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Abstract The cactus moth, Cactoblastis cactorum

mainly distributed throughout central and northeastern

Argentina was intentionally introduced in the Carib-

bean region in 1957 as a biological control agent of

cacti species of the genus Opuntia. This moth invaded

during the last 20–30 years the North American

continent, threatening the major center of biodiversity

of native Opuntia species. Although human induced

and natural dispersal have been invocated to explain

its expansion in the non-native distribution range,

there is still no evidence to support natural dispersal.

In particular, hurricanes are one of the major environ-

mental factors affecting species dispersal in the region.

In this study we used mitochondrial DNA to examine

whether the spatial distribution of haplotype variation

of C. cactorum is at least partially explained by

hurricane trajectories within the Caribbean region.

DNA sequences for the mitochondrial gene cyto-

chrome oxidase I were obtained for a sample of 110

individuals from the Antillean islands. This informa-

tion was combined with existing sequences in the

GenBank for the same gene for the Caribbean and

Florida (N = 132 sequences). Genetic diversity

descriptors, a haplotypic network, a spatial analyses

of molecular variance and a landscape genetic analysis

of migration conditioned by hurricane tracks were

conducted to test our hypothesis. Our results revealed

a significant spatial grouping of haplotypes consistent

with the more frequent hurricane trajectories in the

Caribbean region. Significant isolation by distance

conditioned by hurricane tracks was detected. Popu-

lations of Florida were genetically closer to those of

Cuba than to the rest of the population sampled.

Within the region, Cuba appears as a reservoir of

genetic diversity increasing the risk of invasion to
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Mexico and the US. Despite commercial transporta-

tion of Opuntia promoted dispersal to Florida, our

results support the hypothesis that natural disturbances

such as hurricanes played a role dispersing this

invasive insect. Future conservation programs of

North American Opuntia species requires taking into

account hurricane mediated dispersal events and

permanent whole regional monitoring and interna-

tional control policies to prevent future range expan-

sions of C. cactorum.

Keywords Cytochrome oxidase I � Biological

invasions � Cactus moth � Cactoblastis cactorum �
Dispersal � Phylogeography

Introduction

Biological invasions are currently one of the major

threats to biodiversity worldwide (Vitousek et al.

1996; Alonso et al. 2001; Richardson 2011), and

identifying the factors that explain dispersal patterns

of invasive species within non-native regions becomes

a central issue for conservation biology, emergence of

novel diseases and eradication programs (Abdelkrim

et al. 2007; Estoup and Guillemaud, 2010). Invasive

species arrive to non-native habitats following human

commercial routes, deliberated or unconscious human

mediated introductions, or through the breakdown of

historical barrier to dispersal due to climate changes

(Cadotte et al. 2006; Nentwig 2007; Richardson 2011).

After establishment, dispersal of invasive species

within their non-native range depends on the interac-

tion among anthropogenic, physical and biotic factors

(Sakai et al. 2001; Levine et al. 2004) and under-

standing the role of contemporary ecological–envi-

ronmental factors as dispersal agents or as barriers to

migration within non-native habitats is one of the

central challenges to control invasive species (Estoup

and Guillemaud 2010; Lombaert et al. 2011; Boucher

et al. 2013; Richardson 2011).

The cactus moth, Cactoblastis cactorum, inhabiting

Uruguay, Paraguay, central and northeastern Argen-

tina, and south of Brasil (Heinrich 1939), is an

oligophagous herbivore of several cacti species within

the subfamily Opuntioidea including most of the

species of the genus Opuntia (Zimmermann et al.

2007). Out of its native range it can also consume

species of the genus Cylindropuntia and Consolea

(Zimmermann et al. 2007). Driven by biological

control policies, this moth was introduced in Australia

in 1926 to control the demographic expansion of alien

O. stricta populations that had negative effects on crop

and livestock production (Julien and Griffiths 1998).

Given the success of this biological agent, it was

subsequently introduced to South Africa (1933), New

Caledonia (1933), and Hawaii (1950) (Zimmermann

and Pérez-Sandi 2006; Zimmermann et al. 2007) to

control O. ficus-indica and other invasive Opuntia

species. Larvae from this moth intentionally arrived to

the Caribbean in 1957 promoted by human efforts to

control weedy native populations of Opuntia in the

island of Nevis (Bennett and Habeck 1995). This

occurred without taking into account the negative side

effects of introducing invasive alien species to control

native species (Louda et al. 2003). Dispersal within the

Caribbean may have presumably occurred by explicit

human induced introductions in other islands (US

Virgin Islands, Antigua, Montserrat), incidental trans-

portation with ornamental cacti (Pemberton 1995)

and/or by natural factors like hurricanes and tropical

storms (Drake and Farrow 1988; Torres 1992; Cour-

tenay 1995; Stiling 2002; Pratt et al. 2006; Zimmer-

mann et al. 2007). During the late 1980s, this invasive

species arrived to Florida where it started an aggres-

sive expansion favored by the presence of available

host species throughout the southeastern United States

(Habeck and Bennet 1990). To date, the cactus moth

has expanded northward to Bull Islands (South

Carolina) through the Atlantic coast of US and through

the Gulf of Mexico coast reaching Terrebonne Parish

(Louisiana; Rose et al. 2011). In 2007, the species was

detected in Isla Mujeres (México), 6 km offshore from

the Yucatán Peninsula (NAPPO 2006) but was rapidly

eliminated by Mexican environmental authorities

(Zimmermann et al. 2007). In contrast to other parts

of the world invaded by Opuntia, there is a high risk of

losing cacti biodiversity within the Americas (see

Jezorek et al. 2012). Thus understanding the causal

agents of dispersal behind the expansion of this

invasive insect in the Caribbean region remains a

central issue for conservation of cacti biodiversity

(Johnson and Stiling 1998; Zimmermann et al. 2004).

Previous genetic studies suggest that at least three

independent introductions of this moth in Florida

(Simonsen et al. 2008; Marsico et al. 2011) are likely

related to commercial transportation of ornamental
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cacti from Puerto Rico and Rep. Dominicana between

1981 and 1993, highlighting the role of human

mediated dispersal (Pemberton 1995; Zimmermann

et al. 2000a, b). However, because there has been no

direct examination of the potential role of natural

dispersal towards continental areas in North America,

this hypothesis cannot be ruled out (Johnson and

Stiling 1998).

In other regions, invasive insects are known to be

favored by warm winds promoting dispersal (Grapp-

uto et al. 2005; Dudaniec et al. 2008). In Isla Mujeres

(7 km from the Yucatán Peninsula in Mexico), the

arrival of the moth was associated with the occurrence

of hurricane Stan in 2005 (Zimmermann and Pérez-

Sandi 2006). Parallel to their devastating environmen-

tal consequences (Lugo et al. 2000; Chazdon 2003),

hurricanes in the Caribbean are known to reduce

population size in several species exposing them to

genetic bottlenecks (Hurtado et al. 2012; Szczys et al.

2012; but see Vega et al. 2007), and to promote

dispersal among isolated islands (Fleming and Murray

2009). Within the Caribbean region, the historical

records of winds and hurricanes indicate a consistent

spatio-temporal pattern (Landsea 1993; Landsea et al.

1996; Lugo et al. 2000; Muscarella et al. 2011)

characterized by two major east–west trajectories

(Fig. 1). One that enters the Gulf of Mexico and a

second trajectory that passes through the Bahama’s

archipelago reaching the Atlantic coast of Florida

(Landsea 1993; Landsea et al. 1996; Lugo et al. 2000).

If these two major patterns of winds and hurricane

promoted C. cactorum dispersal to the continent, at

least two sources of invasion matching the geographic

patterns of this environmental agent should be

observed. In turn, such a pattern could also explain

the presence in Florida of two genetically different

groups of haplotypes recorded in previous studies, one

on the Gulf coast of Florida and the other on the

Atlantic coast (Simonsen et al. 2008; Marsico et al.

2011). On the other hand, if commercial transportation

were the main source of dispersal to Florida, conti-

nental individuals should be genetically closer to those

belonging to Rep. Dominicana and Puerto Rico than to

those of the rest of the islands in the Caribbean

(Simonsen et al. 2008).

In this study we used a mitochondrial gene (cytho-

crome oxidase I) to identify: (a) whether potential

dispersal routes of the invasive cactus moth (C. cacto-

rum) within the Caribbean and Florida matches or not

major wind and hurricane trajectories and (b) if Rep.

Dominicana and Puerto Rico still appears as important

sources of commercial dispersal towards Florida.

Materials and methods

Insect collection and DNA sampling

We sampled several Antillean islands between 2011

and 2012, searching for the presence of Cactoblastis

Fig. 1 Spatial distribution of hurricane frequency in the

Caribbean region. a Values of isopleths represent the frequency

of hurricanes that hit a given area between 1871 and 1986 (figure

taken from Lugo et al. 2000). b Prevailing hurricane tracks for

July and August in Caribbean and Atlantic Ocean area following

Landsea (1993), Landsea et al. (1996) and NOAA (http://www.

nhc.noaa.gov/climo/)
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cactorum (Lepidoptera: Pyralidae) on all possible host

cacti species following Zimmermann and Pérez-Sandi

(2006). In all infested plant populations we sampled

one larvae per plant for a total of 110 larvae (7–17

larvae collected at each population) throughout the

region. Our sample included eight populations across

six countries (Table 1): one population in the island of

Nevis were the insect was intentionally introduced in

1957 (Simmonds and Bennett 1966), one population in

the island of Antigua were the insect was also

introduced in 1960, one population in Rep. Domini-

cana (La Romana), and Puerto Rico (Guanica), and

one population in Jamaica (Palisadores) were the

insect was detected in 2005 (Zimmermann and Pérez-

Sandi 2006). Finally three populations were sampled

in Cuba (Pinar del Rio, Trinidad and Santiago de

Cuba). The insect was first detected in Cuba in 1980

close to Guantánamo (near Santiago de Cuba) (Blanco

and Vázquez 2001) but there is no record of the

colonization events in other parts of the island

(Table 1). Most sampled populations were found on

Opuntia dilleni plants, and occasionally on O. stricta

var. dilleni, O. ficus-indica, and O. tuna (Table 1).

During sampling in the field, larvae were placed in

1.5 ml vials filled with ethanol at a 95 % concentra-

tion. Our survey was complemented with previous

data gathered from GenBank including information

from other populations within the region [two from

Florida (hereafter Gulf and Atlantic coast), and one

from Mexico (Isla Mujeres), and Rep. Dominicana

(Las Tablas)] (Simonsen et al. 2008; Marsico et al.

2011) to have a complete geographic representation of

the Caribbean distribution of C. cactorum (Fig. 3).

We performed the DNA extraction with DNEasy�

blood and tissue Kit (QIAGEN, MD, USA, cat. 60504)

following the manufacturer protocol for purifying total

DNA from animal tissues based on a spin-column. We

used only larvae legs to extract DNA. We sequenced

836 bp of the gene cytochrome oxidase I (COI) for all

collected individuals using the primer pair Jerry-Pat II

(Simon et al. 1994; Caterino and Sperling 1999; Jerry:

50-CAACATTTATTTTGATTTTTTGG-30; PatII:

50-TCCATTACATATAATCTGCCATATTAG-30). We

performed PCR amplification in a PXE 0.2 thermal

cycler (Thermo Electron Corporation, US), using a

reaction of 20 ll containing: buffer 19 (Tris–HCl

20 Mm, pH 8.4, KCL 50 mM), 1.5 mM of MgCl2,

dNTPs 0.1 mM each, Taq 1ll, 0.5 lM of each primer,

30 ng of DNA and enough milliQ water to attain the

final volume of 20 ll. The PCR protocol initiated with

one cycle of 95 �C during 1 min, followed by 35 cycles

of 94 �C for 15 s, 57 �C for 15 s, 72 �C for 1 min, and

a final elongation step of 72 �C for 7 min. We

generated sequences for all individuals in the forward

and reverse direction and aligned them using Mega 5

(Tamura et al. 2011).

Data analyses

For the sample of populations acquired in our field

survey, we obtained the following genetic diversity

estimates: number of segregation sites (S), number of

haplotypes, and nucleotide diversity (p) using DNAsp

(Rozas et al. 2003). Subsequent analyses were per-

formed combining our sample of 110 sequences

(individuals) with genetic data gathered from Gen-

Bank and published studies for other 132 individuals

(Simonsen et al. 2008; Marsico et al. 2011). Based on

previous surveys in Southeastern US, all GenBank

data for the US Gulf of Mexico and Atlantic coast of

Florida (Simonsen et al. 2008; Marsico et al. 2011)

were considered as single populations (hereafter Gulf

and Atlantic coast population respectively). These two

areas included genetic data collected approximately

Table 1 Geographic

locations and host species

of sampled populations of

C. cactorum in the

Caribbean islands

Country Population Geographic coordinates Host species

1. St. Kitt—Nevis Nevis 17�6051.200N 62�32053.200W O. dilleni

2. Antigua Antigua 16�59052.800N 61�45016.500W O. dilleni

3. Puerto Rico Guanica 17�56052.700N 66�52042.200W O. ficus-indica

4. Rep. Dominicana La Romana 18�29045.400N 68�59023.300W O. ficus-indica

5. Jamaica Palisadores 17�56052.700N 66�52042.200W O. tuna

6. Cuba Santiago de Cuba 19�57042.300N 75�41023.600W O. dilleni

7. Cuba Trinidad 21�45043.200N 80�0033.900W O. dilleni

8. Cuba Pinar del Rı́o 22�8023.200N 83�5801300W O. stricta var. dilleni
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along 500 km in each coast (Simonsen et al. 2008;

Marsico et al. 2011). Final analyses included genetic

information for 12 populations and 242 individuals.

We constructed a network of haplotypes using TCS

1.21 (Clement et al. 2000) combining our data with

that obtained from GenBank for the same gene and

species (Simonsen et al. 2008; Marsico et al. 2011).

For this analysis we used only 725 bp fragments

following existing sequences length in the GenBank

for the studied species. The network was constructed

with a link probability of 95 % between pairs of

haplotypes and assembled following the parsimony

criteria minimizing the number of mutations required

to account for differences between haplotypes.

To explore the existence of genetically differenti-

ated groups of populations in the region, we performed

an Spatial Analysis of Molecular Variance (SAM-

OVA; Dupanloup et al. 2002) in ARLEQUIN 3.5

(Excoffier et al. 2005). In these analyses FCT corre-

spond to the among groups component of genetic

variation, FST correspond to the among populations

within groups component of genetic variation, and FSC

to the within populations component of genetic

variation. SAMOVA simulates different partitions of

n populations into K groups retaining the partition with

the highest FCT value. Subsequent Analysis of

Molecular Variance (AMOVA) in ARLEQUIN 3.5

(Excoffier et al. 2005) was performed to estimate

fixation indices (FSC, FST, FCT) for the optimum K.

To further evaluate if population genetic differen-

tiation follow a pattern of isolation by distance the

correlation between genetic and Euclidean geographic

distance matrices was estimated using a Mantel test.

The hypothesis that major tracks of hurricanes and

tropical storms played a significant role on the

distribution of genetic variation was examined using

CIRCUITSCAPE (McRae and Shah 2009). Using

historical records of major hurricane and tropical

storm tracks and incidence in the region (Landsea

1993; Landsea et al. 1996; Lugo et al. 2000) we built a

matrix indicating resistance between pairs of popula-

tions (resistance matrix). Following circuit theory this

program calculated a matrix of connectivity among all

pairs of populations (analogue of electrical resistance)

using the resistance matrix (analogue of electrical

current) (McRae et al. 2008). The advantage of this

method is that it calculated the total resistance based

on multiple potential paths of least resistance between

populations. A partial Mantel test was then performed

to evaluate if the initial correlation between genetic

and Euclidean geographic distance matrices is

improved when the information of the connectivity

matrix was explicitly considered (isolation by resis-

tance hypothesis). In this analysis, a significant

increment in the correlation between genetic and

Euclidean geographic distances indicate that our

hypothesis of environmental barriers to gene dispersal

mediated by hurricanes and tropical storms at least

partially contributed to the spatial distribution of

genetic variation (McRae and Shah 2009).

Results

Our results confirmed the number of haplotypes

detected in previous studies in the region (Table 2).

Following the notation used by Simonsen et al. 2008,

we found haplotypes 2, 3 and 5, and haplotype CBN

detected by Marsico et al. (2011). We also detected

equivalent values in the number of nucleotide differ-

ences among haplotypes (Table 2). Mean nucleotide

diversity was 0.00177, (range 0–0.00277; Table 2),

and we found the highest nucleotide diversity in

Santiago de Cuba, whereas the lowest was found in

Nevis, Isla Mujeres (Mexico) and Palisadores

(Jamaica). Haplotypes 2 and 5 were the most genet-

ically distant with three base pair differences (Fig. 2).

Two mutations differentiated Haplotypes 3 and 5,

Table 2 Descriptive summary of genetic diversity using COI

data (725 bp fragment length) for Cactoblastis cactorum in its

invasive range in the Caribbean islands

Population N Number of

haplotypes

S p

Nevis 7 1 0 0

Antigua 17 2 3 0.00127

Guanica 39 2 3 0.00094

La Romana 13 2 3 0.00159

Palisadores 11 1 0 0

Santiago de

Cuba

14 3 5 0.00277

Trinidad 15 3 5 0.00189

Pinar del Rı́o 12 2 4 0.00092

Mean 16 2 2.87 0.0094

N, sample size (number of collected larvae) in each location;

Number of haplotypes; S, nucleotide differences among

haplotypes; p, nucleotide diversity
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while only one base pair difference was detected

between Haplotype 3 and CBN (Fig. 2).

In the island of Nevis, where C. cactorum was first

introduced to the Caribbean in 1957, we only detected

one haplotype (Fig. 3), while on the northwestern part

of the actual distribution we found a greater concen-

tration of genetic diversity (Fig. 3). Within Florida we

found the higher diversity of haplotypes followed by

Cuba. Populations in Trinidad and Santiago de Cuba

presented all the haplotypes detected in the region

except for the haplotype CBN only found in the

Atlantic coast of Florida (Fig. 3). Whereas haplotype

5 is more prevalent within populations located in the

Gulf of Mexico and the southern part of the Caribbean,

haplotypes 2, 3 and CBN are more prevalent in the

Atlantic coast of Florida and the north and east part of

the Caribbean (Figs. 2, 3). Results from SAMOVA

revealed the existence of a phylogeographic structure

consistent with the haplotypic network (data shown in

Table 3 for K = 4, Fig. 3). Although significant

components of variation was detected for all possible

number of clusters (1 \ K \ 10), the best one corre-

sponded to K = 4 given that this presented the higher

difference in FCT value with that obtained for K = 3

and K = 5) (K = 3, FST = 0.658, FCT = 0.553,

FSC = 0.234; K = 4, FST = 0.653, FCT = 0.628,

FSC = 0.068; K = 5, FST = 0.638, FCT = 0.635,

FSC = 0.029).

Analyses revealed the presence of insulation among

four genetic groups given that a higher amount of

genetic variation was detected at this level (62.8),

followed by the variation within populations (34.67),

and the variation among populations within groups

(2.53) (Table 3). One group of populations correspond

to those present in the coast of the Gulf of Mexico, Isla

Mujeres (Mexico), Las Tablas (Rep. Dominicana),

and two Cuban populations (Pinar del Rio and

Santiago de Cuba) with a higher frequency of haplo-

type 5 (Fig. 3). The other three groups have higher

frequency of haplotypes 2 and 3 (Fig. 3).The group

formed by populations of Antigua, Atlantic coast

(Florida) and Trinidad (Cuba) present a fairly equal

frequency of haplotypes 2 and 3. Populations of

Palisadores (Jamaica) and Nevis have a clear domi-

nance of haplotype 3 representing the third group

while populations of La Romana (Rep. Dominicana)

and Guanica (Puerto Rico) present a clear dominance

of haplotype 2 representing the fourth group (Fig. 3).

Isolation by distance analysis revealed that geo-

graphic distances marginally accounted for genetic

distances among populations (Mantel test r = 0.214,

P = 0.062). However, considering our hypothesis of

isolation by resistance mediated by hurricanes and

tropical storms improved the correlation between

geographic and genetic distant matrices (Partial Man-

tel test r = 0.246, P = 0.036) (Fig. 3). The absence of

a correlation between the genetic and resistance

matrices (Mantel test r = -0.017, P = 0.553) indi-

cated that hurricanes and tropical storms do not

account alone for the pattern of dispersal in the

Caribbean.

Discussion

Our analyses revealed that the geographic distribution

of genetic variation of the invasive moth, C. cactorum,

Fig. 2 Network of

haplotypes for the

mitochondrial gene

cytochrome oxidase I for

invasive populations of the

cactus moth Cactoblastis

cactorum in the Caribbean.

HP 2, 3 and 5 correspond to

haplotypes describe by

Simonsen et al. (2008) while

CBN correspond to a

haplotype described by

Marsico et al. (2011)
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(using the mitochondrial gene COI) was likely con-

ditioned by spatial patterns of hurricanes and tropical

storms in the Caribbean. The marginally significant

correlation between genetic and geographic distance

among populations was statistically improved when

the effect of hurricanes and tropical storms were

included in the model supporting our isolation by

resistance hypothesis mediated by these environmen-

tal agents. The geographic distribution of haplotypic

variation suggest that despite genetic differentiation

between the Gulf and Atlantic coasts of Florida has

been related to independent events of colonization

promoted by commercial transportation of cacti from

Rep. Dominicana and Puerto Rico (Simonsen et al.

2008; Marsico et al. 2011), hurricanes and tropical

storms also played a role on the occurrence of

independent events of migration to the United States

(Johnson and Stiling 1998). Despite one of the

populations of Rep. Dominicana (Las Tablas) formed

a group with the Florida population in the Gulf coast

and the other Rep. Dominicana population (La

Romana) presented high frequency of the haplotype

that dominates in the Florida population of the Atlantic

coast, Cuban populations were genetically related with

both Florida populations. Given the absence of

commercial and turistic interchange between United

Fig. 3 Geographic distribution of Cactoblastis cactorum hap-

lotypes found in 12 non native locations within the invasive

range in the Caribbean region and Florida (US). Pie sizes

correspond to sample size for each population included in the

analyses. Different colors correspond to different haplotypes.

Haplotypes are labeled following Simonsen et al. (2008) and

Marsico et al. (2011). Dotted lines outline the four groups

obtained in the SAMOVA analysis. The upper right map of the

region indicate the frequency of incidence of hurricanes

following Lugo et al. (2000), see Fig. 1 for more details
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States and Cuba, our results support the hypothesis

that natural dispersal represent an important factor

during the invasion of the cactus moth in the

Caribbean. Thus, it is likely that a combination of

human mediated and natural dispersal explain the

pattern of haplotypic differentiation between the Gulf

and the Atlantic coast of Florida. Still other sources of

dispersion like turistic and commercial transportation

as well as other not explored environmental conditions

should be explicitly examined in future studies.

Although previous studies recorded the effects of

hurricanes on biodiversity, ecosystem functioning and

population dynamics for the Caribbean (Chazdon

2003), we are still far from understanding its conse-

quences on the genetic structure of species in the

region (but see Fleming and Murray 2009; Apodaca

et al. 2013). Genetic data obtained before and after the

occurrence of hurricanes reveal that in some cases they

exert a strong effect reducing genetic variation while

in others, they increase genetic diversity promoting

gene flow and dispersal. Because island species

usually have lower population size and reduced

genetic diversity compared with mainland popula-

tions, hurricanes are likely to reinforce the conse-

quences of genetic drift, inbreeding and founder

effects (Hedrick 2011). To date the role that hurricanes

play upon the genetic structure and dispersal of

invasive species is almost unknown. Our results

revealed that hurricanes likely contributed to the

geographic genetic structure of C. cactorum during the

last 60 years since the invasion in the Caribbean

started. In turn, our results suggest that native species

vulnerable to hurricane effects would also express a

similar phylogeographic structure following an east-

west pattern and the presence of at least two insulation

groups according to major hurricane spatial patterns

(Hedges 1996). To our knowledge this is one of the

first attempts to show an association between hurri-

cane tracks and dispersal patterns in an invasive

species.

In general, higher genetic diversity is usually found

within areas were invasive species first established

after migration (Avise 2000). In contrast, our results

indicated an east-west pattern of reduction in genetic

diversity. This pattern parallel the history of dispersion

within the region and the observed reduction in the

population size of the host cacti in the islands were C.

cactorum first arrived (Nevis) (Pemberton and Liu

2007; Zimmermann et al. 2007), suggesting that, as

the moth reduces the population size of its local hosts,

it becomes exposed to increasing levels of genetic

drift. However, the pattern of isolation by distance

indicated a mutation–migration–drift balance, sug-

gesting that reduced haplotypic diversity in older

colonized sites would not exert a significant effect on

the spatial distribution of genetic variation. Given that

the molecular marker expressed low levels of genetic

variation, this may have increased the signal of genetic

drift in the analyses. Further analyses are now being

conducted to demonstrate the existence of a pattern of

reduced genetic drift following the east-west increase

in genetic diversity using more variable molecular

markers. In addition, since this east-west pattern of

reduction in genetic diversity of populations is con-

sistent with directionality of hurricanes and tropical

storms within the region these natural disturbances

may affect other native species as well.

Finally, since Cuba constitute a reservoir of genetic

variation within the region and a natural corridor

toward the continent, the occurrence of future inva-

sions to the nearest continental areas of Florida and the

Yucatan Peninsula (Mexico) impacted by hurricanes

should be permanently monitored. In particular,

locations near the coast inhabited by cacti species. If

hurricanes affect genetic variation and dispersal of

invasive species in the Caribbean, these effects should

be considered in future risk assessments of biological

invasions within this tropical region. In addition, as

hurricanes could strongly affect dispersal patterns,

future authorizations of new introductions for

Table 3 Analysis of molecular variance (AMOVA) using COI

data for the four groups of populations of Cactoblastis cacto-

rum in the Antillean islands and Florida detected by SAMOVA

(see ‘‘Results’’)

Source of variation df Sum of

squares

Percentage

of variation

Fixation

indices

Among groups (FCT) 3 150.083 62.80 0.627

Among

populations

within groups (FST)

8 8.449 2.53 0.653

Within populations

(FSC)

230 112.629 34.67 0.068

Total 241 271.261

Fixation indices corresponded to the SAMOVA model for

K = 4. All variance components were significantly different

from zero (P \ 0.0001) after 1,023 permutations
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biological control in the Caribbean requires a coordi-

nated international policy at a regional scale to avoid

side negative effects as those recorded for C. cactorum

(Zimmermann and Pérez-Sandi 2006).
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