂ψ

∂εN

, σT = ∂ψ

∂εT

(7)

nd the microscopic dissipation D, that satisfies the following

ondition:

= −∂ψ

∂κ
· κ̇ ≥ 0 (8)

eing

= ∂ψ

∂κ
(9)

he dissipative micro-stresses.

According to Coleman and Noll (1963) and Coleman and Gurtin

1967), the Clausius–Duhem inequality of Eq. (4) leads to the defi-

ition of the macroscopic stress tensor in terms of the microscopic

tress components

mac = ∂ψmac

∂εmac
= 3

4π

∫
�

NσN + T T · σT d�. (10)

To avoid the difficulties involved in the analytical solution of Eq.

10), Bažant and Oh (1985) proposed integration techniques, which

ealt with the numerical solution of the integral over all possi-

le spatial directions by a weighted sum over a finite number of

icroplanes

mac ≈
nmp∑
I=1

[
NIσ I

N + T T,I · σ I
T

]
w

I (11)

eing nmp the adopted number of microplanes and w
I the corre-

ponding weight coefficients.

.3. Microplane elasto-plastic constitutive formulation

Assuming a decoupled form of the microscopic free-energy po-

ential corresponding to the elasto-plastic regime, it can be ex-

ressed as the sum of both elastic and plastic counterparts

= ψ e(εe
N,εe

T ) + ψ p(κ) (12)

eing κ the scalar internal state variable related to the isotropic

ardening/softening behavior.

The elastic contribution is computed as

e = 1

2
EN(εe

N)
2 + 1

2
ET εe

T · εe
T (13)

here the elastic normal and tangential micro-modules, EN and ET,

re defined according to Leukart (2005) as

N = 3K, ET = 10

3G
− 2K (14)

eing K and G the bulk and shear macroscopic moduli, respectively.

The fully uncoupled normal and tangential stress components

t microplane level, conjugated to the corresponding micro-strains

re obtained regarding Eqs. (7) and (13) as

N = ENεe
N, σT = ETε

e
T . (15)

According to the plasticity flow theory, the evolution laws of

he plastic strain components and the internal variable, under con-

ideration of a convex yield function 	 and a plastic potential 	∗,

esult

˙ p
N

= λ̇
∂	∗

∂σN

, ε̇p
T

= λ̇
∂	∗

∂σT

, κ̇ = λ̇
∂	∗

∂φ
(16)
eing λ̇ the non-negative plastic multiplier parameter. Comple-

entary, the classical Kuhn–Tucker loading/unloading and the con-

istency conditions must be considered

≤ 0, λ̇ ≤ 0, 	λ̇ = 0; 	̇λ̇ = 0 . (17)

From the Prandtl–Reuss additive decomposition of the total

train tensor into the elastic and plastic components of Eqs. (3) and

ombining Eqs. (9), (15) and (16) follow the constitutive equations

n rate form

˙ N = σ̇ e
N − λ̇EN

∂	∗

∂σN

, (18)

˙ T = σ̇e
T − λ̇ET

∂	∗

∂σT

, (19)

˙ = ∂φ

∂κ
κ̇ . (20)

. Composite constitutive formulation for SFRC

In this section, the microplane constitutive formulation for SFRC

ased on the Mixture Theory by Truesdell and Toupin (1960) is

resented. Main assumption of this theory is that in every in-

nitesimal volume the kinematic field of the equivalent continuum

nd that one of each mixture constituent agree. Thus, the stress

ector of the mixture is defined as

σ = ωmσm + ω f
[
σ f

N
n + σ f

T
· nT

]
(21)

eing ωm and ωf the weighting functions depending on the vol-

me fraction of each constituent, with m and f referring to con-

rete matrix and fibers, respectively. The concrete matrix stress

ector is computed as σm = [σ m
N

σm
T

]; then, σ f
N

and σ f
T

mean the

ond-slip and dowel stresses due to the post-cracking interaction

etween fibers and mortar. These stress components are defined

n the normal and tangential directions of the fibers, respectively,

ame as the vectors n and nT.

.1. Fracture energy-based thermodynamic model for plain concrete

This section is aimed at describing the fracture energy-based

lasticity formulation for plain concrete which relates the normal

nd tangential micro-stress components with the corresponding

icrostrains.

Contrarily to Caner et al. (2013), which establish four dif-

erent boundaries for normal, tangential, volumetric and devia-

oric stresses, a unique function based on the parabolic Drucker-

rager yield criterion is proposed in this work for the maximum

trength surface at microplanes, incorporating normal and tangen-

ial stresses, as can be observed in Fig. 2.

The mathematical expression of the parabolic failure criterion

or plain concrete in terms of the normal and tangential micro-

tresses σ m
N

and σm
T

, respectively, is

m = ||σm
T ||2 + m0 σ m

N − c0 = 0 . (22)

The calibration of the frictional and cohesive parameters m0

nd c0 in terms of the uniaxial tensile strength f
′
t and the simple

hear strength f
′
s leads to

0 = f
′2
s

f
′
t

and c0 = f
′2
s . (23)

In the post-peak regime, the yield criterion softens and it is de-

ned as

m = ||σm
T ||2 + m0 σ m

N − φm = 0 (24)
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being φm the softening dissipative stress in terms of the internal

state variable κm. The strength degradation during post-peak pro-

cesses is controlled by φm, see Fig. 2.

The plastic flow rule of the model encompasses three different

regions in the stress space, as follow:

– tensile regime (σ m
N

≥ 0): associated rule is considered, i.e.

	∗m = 	m;

– low-confinement regime (0 > σ m
N

≥ σdil , with σ dil the compres-

sive stress corresponding to the zero concrete dilatancy): volu-

metric non-associated flow is considered, with

	∗m = 	m − 2 m0

σ m2
N

σdil

= 0; (25)

– medium and high confinement regime (σdil > σ m
N

): the plastic

potential corresponds to the isochoric plastic flow, being

	∗m = 	m + m0

(
σdil

2
− σ m

N

)
= 0. (26)

The plastic component of the Helmholtz free-energy density in

Eq. (12) for the concrete component of the mixture is defined as

ψm,p = c0

α f

exp
(
−α f ε

f
)

with α f = 5
h f

ur
, (27)

being εf the equivalent fracture strain defined as

ε f = κm ∂	∗m

∂σ m
N

, (28)

while ur represents the maximum crack opening displacement in

mode I type of failure and hf the characteristic length associated

to the active fracture process under general mode II type of failure,

computed as

h f = ht

RG

(29)

being ht the characteristic length in mode I type of failure. The

fracture energy-based characteristic lengths hf and ht represent

the distance between active cracks. Thus, under mode I type of

failure the maximum value ht of the characteristic length is ob-

tained. Under mode II or mixed failure mode the dependence of hf

on ht is defined in terms of the ratio between the fracture ener-

gies RG = GII
f
/GI

f
. RG is computed in terms of the acting confining

pressure on the microplanes represented by p∗ = σ m
N

/ f
′
c , being f

′
c

the uniaxial compressive strength of concrete, see Vrech and Etse
2009), as

G(p∗) =
GII

f

GI
f

=
{

1 p∗ ≥ 0 ,

59.74 + 49.74 sin
(
2p∗ − π

2

)
−1.5 ≤ p∗ < 0 ,

100 p∗ < −1.5 .

(30)

Summarizing:

– Mode I type of failure → h f = ht ;

– Mode II type of failure → h f = ht/RG.

The variation of hf with increasing confining pressure is shown

n Fig. 3.

The dissipative stress obtained combining Eqs. (9) and (27)

esults

m = c0 exp
(
α f κ

m
)

. (31)

.2. Thermodynamically consistent crack-bridging effects of fibers

rossing cracks

Steel fibers crossing active opened cracks, bring relevant bridg-

ng effects on the overall SFRC post-peak toughness. In this work,

he bond-slip mechanism between fibers and concrete matrix is

aken into account by means of the axial (tensile) fiber stress σ f
N

.

esides, the dowel effect is considered as a shear transfer mecha-

ism within active cracks. Simple one-dimensional, thermodynam-

cally consistent elasto-plastic constitutive models are proposed in

he followings subsections for both interaction mechanisms.

.3. One-dimensional thermodynamic bond-slip model

The proposed elasto-plastic bond-slip constitutive model is de-

ned by means of the following equations:

f
N

= 1

2
E f

(
ε f,e

N

)2 + 1

2
H f

N

(
κ f

N

)2
(free-energy potential) (32)

f
N

= E f (ε f,e
N

− ε f,p
N

) (constitutive relation) (33)

f
N

= |σ f
N
| − (σ f

y + φ f
N
) ≤ 0 (yield function) (34)

˙ f
N

= λ̇ (internal variable evolution) (35)

˙ f
N

= H f
N
κ̇ f (softening law) (36)

here ε f,e
N

and ε f,p
N

are the elastic and plastic axial strains, re-

pectively, Ef the elastic module, σ f
y the equivalent yield stress and

f
N

the hardening/softening parameter; whereas κ f
N

is the internal

ariable, conjugated to the dissipative stress φ f
N

.
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Fig. 4. Pull-out of a single fiber.
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Table 1

Bond response of the fiber–concrete joint depending on the slip s[x] de-

veloped throughout the embedment length.

Slips Type of joint adherence

s[x] ≤ se ∀ x ∈ [−lemb, 0] Elastic response (E)

s[x] ≤ se ∀ x ∈ [−lemb,−le]

se < s[x] ≤ su ∀ x ∈ [−le, 0] Elastic–softening response (ES)

se < s[x] ≤ su ∀ x ∈ [−lemb, 0] Softening response (S)

s[x] ≤ se ∀ x ∈ [−lemb,−le]

se < s[x] ≤ su ∀ x ∈ [−le,−lu] Elastic–softening–debonding (ESD)

s[x] > su ∀ x ∈ [−lu, 0]

se < s[x] ≤ su ∀ x ∈ [−lemb,−lu]

s[x] > su ∀ x ∈ [−lu, 0] Softening–debonding response (SD)

s[x] > su ∀ x ∈ [−lemb, 0] Debonding failure (D)

Being −le(0 ≤ le ≤ lemb) and −lu(0 ≤ lu ≤ lemb) the abscissas of the points

in which the local slip s[x] is equal to the elastic limit (se) and the ulti-

mate value (su), respectively.
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According to Oliver et al. (2008), slipping-fibers and fiber–

oncrete interfaces define a serial system, whereby the fiber to-

al strain ε f
N

is assumed as the sum of the proper fiber deforma-

ion εd and the interface sliding εi, ε f
N

= εd + εi. Whereas the fiber

tress σ f
N

is identical on each component σ f
N

= σ d
N

= σ i
N

. The mate-

ial mechanical features of this serial system defining the consid-

red bond-slip model result

f = 1

1/Ed + 1/Ei
(37)

f
y = min[σ d

y ;σ i
y] (38)

f
N

=
{

Hd
N, if σ d

y < σ i
y

Hi
N, otherwise

(39)

here the superscripts d and i denote fiber and interface,

espectively.

.3.1. Pull-out analysis of a single fiber

Pull-out analysis of a single fiber is reported in this subsection.

articularly, Fig. 4 deals with an isolated fiber loaded by an axial

orce, Pi. The fiber is embedded in a cementitious matrix for a lemb

ength measure. Thus, the equilibrium scheme proposed in Fig. 4,

s used to simulate the complete slipping behavior.

The following basic equations are used for analyzing the overall

ber-to-concrete debonding process:

• Equilibrium:
dσ f [x]

dx
= − 4τa[x]

d f
, being σ f the axial stress of the

fiber at a certain value of the abscissa x, τ a the shear bond

stress and df the diameter of the fiber.

• Fiber constitutive law in the axial direction: σ f [x] = Ed ds[x]
dx

, with

Ed the elastic steel modulus and s[x] the slip between fiber and

surrounding concrete mortar based on the assumption of Fig. 4.

• Bi-linear bond constitutive law: τa[x] =
{

−kE s[x] s[x] ≤ se

−τy,a + kS(s[x] − se) se < s[x] ≤ su

0 s[x] > su

, where kE and −kS repre-

sent the slope of the elastic and softening branches of the

bond-slip relationship, respectively, and τ y, a is the maximum

shear stress. Thus, se = τy,a

kE
and su represent the elastic and the

ultimate slips, respectively.

As schematically reported in Table 1 and based on the approach

roposed by Caggiano and Martinelli (2012), different states of the

ond response can be defined. Particularly, the fiber-to-concrete in-

erface is in elastic bond state (E) if s[x] ≤ se, in softening state (S)

hen se < s[x] ≤ su or the bond is crushed if s[x] > su. A combina-

ion of these three stress states can actually occur throughout the

onding length during the pull-out process of the single fiber (see

able 1).
Fully elastic behavior of fibers is assumed. This is strictly true

n the case of synthetic fibers, while can be accepted for steel ones

hen the length lemb results in the condition that Pi,max ≤ σ d
y A f ,

eing σ d
y the yielding stress and Af the area of the fiber cross

ection.

The proposed unified formulation has been intended as a key

lement to be employed in the 1D model proposed in Section 3.3

o explicitly simulate the mechanical behavior of FRC by taking

nto account the discrete nature of such materials and the contri-

utions of the various constituents within the framework of the

o-called meso-mechanical approach.

In particular, the equivalent yield stress σ f
y , the harden-

ng/softening parameter H
f
N

and Ef of Eqs. (37)–(39) follow from

he bond-slip model outlined in this subsection. For the sake

f simplicity, the description of the complete analytical pull-out

odel is omitted in this work but may be obtained from Caggiano

nd Martinelli (2012). Thereby the complete bond model repre-

enting the interaction between fibers and surrounding mortar un-

er pull-out action is described. On the other hand, the link be-

ween Section 3.3 and 3.3.1 have been outlined in Caggiano (2013).

.4. Constitutive model for fiber dowel effect

The following one-dimensional elasto-plastic formulation is

onsidered to take into account the dowel effect of fibers crossing

pen cracks in cementitious matrix.

The thermodynamically consistent constitutive model proposed

n this work is based on the following equations

f
T

= 1

2
G f ε f,e

T
· ε f,e

T
+ 1

2
H f

T

(
κ f

T

)2
(free-energy potential) (40)

f
T

= G f (ε f,e
T

− ε f,p
T

) (constitutive relation) (41)

f
T

= | σ f
T

| −(τ f
y + φ f

T
) ≤ 0 (yield function) (42)

˙ f
T

= λ̇ (internal variable evolution) (43)

˙ f
T

= H f
T
κ̇ f

T
(softening law) (44)

eing ε f,e
T

and ε f,p
T

the elastic and plastic shear strain, respectively,
f

T
the internal variable conjugated to the dissipative stress φ f

T
and

f
T
, once again, the hardening/softening parameter. The adopted

owel stiffness Gf and the equivalent strength τ f
y characterizing

he dowel mechanism, are based on the definition of both stiff-

ess and strength of a generic fiber embedded in a concrete matrix

nd subjected to a transverse force. This formulation is developed

n analogy to a “semi-infinite” beam on a Winkler foundation fol-

owing the empirical work by El-Ariss (2007) and the experimental
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contributions by Dei Poli et al. (1992), Soroushian et al. (1987) and

Dulacska (1972).

3.4.1. Dowel stiffness

To have a more understanding of the dowel stiffness Gf, the

following differential equation for the deflection equilibrium of a

Winkler’s beam can be written as

d4�(x)

x4
+ 4λ4

ω�(x) = 0 with λ4
ω = kc

4EdJs
(45)

being �(x) the deflection of the beam, kc the elastic stiffness of the

spring foundation modeling the surrounding cementitious matrix,

Ed and Js are the elastic modulus of the steel and the inertia of the

fiber, respectively, and finally λω represents a characteristic length

of the Winkler beam.

The fiber is analyzed as a “semi-infinite” beam on Winkler

foundation, then the following equations govern the problem

�(x) = A1 e−λωx cos(λωx) + A2 e−λωx sin(λωx)

Md(x) = 2 Ed Js λ
2
ω e−λωx[A2 cos(λωx) − A1 sin(λωx)]

Vd(x) = −2 Ed Js λ
3
ω e−λωx[(A2 − A1) sin(λωx)

+(A1 + A2) cos(λωx)] (46)

being Md and Vd the bending moment and the dowel action at lf/2

of the steel fiber, while A1 and A2 are constants deriving by the

boundary conditions.

The analytical solution of the semi-infinite Winkler’s beam

problem is based on the assumption that the crack width is con-

sidered null and supposing that in x = 0 the moment is null (in-

flection point). Then, considering an applied dowel force, Vd, at the

loaded-end (x = 0), the following analytical displacement field is

obtained

�(x) = −e−λωx cos(λω x)

2 λ3
ω Ed Js

Vd. (47)

Finally, the Vd − � law in correspondence of the considered

crack (x = 0) takes the following analytical form

d = λ3
ω EdJs � → Vd

A f

= l f

A f

λ3
ω EdJs

�

l f

⇒ G f = l f

A f

λ3
ω EdJs (48)

also expressed in terms of σ f
T

− ε f
T

(
Vd
A f

− �
l f

) law, from which the

dowel stiffness, Gf, can be derived. In Eq. (48) A f = π
d2

f

4 is the cross

sectional area of a single fiber.

Moreover, the elastic foundation stiffness of the surrounding

concrete, kc, may be obtained from the empirical expression given

in Soroushian et al. (1987) as

kc = κ1

√
f ′
c

d f
2/3

(49)

being f ′
c the compression strength of the surrounding cementitious

composite and κ1 a coefficient to be calibrated.

3.4.2. Dowel strength

Finally, the equivalent dowel strength τ f
y can be defined from

the dowel action as

τ f
y = Vd,u

A f

(50)

being Vd, u the dowel force capacity which is obtained as proposed

from the following expression:

d,u = kdow d2
f

√
| f ′

c||σ d
y | (51)

being kdow a non-dimensional coefficient which according to

(Dulacska, 1972), for the case of RC components, is well described

by the value k = 1.27.
dow
It should be noted that Eq. (51) describes the failure mechanism

f the fiber dowel by means of two effects: the local crushing of

he surrounding matrix and the yielding of the steel fiber.

. Numerical analysis

This section illustrates the main features and capabilities of the

roposed formulation comparing some numerical results against

xperimental data available in the literature. For the purpose of

hese numerical analyses the algorithmic tangent operator of the

roposed thermodynamically consistent microplane model was im-

lemented at macroscopic levels. The departure point is the for-

ulation of the continuum elasto-plastic tangent operator for

icroplane constitutive theories by Kuhl et al. (2001), which was

xtended in this work for the numerical implementation of the

roposed model in the framework of the Mixture Theory. In Fig. 5

he flowchart of the numerical implementation of the proposed

icroplane model is summarized.

Four types of tests were selected to evaluate the predictive ca-

abilities of the proposed model for SFRC failure behavior: uniaxial

ensile, simple shear, uniaxial compression and triaxial compres-

ion tests. They activate both mode I and mode II type of fracture

nd, therefore, are very appropriate to analyze the soundness of

he proposed mixture constitutive theory. Fig. 6 shows the consid-

red boundary conditions of the four different tests pursued in this

ork. The considered tests involve prismatic or cylindrical samples

specific dimensions are provided in the description of each test)

nder plane stress or cylindrical stress conditions, respectively. The

wo-dimensional formulation by Park and Kim (2003) instead of

he spherical one was considered for the microplane distribution,

ee Fig. 7.

.1. Tensile test: verification with experimental data

First, numerical analyses of the uniaxial tensile test were car-

ied out on both plain concrete and SFRC. Two different types of

teel fibers were considered namely Dramix I and II whose funda-

ental properties are given in Table 2. The regarded experimental

ampaign by Li et al. (1998b) and Li and Li (2001) have been per-

ormed on prismatic specimens with the dimensions 500 × 100 ×
0 mm3. The model parameters were adjusted according to the ex-

erimental data given by the authors, highlighted in the second

olumn of Table 3.

The comparison between model predictions and the experimen-

al data by Li et al. (1998b) and Li and Li (2001) for the uni-

xial tensile test in terms of stress–strain diagrams are reported

n Fig. 8. The stress–strain responses of SFRC with uniformly dis-

ributed Dramix type II steel fibers and fiber contents (ρ f) of 3.0 %,

.5 % and 4.0 % are shown on the left hand side of Fig. 8, while the

raphics on the right hand side show the model predictions for

anels with Dramix type I fibers and fiber contents of 6.0 %, 7.0 %

nd 8.0 %.

The numerical predictions demonstrate very good agreement

ith the experimental results. The proposed constitutive model is

ble to reproduce the increment of toughness and strength in the

niaxial tensile test with increasing fiber content.

It is worth noting that all the numerical curves in these anal-

ses were obtained by only changing the fiber content and/or the

ber type according to the properties given by Li et al. (1998b) and

i and Li (2001).

.2. Tensile test: fiber orientation sensitivity

In this section the sensitivity of the proposed thermodynam-

cally consistent microplane theory regarding the orientation of

bers in concrete is evaluated. To this end, four different types of
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Fig. 5. Flowchart of local Newton’s method used for step-by-step integration of the microplane model.

Fig. 6. Load configurations and restraint conditions for uniaxial tension, simple

shear, uniaxial and triaxial compression tests.

fi
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Fig. 7. Two-dimensional microplane model proposed by Park and Kim (2003).

4

f

a

T

a

ber distributions were considered in the uniaxial tensile test, as

hown in Fig. 9: uniform or homogeneous distribution of fibers,

lliptical distribution of fibers, fibers concentrated in one direction

one microplane at 25°), and fibers located in certain directions

microplanes). In all four cases a total of 42 microplanes were con-

idered while the fiber content was ρ f = 7.0%.

The results in Fig. 10 show that the mechanical response cor-

esponding to the elliptical distribution of fibers is the one that

est matches the uniaxial tensile experimental results by Li et al.

1998b) and Li and Li (2001) performed on SFRC samples. The sec-

nd most accurate prediction is obtained with the uniform distri-

ution of fibers.
.3. Tensile test: softening behavior

The tensile stress–crack width relationship for SFRC with uni-

ormly distributed fibers (ρ f = 2.4%) by Abrishambaf et al. (2015)

nd the corresponding numerical predictions are shown in Fig. 11.

his figure depicts the envelope and average curves from the uni-

xial tensile test, performed on prismatic probes with dimensions
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Fig. 8. Tensile tests: verification with experimental data by Li et al. (1998b) and Li and Li (2001) (dotted curves).
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Fig. 9. Types of fiber directional distributions in the uniaxial tensile test: (a) uniform distribution; (b) elliptical distribution; (c) fibers concentrated in one microplane; (d)

fibers concentrated in certain microplanes.

Table 2

Characterization of Dramix fibers.

Density [g/cm3] Diameter [mm] Length [mm] σ d
y [GPa] Ed[GPa]

Dramix type I 7.8 0.5 30 1.20 200

Dramix type II 7.8 0.5 50 1.20 200

Table 3

Characterization of material properties.

Tests Tensile Tensile Shear Shear Compression

(Li et al., 1998b) (Abrishambaf et al.,

2015)

(Mirsayah and

Banthia, 2002)

(Soltanzadeh et al.,

2015)

(Chern et al., 1992)

Concrete properties

Elasticity modulus – Em [GPa] 39.5 34.15 25.0 36.0 20.0

Poisson modulus – ν 0.2 0.2 0.2 0.2 0.2

Compressive strengh – f ′
c [MPa] 35.0 47.7 47.0 67.84 20.65

Zero dilatancy stress – σ dil [MPa] −7.0 −9.0 −9.0 −13.0 −5.0

Tensile rupture displacement – ur [mm] 0.151 0.160 0.167 0.177 0.130

Crack spacing – ht [mm] 100 102 150 150 54

Steel fibers properties

Elasticity modulus – Ed [GPa] 200.0 200.0 200.0 200.0 200.0

Yield stress – σ d
y [MPa] 1200.0 1100.0 828.0 1100.0 1100.0

Equivalent shear elastic modulus – Gf [GPa] 15.0 15.0 20.6 15.0 15.0

Equivalent shear strength – τ f
y [MPa] 332.0 441.67 321.0 441.67 330.0

Hardening/softening moduli – H f
N

= H f
T

0.0 0.0 0.0 0.0 0.0

Fiber–concrete interfaces properties

Elasticity modulus – Ei [GPa] 200.0 200.0 200.0 200.0 200.0

Yield stress – σ i
y [MPa] 216.0 198.0 149.0 198.0 180.0

1
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T

10 × 102 × 60 mm3, as well as the numerical prediction of the

roposed microplane-based constitutive theory. The model param-

ters, based on the material data given by the authors, are sum-

arized in the third column of Table 3.

As can be observed in Fig. 11 the comparison with the exper-

mental results shows very good agreement regarding peak and

esidual strengths, as well as pre- and post-peak behaviors. The

ost-cracking stage of SFRC specimens by Abrishambaf et al. (2015)

re characterized by a crack-softening behavior which, as a matter

f fact, is well captured through the proposed microplane-based
odel.
.4. Simple shear test: contribution of the dowel mechanism

The capabilities and efficiency of the proposed microplane

odel to capture the failure of SFRC is now analyzed by means

f the simple shear test. Numerical predictions are shown in terms

f shear loads vs. lateral displacements. A total of 42 microplanes

ith random distribution of fibers have been considered. The

dopted material properties correspond to the experimental cam-

aign by Mirsayah and Banthia (2002), performed on 150 × 150 ×
00 mm3 beams. They are displayed in the fourth column of

able 3.
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Fig. 10. Prediction of tensile stresses vs. strains of uniaxial tensile test by Li et al.

(1998b) and Li and Li (2001) with different types of fiber directional distributions.

Dramix type I fibers, ρ f = 7.0%.
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Fig. 11. Prediction of tensile stresses vs. crack opening displacement of uniaxial ten-

sile test by Abrishambaf et al. (2015). Fibers content ρ f = 2.4 %.
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Fig. 12 highlights the phenomenological effects of fibers when

added in cementitious matrix. The improvement of the composite

mechanical behavior in terms of thoughness and also (but slightly)

peak strength can be captured by the proposed smeared crack

based constitutive theory. Two different fiber contents, i.e. ρ f =
1.0% and 2.0%, have been considered. The results in Fig. 12 demon-

strate the efficiency of the combined microplane-mixture theories

to predict the failure behavior of SFRC.

Finally, the contribution of the dowel mechanism of fibers

crossing cracks on the overall response behavior is evaluated. To

this aim, the numerical simulation of the experimental shear test

by Soltanzadeh et al. (2015) is carried out considering the material

properties of the fourth column of Table 3.

Fig. 13 compares experimental data (dotted curves) and shear

load vs. lateral displacement curves obtained with the microplane-

mixture constitutive theory. Two cases are considered. On the one

hand, the fiber–mortar interaction is taken into account by means

of both fiber-to-concrete bond-slip and dowel mechanisms (blue
ashed curve). On the one hand, the fiber–mortar interaction is

odeled only by beans of the bond-slip mechanism while the con-

ribution of the dowel mechanism is neglected (red continuous

urve). As can be observed in Fig. 13, when only bond-slip inter-

ction mechanism is taken into account both the shear strength

nd the thoughness in post-peak decrease, demonstrating the rel-

vant role of the dowel mechanism in the failure behavior of SFRC

omponents under dominant shear.

.5. Uniaxial and triaxial compression tests

In this section, the predictive capabilities of the proposed ma-

erial model to reproduce the failure behavior of SFRC are verified,

egarding uniaxial and triaxial compression tests. Variable content

f steel fibers are considered in the analyses.

Firstly, the numerical predictions of the uniaxial experimental

ests by Chern et al. (1992) performed on cylindrical specimens of

8 mm in diameter and 108 mm in height are considered. Corre-

ponding material properties are shown in last column of Table 3.

he numerical analysis were performed under cylindrical stress

onditions.

Fig. 14 shows the prediction of the proposed model to the uni-

xial compression tests for plain concrete and SFRC with 1.0% and

.0% fiber content. The comparison with the experimental results
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Fig. 14. Predictions of compressive stresses vs. strains of uniaxial compression tests
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hows very good agreement for both, plain concrete and SFRC, re-

arding peak strength, post-peak behavior and residual strength.

rom Fig. 14 it can be concluded that the addition of steel fibers

o concrete considerably increases the toughness whereas slightly

ncreases the compressive strength and the strain at peak stress.

At this stage it should be noted, according to Nataraja et al.

1999), Neves and de Almeida (2005) and Lee et al. (2015), that the

ber influence on the maximum compressive strength is variable,

epending on matrix and fiber characteristics. Strain at peak stress

ncreases with concrete compressive strength, while toughness of

igher strength concrete is more sensitive to fiber reinforcement.

Finally, the triaxial compression experimental results by Chern

t al. (1992) on concrete cylinders of 100 × 200 mm2 are consid-

red (Fig. 15). These tests were performed with variable content of

bers, i.e. ρ f = 0.0%, 1.0% and 2.0% and a lateral confinement of

0 MPa.

It is worth mentioning that while plain concrete and SFRC show

pronounced decrease in stress after peak strength, SFRC exhibits

uctile behavior in cases of triaxial compression.
.6. Discontinuous bifurcation condition

The critical condition for localized failure in the form of dis-

ontinuous bifurcation, as highlighted in the Appendix A, is ana-

yzed for plain concrete and SFRC by means of numerical analysis

ith the proposed model. Main purpose of this analysis is, on one

and, to evaluate the effect of steel fibers on the performance of

he localization indicator or on the potential for localized failure.

n the other hand, this analysis allows to evaluate the sensitivity

f the fiber orientation on the critical condition for discontinuous

ifurcation.

Figs. 16 and 17 show the performance of the determinant

f the macroscopic normalized localization indicator det(Q ) =
et(Q ep)/ det(Q e) at peak and residual stress states of the uni-

xial tensile test by Abrishambaf et al. (2015). The four different

istributions of fiber orientations as shown in Fig. 9 are evalu-

ted regarding their localization indicator performances. The re-

ults demonstrate that the proposed microplane-mixture constitu-

ive theory is able to capture the effect of the fiber orientation on

he elastic properties degradation, not only regarding the amount

f the degradation but also its orientation. This is a relevant char-

cteristic of the proposed material theory.



348 S. Vrech et al. / International Journal of Solids and Structures 81 (2016) 337–349

S

E

b

h

w

ν

E

Q

w

v

m

I

r

Q

R

A

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

5. Conclusions

A thermodynamically consistent elasto-plastic microplane con-

stitutive theory aimed at predicting the failure behavior of Steel

Fiber Reinforced Concrete (SFRC) has been developed. The model

formulation, founded on a macroscopic smeared crack approach

and, particularly, on the full thermodynamic consistency, consid-

ers the well-known Mixture Theory to account for the presence of

fibers in concrete microplanes. The model also accounts for bridg-

ing interactions of fibers in concrete cracks in the form of fiber-to-

concrete bond-slip and dowel mechanisms. In this sense, the rel-

evant role of the dowel mechanism in the bridging interaction of

fiber in concrete when subjected to dominant shear was demon-

strated in this work.

The numerical analyses demonstrate that the constitutive pro-

posal captures the fundamental features of the mechanical be-

havior of SFRC. Very good agreements between numerical results

against experimental data available in scientific literature have

been achieved in terms of peak-strength and post-cracking tough-

ness.

A distinguish feature of the proposed constitutive theory is its

ability to evaluate non-homogeneous fiber distributions in the con-

crete matrix and moreover, their effect on both the post-peak

load–displacement behavior and orientation evolution of the criti-

cal localization direction in the form of discontinuous bifurcation.
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Appendix A. Analytical solution for localized failure

in microplane-based elasto-platicity

In the framework of the smeared crack approach, localized fail-

ure modes are related to discontinuous bifurcations of the equi-

librium path, and lead to loss of ellipticity of the equations that

govern the static equilibrium problem. The inhomogeneous or lo-

calized deformation field exhibits a plane of discontinuity that can

be identified by means of the eigenvalue problem of the acoustic

or localization tensor, see Ottosen and Runesson (1991). Analyti-

cal solutions for the discontinuous bifurcation condition, based on

original works by Hadamard (1903), Thomas (1961) and Hill (1962),

conduce to the macroscopic localization condition

det(Q ep) = 0 (52)

being Qep the elasto-plastic localization tensor, define as

Q ep = N · Eep · N , (53)

with N, the normal direction to the discontinuity surface. Ac-

cording to Kuhl (2000), in case of microplane-based plasticity the

macroscopic elasto-plastic tangent operator can be obtained anal-

ogously to the macroscopic stresses in Eq. (10), as

Eep = dσmac

dεmac
= 3

4π

∫
�

[
N ⊗ dσN

dεN

+ T T · dσT

dεT

]
d� . (54)
Regarding the microplane constitutive formulation in

ection 2.3, the above equation can be expressed as

ep =Ee− 3

4π

∫
�

1

h

[
ENμNN+ET T T · μT

]
⊗ [νNENN+ET νT · T ]d�

(55)

eing

= EN νNμN + ETνT · μT + H , (56)

ith the isotropic hardening/softening modulus H and

N = ∂	

∂σN

, μN = ∂	∗

∂σN

, νT = ∂	

∂σT

, μT = ∂	∗

∂σT

. (57)

The elastic macroscopic tangent operator is given by

e = 3

4π

∫
�

ENN ⊗ N + ET T T · T d�. (58)

Then, the elasto-plastic localization tensor in Eq. (53), results

ep = Q e − 3

4π

∫
�

a∗ ⊗ a

h
d� , (59)

ith the elastic localization tensor Q e = N · Ee · N and the traction

ectors computed as

a = [νNENN + ET νT · T ] · N,

a∗ = N ·
[
ENμNN + ET T T · μT

]
.

(60)

Due to the complex structure of the acoustic tensor for

icroplane-based plasticity, the analytical assessment is not easy.

nstead, numerical solutions must be applied and Eq. (59) can be

ewritten as

ep ≈ Q e −
nmp∑
I=1

[
a∗I ⊗ aI

hI

]
w

I. (61)
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