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PACS 75.20.Hr – Local moment in compounds and alloys; Kondo effect, valence fluctuations,
heavy fermions

PACS 68.37.Ef – Scanning tunneling microscopy (including chemistry induced with STM)
PACS 73.20.-r – Electron states at surfaces and interfaces

Abstract – We study theoretically a square lattice of the organometallic Kondo adsorbate iron(II)
phtalocyanine (FePc) deposited on top of Au(111), motivated by recent scanning tunneling mi-
croscopy experiments. We describe the system by means of an effective Hubbard-Anderson model,
where each molecule has degenerate effective d-orbitals with xz and yz symmetry, which we solve
for arbitrary occupation and arbitrary on-site repulsion U . To that end, we introduce a gener-
alized slave-boson mean-field approximation (SBMFA) which correctly describes both the non-
interacting limit (NIL) U = 0 and the strongly interacting limit U → ∞, where our formalism
reproduces the correct value of the Kondo temperature for an isolated FePc molecule. Our results
indicate that while the isolated molecule can be described by an SU(4) Anderson model in the
Kondo regime, the case of the square lattice corresponds to the intermediate-valence regime, with
a total occupation of nearly 1.65 holes in the FePc molecular orbitals. Our results have important
implications for the physical interpretation of the experiment.

Copyright c© EPLA, 2015

The advances in nanotechnology and the degree of
control of different parameters in systems with strongly
interacting electrons provide a rich and challenging field
for the theoretical understanding of strongly correlated
materials, and for future applications in spintronics and
quantum information [1]. The strong repulsion between
3d electrons in the 3d series of transition-metal atoms
(TMAs) has led to the observation of the Kondo effect in
several systems in which these atoms [2–4] or molecules
containing them [5–11] are absorbed on noble-metal sur-
faces. In its simpler form, the Kondo effect arises when a
TMA has a (nearly) integer occupation of an odd number
of electrons and spin 1/2, and this spin is “screened”
by a cloud of conduction electrons in the metal, building
a many-body singlet ground state. As a consequence,
a narrow Fano-Kondo antiresonance (FKA) appears in
the differential conductance in scanning tunneling spec-
troscopy (STS) experiments. More exotic Kondo effects
involving even occupation and spin 1 [12,13], and orbital
degeneracy [10,14,15] were also observed. In particular,
it has been shown that STS for a system consisting on
a single iron(II) phtalocyanine (FePc) molecule (see the

inset of fig. 1) deposited on top of clean Au(111) (in the
most usual “on-top” configuration) can be explained in
terms of an effective SU(4) impurity Anderson model [10].
The four degrees of freedom correspond to the intrinsic
spin-(1/2) degeneracy times twofold degeneracy between
molecular orbitals with the same symmetry as the 3dxz

and 3dyz states of Fe, where z is the direction perpendic-
ular to the surface. The Kondo model is the odd-integer
valence limit of the impurity Anderson model, in which
localized electrons (like those of the 3d shell of a TMA)
are hybridized with a conduction band.

Experiments in which an array of effective “impurities”
(TMAs or molecules containing TMAs) are deposited on
metal surfaces constitute a further challenge to the theory
because they should be described by the periodic Ander-
son model, for which neither exact solutions nor accurate
treatments, like the numerical renormalization group, ex-
ist. Tsukahara et al. studied the STS of a square lattice
of FePc molecules on Au(111) [8]. They observed a split-
ting of the FKA near the Fermi level. A first hint to
the correct description of the system came soon when the
corresponding experiments for an isolated FePc molecule
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could be well described by the effective SU(4) impurity
Anderson model [10]. A natural step to construct a lat-
tice model is to introduce an effective hopping between
the molecules, which leads to a two-band Hubbard model
when the hybridization Hmix with the metallic states is ne-
glected. When Hmix is included, one obtains an orbitally
degenerate Hubbard-Anderson model. Lobos et al. [16]
derived this model and solved it using a slave-boson mean-
field approximation (SBMFA) for infinite on-site repulsion
U [17]. These authors were able to reproduce the observed
splitting of the FKA, which in simple terms can be inter-
preted as arising from split van Hove singularities due to
the anisotropic hopping terms in the Hubbard part of the
model.

However, there are several indications that the theory
needs to be improved in order to reproduce the experi-
mental details. For instance, the energy necessary to add
the first hole Ed ≈ −0.1 eV (see eq. (1)) was estimated
from ab initio calculations in the local density approxi-
mation (LDA), which obtained spectral density of Fe 3dxz

and 3dyz states 0.1 eV above the Fermi energy ǫF , which
we set as the origin of energies (ǫF = 0). However, as
described below, more accurate LDA+U calculations es-
timate Ed ≈ −1.6 eV. Since the value U = 1.8 eV was
estimated [10], Ed + U is small and in principle double
occupancy of holes cannot be neglected contradicting the
assumptions in ref. [16] (the hole occupancy is between
1 and 2). In addition, that theory does not allow to ob-
tain the position of the split dips in the FKA at the same
position as in the experiment, and an ad hoc voltage (hor-
izontal) shift in the differential conductance dI/dV was
necessary to fit the experiment. While a shift in dI/dV
(vertical) might be expected due to uncertainties in the
background contribution due to conduction electrons, a
voltage shift is more difficult to justify. As a comparison,
for a Co atom on Au(111) a SBMFA of the SU(2) impurity
Anderson model provides an excellent fit of the observed
dI/dV without the need of a voltage shift [18].

The above discussion shows the need of accounting for
a finite U and multiple occupancy at the impurity sites.
Kotliar and Ruckenstein originally implemented this idea
within the SBMFA [19], which was later generalized for
orbitally degenerate systems [20–22], and constitutes a
very successful tool for describing highly correlated sys-
tems [23–25]. However, as we show below, this approach
does not lead to the correct Kondo temperature for an
isolated molecule in the Kondo regime.

In this work we study the orbitally degenerate Hubbard-
Anderson model as an effective model to describe a square
lattice of FePc molecules on Au(111), for realistic pa-
rameters derived from the LDA+U . We construct a
SBMFA that gives the correct Kondo temperature for one
FePc molecule, and also reproduces very accurately the
non-interacting limits (NILs) U = 0, for both the impu-
rity and the lattice cases. Although physically we expect
U to be rather large (i.e., approx. 1.8 eV), reproducing
the exactly solvable NIL constitutes an important “san-

ity check” for the entire formalism and is important when
multiple occupancies cannot be neglected. To the best
of our knowledge, this is a novel theoretical development
which improves over previous SBMFAs for orbitally de-
generate correlated systems [20–22]. We also stress that
the formalism presented here is in principle generic and
applicable beyond the case of FePc/Au(111) molecules.

Our method allows for quantitatively accurate fits of the
experimental dI/dV , both for the isolated molecule and
for the square lattice. The fitting procedure allows to ex-
tract the parameters of our model. From here we conclude
that while the single FePc molecule is in the Kondo limit,
the lattice of FePc molecules is in the intermediate-valence
regime.

The Hamiltonian was derived in ref. [16]. We refer the
reader to that work for details. It can be split into three
parts. Hmol is a degenerate Hubbard model that describes
the effective molecular states and the hopping between
them, Hc contains the conduction states, and Hmix is the
coupling between molecular and conduction states:

H = Hmol + Hc + Hmix,

Hmol =

N
∑

ij

[

−
∑

σ,ν

(

t2h
ν†
rij ,σhν

rij±aν ,σ + t1h
ν̄†
rij ,σhν̄

rij±aν ,σ

)

+Ednrij
+

U

2
nrij

(

nrij
− 1

)

]

,

Hc =

N
∑

ij

∑

ξσν

ǫξc
ν†
rij ,ξ,σcν

rij ,ξ,σ,

Hmix = V

N
∑

ij

∑

ξσν

(

hν†
rij ,σcν

rij ,ξ,σ + H.c.
)

. (1)

The operators hν
rij ,σ annihilate a hole (create an elec-

tron) in the state |νrij ,σ〉, where ν = (x, y) denotes one
of the two degenerate molecular states with spin σ at site
with position rij = ia1 + ja2 of the square lattice, with
ai the Bravais lattice vectors in the directions x and y,
respectively. For simplicity we denote as x and y the or-
bitals with symmetry xz and yz. The operator for the
total number of holes at the molecule lying at site rij is
nrij

=
∑

σν nν
rij ,σ, with nν

rij ,σ = hν†
rij ,σhν

rij ,σ. The mean-
ing of ν̄ is x̄ = y, and ȳ = x. The hopping t2 between x (y)
orbitals in the x (y) direction is larger than the hopping
t1 between x (y) orbitals in the y (x) direction.

Hc corresponds to a band of bulk and surface conduc-
tion electrons of the substrate. The operator crij ,ξ,σ anni-
hilates a conduction hole with spin σ and quantum number
ξ at position rij . Note that the form of Hmix and Hc as-
sumes that the molecular states of each Hubbard site rij

is hybridized with a different conduction band. This is an
approximation which is valid if the distance between the
Hubbard sites is R ≫ 1/kF , with kF the Fermi momen-
tum of the metallic substrate [26–28], as it is the case in
our problem. In other words, the molecular states are well
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separated and if the hopping between them is neglected,
the system behaves as dilute system of impurities.

We use the subscript η to denote any of the four states
at each site (x ↑, x ↓, y ↑, y ↓). The basic idea of the SB
approach is to enlarge the Fock space to include bosonic
states which correspond to each state in the fermionic
description. For example, the vacuum state at site i is
now represented as e†i |0〉, where e†i is a bosonic opera-

tor corresponding to the empty site; similarly s†iηf†
iη|0〉

represents the simply occupied state with one hole with
“color” η, d†iη1η2

f†
iη1

f†
iη2

|0〉 corresponds to a state with
double occupancy and similarly for triple and quadruple
hole occupancy (we denote the bosons as t†iη1η2η3

and q,
respectively). The fermion operators entering eq. (1) in
the new representation are given by

h†
rij ,η = zrij ,ηf†

rij ,η, (2)

z0

rij ,η = s†
rij ,ηerij

+
∑

η1

d†iη1ηsrij ,η1

+
∑

η1<η2

t†iη1η2ηdrij ,η1η2
+ q†trij ,η1η2η3

, (3)

where all ηi �= η and where we assume zrij ,η = z0
rij ,η for

the moment. The bosonic operator z0
rij ,η corresponds to

the creation of the fermion η at site rij , in the bosonic
sector of the Hilbert space.

To restrict the bosonic Hilbert space to the physical
subspace, the following constraints must be satisfied at
each lattice site (in what follows we drop the site index
rij for simplicity):

1 = e†e +
∑

η

s†ηsη +
∑

η1<η2

d†η1η2
dη1η2

+
∑

η1<η2<η3

t†η1η2η3
tη1η2η3

+ q†q,

h†
ηhη = s†ηsη +

∑

η1 �=η

d†ηη1
dηη1

+
∑

η1<η2 �=η

t†ηη1η2
tηη1η2

+ q†q. (4)

The interaction term in eq. (1) can be written as

HU = U

(

∑

η1<η2

d†η1η2
dη1η2

+ 3
∑

η1<η2<η3

t†η1η2η3
tη1η2η3

+ 6q†q

)

. (5)

The advantage of the SB representation is that using
eq. (5) in the saddle-point approximation, in which all
bosonic variables are replaced by numbers, the problem
is reduced to a non-interacting one, in which the values
of the bosons are obtained minimizing the free energy. A
shortcoming of this procedure is that using eqs. (2), (3),
the exactly solvable NIL U = 0 is not recovered after per-
formingthe mean-field approximation (MFA). In this limit,

all bosonic numbers become independent of position rij

and color η, they can be chosen real and positive and for a
total fermion occupation n = 〈nrij

〉, calling p = n/4, one
has e2 = (1 − p)4 (probability of finding an empty site),
s2 = p(1−p)3, d2 = p2(1−p)2, t2 = p3(1−p) and q2 = p4.
This leads to z0

iη = [p(1−p)]1/2, while the correct result is

z0
η = 1 for U = 0. To remedy this problem for the SU(2)

case, Kotliar and Ruckenstein have replaced the z0
iη oper-

ator for another one ziη which is equivalent to z0
iη in the

restricted Hilbert space, but when evaluated in the MFA
for U = 0 gives zη = 1 [19] They have shown that with
this correction, the SBMFA is equivalent to the Gutzwiller
approximation. This procedure was generalized for an ar-
bitrary number M of colors [20–22]. For M = 4 we can
write (dropping again the site indices for simplicity)

zη = O
−1/2

ηL z0

η O
−1/2

ηR , (6)

OηL = 1 − A4 e†e − A3

∑

η1 �=η

s†η1
sη1

−A2

∑

η1<η2 �=η

d†η1η2
dη1η2

− A1 t†η1η2η3
tη1η2η3

, (7)

OηR = 1 − A1 s†ηsη − A2

∑

η1 �=η

d†ηη1
dηη1

−A3

∑

η1<η2 �=η

t†ηη1η2
tηη1η2

− A4 q†q, (8)

where in eq. (7) all ηi �= η. We have written the coefficients
Aj in eqs. (7), (8) so that the formalism is electron-hole
symmetric, giving the same zη for occupation n and 4 − n.
Note that z0

η gives a non-vanishing result on states which
do not contain η, while all terms of eq. (8) except the first

do contain this particle. Therefore z0
ηO

−1/2

ηR = z0
η. Simi-

larly, since z0
η creates this particle in the bosonic language,

and all terms except the first in eq. (8) project over states

which do not contain it, O
−1/2

ηL z0
η = z0

η. Then zη = z0
η

in an exact treatment. However this is no more true in
the MFA. Choosing Aj = 1, the second of eqs. (4) gives
〈OηR〉 = 1− p, and by electron-hole symmetry 〈OηL〉 = p.
This implies 〈zη〉 = 1 for U = 0 recovering the correct NIL
in the SBMFA for any occupation.

Nevertheless, the widely used choice Aj = 1 leads to an
incorrect Kondo temperature TK for the impurity case in
the limit U → +∞. From exact Bethe ansatz results, the
Kondo temperature in this limit for the SU(N) Anderson
model is (except for a factor of the order of 1 that depends
on the way in which it is defined) [29]

TK ≃ D exp

(

πEd

N∆

)

, (9)

where a constant density of conduction states ρ per color
(spin and symmetry) extending from −D to D and the
Kondo regime −Ed ≫ ∆ are assumed, with ∆ = πρV 2.
The problem is reduced to an effective one-fermion model,
in which the hybridization term is reduced by the factor
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〈ziη〉 = z, the term HU is added, and the constraints of
eqs. (4) should be added. Using the first constraint one
can eliminate one of the bosons, and the second one is
taken into account by introducing a Lagrange multiplier
λ, leading to an effective impurity level at Ẽd = Ed + λ.
The Green function of the pseudofermions is

Gf
η(ω) = (ω − Ẽd + i∆̃)−1, (10)

where ∆̃ = z2∆ is one of the definitions used for TK . The
change in energy due to the impurity becomes [29]

E =
1

π

[

−4∆̃ + 2∆̃ ln

(

Ẽ2

d + ∆̃2

D2

)

+4Ẽd arctan

(

∆̃

Ẽd

)]

− 4λ(s2 + 3d2 + 3t2 + q2) + 6U(d2 + 2t2 + q2).

(11)

For U → +∞, one has d = t = q = 0, and one can use
e2 = 1−4s2 (from eq. (4)). The condition ∂E/∂λ = 0 gives
Ẽd = ∆̃ cot(πs2) and minimizing eq. (11) with respect to
s one obtains

2∆

π

∂z2

∂s
ln

(

Ẽ2

d + ∆̃2

D2

)

+ 8sEd = 0. (12)

In the Kondo limit, −Ed ≫ ∆, the total occupation
n → 1, and then s → 1/2 and eq. (12) gives

∆̃ =
D√
2

exp
πEd

C∆
, C = −∂z2

∂s

∣

∣

∣

s=1/2

. (13)

In order for this equation to be consistent with eq. (9),
minus the derivative of z2 evaluated at s = 1/2 should be
C = N = 4. Using eqs. (3), (6), (7), and (8), and taking
A4 = 1 (to have a finite z for n → 0) one obtains

z2 =
1 − 4s2

(4 − 3A3)(1 − A1s2)
, U → +∞, (14)

C =
16

(4 − 3A3)(4 − A1)
. (15)

Thus, using Aj = 1 leads to an incorrect exponential de-
pendence of TK on Ed for U → +∞. To remedy this, we
modify the coefficients Aj so that the condition C = 4
is satisfied, and at the same time we try to recover the
NIL U = 0 as accurately as possible. To reproduce the
NIL for n = 4p → 0, in which e2 ≃ 1 − 4p, s2 ≃ p, and
the rest of the bosons can be neglected, we must choose
A4 = A3 = 1. This gives OηR = p (see eq. (8)) and com-
pensates the factor

√
p of z0, while OηL → 1. Then, the

condition C = 4 implies A1 = 0. To determine the re-
maining coefficient we impose that the NIL for n = 1 is
also recovered. This leads to a quadratic equation for A2.
Its solution nearest to 1 gives A2 = 1.3185. Note that be-
cause of electron-hole symmetry, z = 1 also for n = 3 and
n → 4. We have represented the resulting z as a function
of n for U = 0. It is a very flat function with a value

near 1, and the maximum deviation is at n = 2 for which
z = 0.989. Therefore, our SBMFA reproduces accurately
not only the Kondo limit for one impurity at large U , but
also the NIL in the general case. Another possibility to
optimize the Aj is to relax the correct NIL for n → 0
and n → 4 and to ask that the formalism captures the
correct Kondo temperature TK ≃ D exp[−πU/(16∆)] for
Ed = −3U/2 such that the system is in the electron-hole
symmetric case (with n = 2) for large but finite U . This
condition would imply A2 = 2 ±

√

3/2. However, for re-
alistic parameters (as described below) this estimate gives
TK ≃ 5× 10−7 K which is too small, indicating that these
values of Ed are not realistic. Thus, we keep the values of
Aj described above.

The differential conductance G(Vb) = dI/dVb measured
in STS experiments, is a non-equilibrium process in which
the conduction states of the tip of the scanning-tunneling
microscope at a bias voltage Vb hybridizes with a linear
combination lrij

of molecular and conduction states. This

amounts to adding a perturbation Vt

∑

k(t†klrij
+ H.c.) to

the Hamiltonian, where tk refers to the tip states and
lrij

= α
[
∑

η(crij ,η + qhrij ,η)
]

, where α is a normalization
constant. In the limit in which Vt is small, G(Vb) is propor-
tional to the density of states ρl(eVb) of the states lrij

at
the position rij of the tip [18,30]. Here q controls the ratio
of the hybridization of the tip with the molecular states
with respect to the corresponding value for the conduction
states (this interference is the physical origin of the Fano
effect). Once the Green function of the molecular states
Gh

rijη(ω) = z2
rij ,ηGf

rij ,η(ω) (see eq. (10) for the impurity
case) is obtained from the SBMFA, ρl(ω) = −Im[Gl(ω)]/π
is given by a simple expression obtained using equations
of motion [18]. One has

Gl
rij

(ω) =
∑

η

[G0c
rij ,η(ω) + (V G0c

rij ,η(ω) + q)2Gf
rij ,η(ω)],

(16)
where G0c

rij ,η is the Green function of the conduction states
before adding the molecules (we take that corresponding
to a constant density of states ρ = 1/(2D) extending from
−D to D).

According to the estimations of LDA+U (see supple-
mental material of ref. [10]), for an isolated FePc molecule
on Au(111), U = 1.84 eV and the energy of the localized
molecular orbital is E0 = −3.91 eV. Therefore, the energy
necessary to add the first hole on a molecular orbital is
Ed = −(E0 + 3U) = −1.61 eV. In the rest of this work we
take U = 1.8 eV and for this system we take Ed = −1.6 eV
(for the square lattice of FePc molecules we modify Ed

as described below). We have chosen D = 3.65 eV and
ρ = 1/(2D). However, the relevant parameter which con-
trols the hybridization is the product ∆ = πρV 2, while the
spectral density of the molecular states, as well as ρl(ω)/ρ0

depend very weakly on D.
To describe the case of a single FePc molecule, we take

∆ and q as fitting parameters. The resulting ρl(ω), except
for an additive constant, is proportional to the observed
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Valence fluctuations in a lattice of FePc molecules

Fig. 1: (Color online) Change of the spectral density of the
operator sensed by the STM tip l (see text) as a function of
frequency for an isolated FePc molecule. The circles correspond
to 3.1G(ω/eV )−2.5, where G in arbitrary units was taken from
fig. 3(a) of ref. [10]. Parameters are U = 1.8 eV, Ed = −1.6 eV,
Δ = 11 meV and q = −0.03. The inset shows a scheme of the
FePc molecule.

G. In fig. 1 we represent the change ∆ρl(ω) in ρl(ω) after
addition of the impurity (last term in eq. (16)) which
should be proportional to the change in G, and is less
sensitive to the details of the conduction band. From the
fit we obtain ∆ = 11meV and q = −0.03. Note that the
agreement with experiment near the Fermi energy is very
good. It is certainly better than the comparison between
two different experimental realizations (figs. 3(a) and (b)
of ref. [10] for zero magnetic field). For the parameters of
our fit, we obtain a total occupation of 1.01 holes (2.99
electrons) in the molecular states. The total probability
of double hole occupancy is 1.3% and that of having no
holes (4 electrons) is 0.14%. Therefore, we conclude that
the single FePc molecule is in the Kondo regime. These
results agree with those of Minamitani et al. [10] who used
the numerical-renormalization group to interpret the ex-
periments. However, those authors did not attempt to fit
the experiment.

To model the square lattice of FePc molecules on
Au(111), we need to introduce the intermolecular hop-
ping elements ti. We assume t2/t1 = 3 as estimated pre-
viously [16]. The SBMFA again reduces the problem to
an effective non-interacting one. The latter has the same
form as that explained in the supplemental material of
ref. [16], but in our case a finite U is used and there-
fore the quasiparticle weight z2

rij ,η is different and given
by eqs. (3), (6), (7), and (8) with A1 = 0, A2 = 1.3185,
and A3 = A4 = 1 as described above. Although for the
lattice, the model is not SU(4) symmetric, the effective

Fig. 2: Same as fig. 1 for a square lattice of FePc molecules.
The circles correspond to 0.28G(ω/eV )− 0.7, where G in arbi-
trary units was taken from ref. [8]. Parameters are U = 1.8 eV,
Ed = −1.828 eV, Δ = 11 meV t1 = 7.5 meV, and q = −0.006.

non-interacting problem retains this symmetry [31] and in
the homogeneous SU(4) symmetric solution zrij ,η = z in-
dependent of site, spin and orbital. In order to compare
with the experimental results for the square lattice [8],
we retain the same values of U and ∆ as for the impu-
rity case, and use t1, q and Ed as fitting parameters. q
depends on the distance from the STM tip to molecules
and the surface and therefore one expects that it is dif-
ferent from the one-molecule case. Concerning Ed since
the molecules are negatively charged as they are placed
on the surface [10,32], one expects that Ed lowers for the
lattice due to interatomic repulsion, since holes are sta-
bilized. This agrees qualitatively with our findings. The
quantitative aspects will be discussed below.

The resulting change in the spectral density sensed by
the STM tip is shown in fig. 2. From the fit we obtain
t1 = 7.5meV, q = −0.006 and Ed = −1.828 eV. The
latter is a surprising result since Ed + U = −28meV has
become slightly negative, favoring double occupancy but
the system is in the intermediate-valence regime, because
this energy is of the order of ∆ = 11meV. This value of
Ed is imposed by the position in voltage of the observed
differential conductance. Higher values of Ed increase the
electron occupation and shift the structure to the left. For
the parameters of fig. 2 we obtain a total occupancy of 1.65
holes (2.35 electrons). The total single hole occupancy is
0.34, the total probability of double hole occupancy is 0.65,
and other states can be neglected.

The drastic change in the charge of the molecular xz
and yz orbitals is surprising. We should note that first-
principle studies of the charges for isolated FePc [10,32]
and CoPc [33] on Au(111) indicate that in addition to
these orbitals, also the 3d orbitals of the TMAs with
symmetry 3z2 − r2 are partially occupied. Nevertheless,
Minamitani et al. showed that the spin of these orbitals
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is screened in a first-stage Kondo effect at higher energy
and that an effective model containing only xz and yz
orbitals as the localized ones describes the low-energy
physics [10]. When an isolated FePc molecule is placed
on the metal surface, a partial transfer of electrons takes
place from the metallic states and also from the xz and
yz orbitals to the 3z2 − r2 [32]. Our results suggest that
the latter charge transfer is enhanced for a lattice of FePc
molecules on Au(111). The intra-atomic inter-orbital re-
pulsion should favor this procedure, since a larger charge
in the 3z2 − r2 orbital increases the energy for occupying
xz and yz orbitals. These arguments suggest that a more
general model that includes 3z2−r2 localized states might
explain the change in the occupancy of xz and yz orbitals.

In summary, we have studied an array of FePc molecules
deposited on top of Au(111), described by an effective
Hubbard-Anderson model with degenerate effective or-
bitals with xz and yz symmetry. To that end, we have
introduced a generalized slave-boson mean-field approxi-
mation (SBMFA), which correctly describes both the non-
interacting (U = 0) and the strongly interacting (U → ∞)
limits. This is an important improvement over previ-
ous formulations of the SBMFA for strongly correlated
orbitally degenerate systems, which fail to describe the
Kondo limit. We stress that our method is generic and
has applications beyond the present case of FePc/Au(111).
Our results indicate that while the isolated FePc molecule
can be described by an SU(4) Anderson model in the
Kondo regime, the case of the square lattice corresponds
to the intermediate-valence regime, with a total occupa-
tion of nearly 1.65 holes in the FePc molecular orbitals.
This conclusion is imposed by the position in voltage of
the double-dip structure observed in dI/dV and is inde-
pendent of the details of the parameters. We believe that
the shift in Ed is partly due to intermolecular repulsion,
but it might also indicate a redistribution of charge among
the Fe 3d electrons that is beyond our effective model.
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