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Summary

• Vascular wetland plants may substantially increase methane emissions by

producing root exudates and easily degradable litter, and by providing a

low-resistance diffusion pathway via their aerenchyma. However, model studies

have indicated that vascular plants can reduce methane emission when soil oxygen

demand is exceeded by oxygen released from roots. Here, we tested whether

these conditions occur in bogs dominated by cushion plants.

• Root–methane interactions were studied by comparing methane emissions,

stock and oxygen availability in depth profiles below lawns of either cushion plants

or Sphagnum mosses in Patagonia.

• Cushion plants, Astelia pumila and Donatia fascicularis, formed extensive root

systems up to 120 cm in depth. The cold soil (< 10�C) and highly decomposed

peat resulted in low microbial activity and oxygen consumption. In cushion plant

lawns, high soil oxygen coincided with high root densities, but methane emissions

were absent. In Sphagnum lawns, methane emissions were substantial. High

methane concentrations were only found in soils without cushion plant roots.

• This first methane study in Patagonian bog vegetation reveals lower emissions

than expected. We conclude that cushion plants are capable of reducing methane

emission on an ecosystem scale by thorough soil and methane oxidation.

Introduction

Effects of vascular plants on methane cycling in wet
soils

Wetlands are favourable habitats for methanogenic archaea
that form methane during the decomposition of organic
material. These methanogens require environments with no
oxygen and abundant organic matter, both of which are
present in wetland conditions (Segers, 1998). Peatlands
dominated by Sphagnum mosses (bogs) are known for the
slow decomposition of dead organic matter. The refractory
nature of Sphagnum litter is mainly responsible for this slow

decomposition, as other plants, including typical bog spe-
cies, decompose much more rapidly than mosses (Aerts
et al., 1999; Woodin et al., 2009). Therefore, if nutrient
availability permits the dominance of vascular plants, the
potential production of methane is strongly increased by a
high production of vascular plant biomass, which results in
an increased input of more easily decomposable litter
(Whiting & Chanton, 1993; Joabsson & Christensen,
2001). Underground vascular plant tissue can also transport
labile carbon compounds into anoxic soil layers (Joabsson
& Christensen, 2001; Ström et al., 2003; Chanton et al.,
2008). Such increased substrate stocks for methanogenic
archaea may be crucial because methane production is
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frequently substrate limited (reviewed in Whalen, 2005).
Moreover, aerenchymatous roots can strongly stimulate the
export of methane by creating shortcuts to the atmosphere
(van der Nat & Middelburg, 1998; Kutzbach et al., 2004;
Whalen, 2005).

The presence of roots, however, may also decrease the
release of methane. Oxygen diffuses through the aerenchyma
of vascular plants from the atmosphere into the roots and
subsequently leaks into the rhizosphere (Armstrong et al.,
1991, 2006). Under such oxic rhizosphere conditions, meth-
ane production can be reduced by two orders of magnitude
(reviewed in Segers, 1998). In addition, when oxygen is pres-
ent, methane stocks can be decreased by oxidation via
methanotrophic bacteria (King, 1994; Sorrell et al., 2002;
Raghoebarsing et al., 2005). The passage through a thick
aerobic soil–atmosphere interface (i.e. 3–20 cm of aerobic
soil) can thus oxidize most of the methane (Roulet et al.,
1993; Daulat & Clymo, 1998; Hornibrook et al., 2009).
Our study investigated methane release from bog lands that
have high root densities, and provides evidence that certain
wetland ecosystems do not produce nearly as much methane
as do most temperate and tropical wetlands.

The extent to which the rhizosphere can become aerated
depends on various conditions: root density, rate of oxy-
gen loss from the roots, soil oxygen consumption and the
diffusion coefficient of oxygen in the soil. Under most con-
ditions, the combination of high oxygen consumption
(high temperature, suitable substrate and high microbial
activity) and limited oxygen release (limited oxygen conduc-
tion capacity and low root density) will result in a very thin
oxic rhizosphere. Therefore, in wetland soils, a large fraction
of the substrate surrounding a root remains anoxic despite
root oxygen loss (Armstrong et al., 1991, 1992). Such
incomplete oxidation of organic soils promotes the coexis-
tence of roots and methane (Grosse et al., 1996), ultimately
resulting in increased emission of methane (Watson et al.,
1997; Ding et al., 2005).

Depending on the type of vegetation, the potential to
lower methane emission by the creation of oxic soil condi-
tions varies from 16% to 95% (Laanbroek, 2009).
Extensive rhizospheric oxidation requires a dense root bio-
mass (Grosse et al., 1996; Smolders et al., 2002), which, in
turn, provides extra carbon for methane production.
However, many studies ignore such additional methane
production fuelled by plant litter and root exudates when
estimating the oxidation potential of the rhizosphere. The
root–methane interaction model of Watson et al. (1997)
required high root biomass to find considerable methane
oxidation. Only thorough rhizospheric oxidation created a
sufficiently large spatial separation of roots from methane to
prevent aerenchyma-mediated diffusion (Grosse et al.,
1996). Methane emissions can become temporarily decou-
pled from vascular plant cover when the water levels are low
(Bubier, 1995; Couwenberg et al., 2010). At these dry sites,

the water table drops below the bulk root mass, so that
methane is oxidized before being released via plants.

In essence, the large majority of studies show that vascu-
lar plants increase methane release from wetlands (Whiting
& Chanton, 1993; Waddington et al., 1996; Kutzbach
et al., 2004; Bortoluzzi et al., 2006). Estimations reveal that
approximately one-third of global methane emission derives
from wetlands, where minerotrophic wet peatlands and
marshes dominated by vascular plant vegetation are the
most important sources (Whiting & Chanton, 1993;
Saarnio et al., 2009; Koelbener et al., 2010). Bypassing the
aerobic soil–atmosphere interface will be the main cause for
high, vascular plant-mediated emission rates. Via their aer-
enchyma, higher plants can conduct 50–95% of the total
methane emission (Ding et al., 2005; Whalen, 2005).

Global climate change leading, for instance, to nutrient
availability and changes in soil wetness is believed to increase
the vascular plant cover in peatlands (Johansson et al., 2006;
Breeuwer et al., 2010), which substantially feeds back to
methane cycling in wetlands (see the first two paragraphs of
the Introduction). However, the importance of particular
plant species in methane cycling remains highly variable
(Joabsson et al., 1999; Laanbroek, 2009). Part of this varia-
tion can be explained by the varying dominance of plant
functional types as shown in recent studies (Bouchard et al.,
2007; Kao-Kniffin et al., 2010; Koelbener et al., 2010).
Plant functional types (reviewed in Ustin & Gamon, 2010)
may efficiently combine differences in traits, such as litter
production, root density and oxygenation potential (Sorrell
et al., 2001; Allen et al., 2002; van Bodegom et al., 2005;
Bouchard et al., 2007). The functional type ‘cushion plant’
(cf. Gibson & Kirkpatrick, 1985) has not been studied with
respect to methane, despite its importance in forming
peatlands in the Southern Hemisphere.

We hypothesized that in, vascular plant-dominated wet-
lands, methane release may be decreased or even absent if the
soil is thoroughly oxidized by extensive rhizosphere oxygen
loss. In search of such wetlands, we targeted methane-producing
wetlands (e.g. deep bogs) where oxygen consumption is low.
The rainy cold parts of Patagonia harbour pristine bogs with
very few nutrients (Kleinebecker et al., 2008; Schmidt et al.,
2010). Darwin (1839) described bogs in Patagonia with deep
rooting plants growing as dense cushion-like vegetation that
formed extensive blanket bogs. Cushion plants, such as
Astelia ssp. and Donatia ssp., form dense root systems consist-
ing of shallow tap roots and aerenchymatous roots of
> 100 cm in length (Darwin, 1839; Grootjans et al., 2010).
Our objective was to elucidate whether these roots negatively
affected methane emission by comparing densely rooted sites
with sites covered only by moss species (Sphagnum ssp.).
Interactions of roots with soil methane cycling were studied
by correlating the vertical distribution of methane stock,
oxygen availability and methane oxidation potential with the
root biomass density of cushion plants.
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Materials and Methods

Sampling design and description of experimental sites

The effects of roots on methane (CH4) were studied by
comparing methane dynamics in different bog vegetation in
southernmost Patagonia: cushion plant lawns in a cushion
bog (high root biomass); Sphagnum magellanicum lawns
adjacent to the cushion plant lawns mentioned above (non-
rooted sites in a system dominated by roots); Sphagnum
magellanicum lawns in a control bog with a cover of vascular
plants less than 1% (nonrooted sites in a system with only a
few roots). Each type was represented by three replicates. In
addition, we included two pools surrounded by cushion
plants, but without roots in the soil, to estimate methane
emissions independent from atmospheric oxygen (oxida-
tion) and roots (gas transport).

Field measurements and experiments were performed in
a cushion bog peatland in Tierra del Fuego (Moat, 54�58¢S;
66�44¢W, 40 m asl) where average daily air temperatures
are 5–6�C with cold summers (maximum average tempera-
ture, 9�C; R. Iturraspe & C. Fritz, unpublished). July is
usually the coldest month at 2�C. The absence of a thermal
summer is typical for oceanic bogs in Patagonia
(Kleinebecker et al., 2007 and literature therein). The con-
trol bog (Andorra, 54�45¢S; 68�20¢W, 200 m asl) shows
slightly higher daily and seasonal temperature differences
during the summer because of its location at a valley bottom
(Iturraspe et al., 1989). The soil temperature was low and
stable at both bogs throughout the growing season, decreas-
ing from 8 to 12�C at 5 cm below the surface to 4–8�C at
100 cm depth. Soil temperature profiles were recorded dur-
ing expeditions in spring 2006 and summer 2007. Annual
precipitation assessed in the 1980s and from 2008 onwards
exceeded 60 cm, evenly distributed over the year in both
peatlands, providing wet conditions (Iturraspe et al., 1989;
R. Iturraspe & C. Fritz, unpublished). Water levels fluctu-
ated between 5 cm above and 20 cm below the surface at
all lawn sites from spring to autumn.

The cushion bog was dominated by lawns of evergreen
cushion plants intermingled with patches (few square metres)
of dominating Sphagnum magellanicum (Bridel) and scarcely
vegetated pools (Roig & Collado, 2004; Gebser, 2008).
Dominating cushion plants were Astelia pumila (G. Forster)
R. Br. and Donatia fasciculares R.R. et G. Forster covering
> 70%. The soil below cushion plants was densely packed
with tap roots (1–2 mm diameter) and fine roots exceeding
depths of 120 cm (Grootjans et al., 2010). By contrast, roots
and vascular plants were almost absent at Sphagnum sites.
The peat depth was comparable between sites, ranging from
700 to 1000 cm, thus providing large stocks of carbon-rich
substrate. The densely rooted cushion plant peat was highly
decomposed (H8–H10 on the Von-Post scale), contrasting
with the well-preserved Sphagnum peat (Kleinebecker et al.,

2007; Gebser, 2008). Peat formed by cushion plants was
three to five times denser than Sphagnum peat. At all sites,
Sphagnum peat was found at depths greater than 300 cm.
The peatlands studied remained unaffected by anthropo-
genic alteration, such as drainage, agricultural use or elevated
atmospheric nutrient deposition. Reviewing scarce deposi-
tion data from Patagonia, Godoy et al. (2003) suggested
bulk nitrogen depositions below 0.1 g N m)2 a)1 in coastal
regions. The substrate was very low in nutrients, with total
phosphorus concentrations typically below 0.023% in
Sphagnum peat and 0.034% in cushion plant peat. Pore
water reflected acidic conditions in both bogs (pH 3.8–4.2)
with little variation in the upper 300 cm.

Methane ⁄ ethane concentration measurements

Methane and ethane headspace samples were measured on a
Hewlett-Packard� (Avondale, California, USA) 5890 gas
chromatograph equipped with a flame-ionization detector
and a Porapak Q column (80 ⁄ 100 mesh), operated at
120�C with nitrogen as carrier gas, in the laboratory of
Radboud University, Nijmegen, the Netherlands (accuracy,
0.2 ppm). The injection volume was 0.1 ml for incubations
and pore water samples and 0.5 ml for emission samples to
improve the detection of low concentrations.

Methane dynamics (stock and emission)

Methane stock and release were estimated by means of pore
water concentration and emission into static chambers,
respectively. Sampling took place over the growing season:
December 2008 (spring), February 2009 (summer) and late
March 2009 (autumn). For logistic reasons, sampling was
delayed for 1 wk in the control bog. Insights into inter-
annual and seasonal variations in methane stock were
addressed by sampling pore water eight times from 2006 to
2009 at one site per vegetation type.

Pore water samples were drawn from eight depths (5, 30,
60, 120, 150, 180, 300 and 600 cm) in the cushion bog
and from five depths (5, 50, 150, 300 and 500 cm) in the
control Sphagnum bog. Anaerobic peat water samples were
taken using 5-cm ceramic cups (Eijkelkamp Agrisearch
Equipment�, Giesbeek, the Netherlands), connected to
vacuum infusion flasks (40 ml) after sampling 150 ml to
exclude internal stagnant sampler water. The 40-ml glass
infusion flasks had a sample to headspace ratio of, usually,
1 : 2. As internal standard, 1 ml of ultrapure ethane gas
(Airliquide�, Eindhoven, the Netherlands) was added after
sampling and flasks were stored at 4�C during < 2 wk until
analysis. Microbial modification of samples was hampered
by the addition of 0.1 mg HgCl2 (0.1 ml of 0.1 g l)1).
Methane and ethane concentrations were measured in the
headspace after vigorous shaking, releasing > 96% of meth-
ane to the headspace.
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Methane emissions were assessed using dark static poly-
vinyl chloride (PVC) chambers (3700 cm3, 15 cm high)
with bleeds of 4-mm PVC hose. PVC frames were installed
2 months before measurement and removable chamber tops
were sealed to the frame by the water-filled rim. Gas samples
were taken in the morning and in the afternoon on the same
day at all sites per peatland. After placing the chambers, the
temperature differed by < 3 K between t = 0 and the end of
sampling. Gas samples were taken with a double-sided nee-
dle for 60 min in 20-min intervals in a pre-vacuumed 12-ml
glass vial with a butyl stopper (Exetainer�, High Wycombe,
UK). At sites with very low emissions, an additional sample
was taken after 360 min. Samples were stored cool and anal-
ysed within 1 wk. Emission data are presented for 53 of 62
measurements where the linear slope fitted r2 > 0.75 or
when the methane headspace concentration stayed constant
(zero emissions). Rejected time series, mostly pool sites, were
probably subject to ebullition, as observed by unexpectedly
high methane concentration at t = 20 min followed by
depletion afterwards. After 2 months of additional storage,
> 95% of original methane was retrieved in pore water bot-
tles. Emission samples maintained equal concentrations.
Methane release by large-scale ebullition was estimated by
surface elevation fluctuations measured with water level
recorders attached to the surface and a stable benchmark, as
described by Fritz et al. (2008). Automatic recorders
(Odyssey capacitance probes�, Dataflow, Christchurch,
New Zealand) were set up to measure levels in 1-h intervals
during 2 yr and confirmed with hand measurements during
field visits.

Redox potential and oxygen measurements

Redox potential measurements were taken at five depths
(30, 60, 120, 150 and 200 cm), 2–3 d after gas sampling.
Per depth, four platinum electrodes were gently pushed into
a pre-made hole and allowed to equilibrate. Stable readings
were generally obtained after 30–60 min. In most cases, the
drift was smaller than 1 mV min)1 within 10 min. The
redox potential (E7) corrects the field measurements (Efield)
for pH (pHsoil), absolute temperature in K (T) and the
potential of the 3 M AgCl ⁄ Cl reference electrode
(Eref = 217 mV at 10�C) using the following relationship:

E7 ¼ Efield þ Eref þ 0:2TðpHsoil � 7Þ: Eqn 1

Literature on redox processes (e.g. Laanbroek, 1990) sug-
gested E7 values of > 330–350 mV as an indication for free
oxygen in soils. In figures showing redox data, we highlight
350 mV as a threshold for occurrence of free oxygen, also
used by similar studies (Visser et al., 2000). However, other
studies found some nanomoles of oxygen for E7 just above
300 mV (Lloyd et al., 1998). Oxygen content in the soil
was measured polarographically at 30 and 70 cm below the

water table in the cushion bog in February 2009. For oxy-
gen measurements, we deployed platinum needle electrodes
with a sensing tip of < 0.1 mm embedded in stainless steel
(Microscale Measurements, The Hague, the Netherlands).
The platinum tips remained protected by cellulose-nitrate
membranes. Oxygen electrodes were connected to a cus-
tom-made nA-meter (Electronic Workshop, University of
Groningen, the Netherlands) and an AgCl ⁄ Cl reference
electrode. To calibrate, we used oxygen-saturated bog water
in the field. Zero point calibration was performed in labora-
tory demineralized water flushed with nitrogen for at least
24 h. Persistent precipitation prevented frequent measure-
ment of oxygen and also the establishment of polarograms
at various depths. We measured currents at some 450-mV
pre-settings of the equipment obtained from polarograms
in Dutch bogs.

Root characteristics

Root density at the cushion plant site was determined by
sampling in a piston corer [internal diameter (ID), 10 cm]
to a depth of 80 cm and from 50 to 250 cm using a
D-Section corer (ID, 4.7 cm; Eijkelkamp Agrisearch
Equipment�, Giesbeek, the Netherlands). Roots were dried
at 70�C for 2 d. Root density is expressed in gram per litre of
soil. The presence of living fine roots of cushion plants (1–
2 mm in diameter) usually coincided with a sharp change
from black coloured peat to yellow–brown peat below the
(oxygenated) rooting zone. In this article, the rooting zone
comprises the entire volume of soil down to the maximum
root depth. The proportion of rhizosphere to rooting zone
depends on the root density and the space that is affected by
the activity of individual roots. Integration of the root den-
sity over the entire rooting zone rendered the total dry root
biomass expressed as g m)2. The porosity of root material
was determined in 1-cm increments using the microbalance
method (Visser & Bögemann, 2003). To visualize oxygen
loss in the rooting zone, we exposed cushion plants to an
anaerobic methylene blue solution (25 mg l)1 methylene
blue, 0.5 g l)1 agar, 5 mM KCl, 0.05 mM CaSO4) filled in
glass cuvettes in the laboratory. Sodium dithionite
(Na2S2O4) was used to decolorize the dye. The leaves pro-
jected into the air, but the surface of the solution was
protected from the air by plastic and gently flushed with
nitrogen (adapted after Armstrong et al., 1992).

Clipping experiment

To highlight the functional role of cushion plants with
respect to the redox state of the soil, the oxygen transport
below the water table was hampered by removing the green
parts of cushion plants in January 2008. We chose to remove
four large areas of 2 · 2 m to reduce the effects of surround-
ing cushion plants. Differences in methane dynamics were
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documented by methane pore water samples taken at three
depths (60, 150 and 300 cm) after 1 month, 13 months
and 26 months, as described above. The redox potential (E7)
was measured before and 13 months after the removal of
green parts. Methane emissions were measured at three
clipped sites 2 yr after clipping. Regrowth was minimal
within 2 yr, which highlights the harsh growing conditions.

Methane production and consumption

To estimate differences in potential methane production and
consumption, we took peat cores in the cushion bog
(6 December 2008). Samples (100 ml) were placed in airtight
plastic bags in the field and stored at 4�C before being pro-
cessed in the laboratory. Differences in potential production
were measured in one pure Sphagnum magellanicum and one
cushion plant site dominated by A. pumila at 20, 70 and
120 cm depth. The activity of methanotrophs was estimated
by incubating peat along a profile at cushion plant site 1.
Samples were collected at depths of 70, 120, 140 and 150 cm.
The maximum rooting depth was 140 cm at this site.

The interior of the bulk peat was subsampled by taking
20 g fresh weight of soil [some 1.2 g dry weight (DW)],
which was incubated in 100-ml grey rubber-stoppered glass
flasks threefold at 22�C. For potential methane production,
flasks were flushed with nitrogen and vacuumed eight times
to remove methane and oxygen. For aerobic production, we
incubated with ambient air. Methane consumption incuba-
tions contained a headspace of ambient air and methane was
added to a final concentration of 1.2–1.5%. Methane head-
space concentration was frequently determined over 7 wk in
both production and consumption incubation. Rates of
methane production ⁄ consumption were derived from the
linear part of the slope related to the weight of the sample
after drying at 70�C for 48 h. For the cushion plant site, we
present methane production rates for the beginning and end
of the incubation period because rates differed by one order
of magnitude. Oxygen depletion was regularly controlled by
means of CO2 headspace concentrations determined on an
infrared gas analyser (IRGA, ABB Advance Optima, Zürich,
Switzerland). Bulk density samples were taken at the same
locations using the D-Section corer (ID, 4.7 cm) mentioned
above, and dried at 70�C for 48 h. Rates of methane con-
sumption and production are related to volume and to DW,
respectively. Rates can be related to either the surface
(volume) or substrate quality (DW).

Results

Methane emission and physical factors (temperature,
water table)

Methane (CH4) emissions were low, but significant, reflecting
the low temperature and nutrient status of the bog sites

investigated (Fig. 1). In cushion plant lawns, however,
emissions approached zero. One cushion plant site exhib-
ited emission rates below 1 mg CH4 m)2 d)1 on two
occasions. In contrast with these virtually zero emissions,
in Sphagnum lawns of the cushion bog the methane emis-
sion rate was 1–14 mg CH4 m)2 d)1 (95% confidence
interval), and similar to the control bog (1–11 mg
CH4 m)2 d)1). Emissions of pools were in the same range
as those of Sphagnum lawns (Fig. 1). The highest emissions
were found where cushion plants had been clipped. The
average water levels during the measurements were compa-
rable between the different sites (c. 5 cm, with cushion
plant lawns being slightly drier), but fluctuated seasonally
by some 10 cm from the mean water level (9 cm below
the surface). Therefore, differences in water level did not
correlate with methane emission rates (r2 = 0.05, n = 53).
The temperature was 8–12�C in air and 10�C in the first
10 cm of the soil, varying by < 2�C between measure-
ments on the same day. Monitoring of surface elevation in
cushion plant and Sphagnum lawns gave no indication of
lifting of the peat surface by several centimetres within
hours, which is associated with large-scale ebullition. Weak
ebullition events could only be triggered in pools and
Sphagnum growing in pools by jumping of the observer in
the direct vicinity. The low frequency of ebullition gener-
ally indicates a low concentration of methane in the upper
peat layers.

Methane emission (mg CH4 m–2 d–1)

Methane emission (µmol CH4 m–2 h–1)

W
at
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 (
cm
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Fig. 1 Dependence of methane (CH4) emission from various
Patagonian bog vegetation types on water level in the soil. Emissions
were not related to the water level, but varied with vegetation type
and clipping treatment after 26 months (error bars indicate SD,
n = 6–16). Cushion plant vegetation (closed circle) revealed zero
emission when intact (dashed line), but highest emissions when
clipped (open circle) ceasing oxygen transfer to the soil. Sphagnum

lawns (closed square) had similar emission rates in the cushion bog
as the control Sphagnum bog (open square) and pools (closed
diamond). Emission measurements were taken in the morning and
early afternoon using dark chambers in spring, summer and autumn,
that is, December 2008, February 2009 and March 2009,
respectively.
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Methane stock (pore water profiles)

Similar to emission rates, the methane stock varied strongly
between different vegetation types, reflecting the presence of
cushion plants and their deep roots (Fig. 2). Importantly, no
methane (< 1 lmol l)1) was found in the rooting zone of
cushion plants, whereas Sphagnum lawns stocked less meth-
ane in the cushion bog compared with the control bog. The
linear increase in methane concentration with depth was sim-
ilar between the cushion bog and control bog; however, there
was a 170-cm offset between the two bog types, which coin-
cided with the maximum depth of the rooting zone in the
cushion bog (Fig. 2). Unexpectedly, an offset in methane
stock at this depth was also found in Sphagnum lawns < 3 m
adjacent to cushion plants. In the upper 170 cm, the mean
methane pore water concentration of 166 lmol l)1

(SD = 46, n = 45) remained stable with depth. This plateau
of intermediate methane concentrations differed from the
generally increasing methane concentrations with depth
(Fig. 2). It needs to be stressed that Sphagnum patches
formed small islands closely surrounded (< 3 m) by cushion
plants and their rooting zone. Lateral gradients of methane
pore water decreased over the same order of magnitude (50–
150 lmol CH4 l)1 m)1) as the gradients in depth (220–
320 lmol CH4 l)1 m)1). A levelled surface of 1% and
hydraulic head differences of < 0.2% vertical (Gebser, 2008)
suggested a substantial horizontal water movement. The hor-
izontal methane gradients and water flow underline the
connectivity of Sphagnum patches with their surrounding
rooting zone of cushion plants. In addition, the intrusion of
methane-depleted, oxic rain water most probably occurs in
the sponge-like upper peat of Sphagnum lawns.

The absence of methane from the rooting zone of cush-
ion plants becomes more visible when zooming at its lower

boundary. At all three cushion plant sites, the presence of
methane was tightly linked to the lower boundary of the
rooting zone of cushion plants. Remarkably, methane was
always found only 5–10 cm below the maximum root
depth, which differed between sites (Fig. 3a,b). Below
300 cm, many pore water samples indicated supersaturation
of methane (mean, 1499 lmol l)1) in the control bog.
Methane stock measurements taken between 2006 and
2009 revealed the same patterns. In general, seasonal and
inter-annual variations were minor compared with the strik-
ing differences between the rooting zone of cushion plants
and samples from nonrooted layers.

Presence of oxygen and roots

All three cushion plant sites were characterized by a dense
root biomass (Fig. 3a,b). The average root biomass density
was 2.15 g DW l)1 (SD = 0.33, n = 3) in the upper
170 cm. Integration of the root density along the rooting
zone revealed that cushion plants maintained a total root
biomass of 3590 g DW m)2 (SD = 550, n = 3). The poros-
ity of roots of the dominating cushion plant A. pumila was
60–70%, providing sufficient aerenchyma for rapid
diffusion of oxygen. Lower porosity was only found within
5 cm from the root tip (apex). Staining experiments with
methylene blue suggested modest oxygen release rates along
the length of the root, being highest around the root tips.
Root tips could be found scattered over the entire depth pro-
file. However, the largest densities of root tips were confined
to the upper 70 cm, resulting in the highest potential to
release oxygen in the upper half of the rooting zone (Fig. 3c).
Less than 1% of the fine root biomass was located close
(< 15 cm) to accumulated methane in the soil (Fig. 3b). At
Sphagnum sites, the very few roots growing down to 30 cm
reflected well the very sparse cover of vascular plants.

The decrease in redox potential mirrored the increase in
methane, being highly sensitive to the presence of roots of
cushion plants (Fig. 4). Free oxygen in the rooting zone to
a depth of 120 cm was indicated by redox potentials higher
than E7 = 330–350 mV (cf. Laanbroek, 1990). The pres-
ence ⁄ activity of roots resulted in an increase in the redox
potential of c. 170 mV compared with the Sphagnum site.
Beyond the maximum rooting depth, the redox potential
decreased rapidly to values comparable with Sphagnum sites.
Root densities decreased strongly with depth, whereas redox
potentials varied little in the upper 120 cm. By contrast, a
tight relationship between root density and redox potential
was found at the bottom of the rooting zone. At 150 cm
depth, redox potentials varied substantially, c. 364 mV
(SD = 61, n = 9), suggesting that a smaller proportion of
the substrate remained aerated. Here, the coexistence of oxic
and anoxic patches correlated with small numbers of root
tips and low root densities (Fig. 3b). In the lower rooting
zone, only two to five root tips were found per litre of peat
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Fig. 2 Depth profile of methane (CH4) stock concentrations in
various Patagonian bog vegetation types. The rooting depth of
cushion plants in the cushion bog is indicated by the dashed line.
Methane was thoroughly depleted in the rooting zone below
cushion plants (closed circles) and significantly lower in Sphagnum

lawns in the cushion bog (closed squares) compared with the control
Sphagnum bog (open squares). Error bars indicate SD, n = 9. The
same sites and sampling intervals were used as in Fig. 1. Seasonal
variation of methane stock was low.
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substrate. Hence, a surplus of oxygen (leading to the pres-
ence of free oxygen) became more variable at these depths,
leading to a high spatial variation in redox potential.
Seasonal variations of the redox potential were small com-
pared with differences related to the density ⁄ presence of
roots. In February 2009, oxygen-sensitive mini-electrodes
gave further evidence of oxygenated conditions. Oxygen
concentrations up to 5 lmol l)1 were found at 30 cm and
70 cm below the water level in cushion plant lawns. Below

Sphagnum vegetation, oxygen was absent when measured by
mini-electrodes.

Clipping of cushion plants caused a significant change in
soil processes. Within 1 month after clipping, 3 lmol l)1

(SE = 1.4, n = 4) methane accumulated in the uppermost
rooting zone (Fig. 5a). After 13 months, the pore water
concentration increased from zero to c. 78 lmol CH4 l)1

(SE = 49) at 60 cm and 102 lmol CH4 l)1 (SE = 39) at
150 cm. This increase in methane concentration was
accompanied by a drastic decrease in the redox potential to
< 300 mV, suggesting a depletion of oxygen within a year

(a) (b) (c)

Fig. 3 Methane (CH4) stocks (dashed lines) were inversely related to root density profiles (solid lines) in three individual cushion plant sites:
CP1 (black symbols, 140-cm-deep roots), CP2 (grey symbols, 170-cm-deep roots) and CP3 (white symbols, 190-cm-deep roots). Methane
was always found only 5–10 cm below the maximum root depth of individual sites. The box in (a) is, by approximation, the area of the graph
expanded in (b). Same methane data are presented in Fig. 2. (c) Root biomass of cushion plants retrieved from the upper 70 cm using a piston
corer (internal diameter, 10 cm).
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Fig. 4 Surplus oxygen in the rooting zone of cushion plants (open
circles, n = 9) as indicated by a redox potential of > 350 mV (vertical
dashed line). In Sphagnum lawns in the cushion bog (closed circles),
the redox potential was c. 170 mV lower, suggesting anoxia. At each
depth, the potential was measured by four electrodes. The same sites
and sampling intervals were used as in Fig. 1. The vertical dashed
line (350 mV) depicts the lower limit of the redox potential for
oxygen-containing substrates (cf. Laanbroek, 1990).
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Fig. 5 Methane (CH4) concentrations (a) increased in the soil after
cushion plant plots (2 · 2 m2) were clipped, resulting in soil anoxia
(b). Methane accumulated over time (t = 0 months, black circles;
t = 1 month, dark grey circles, t = 13 months, grey circles;
t = 26 months, white circles). The increase in methane coincided
with decreasing redox potentials (b; t = 0 months, black circles).
After 13 months, redox potentials (grey circles) declined below
E7 < 330–350 mV indicating anoxic conditions (cf. Laanbroek,
1990) comparable with Sphagnum lawns. Error bars indicate SE,
n = 4. Compare also with methane stocks in Fig. 2 and redox
potential in Fig. 4.
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(Fig. 5b). After 26 months, mean methane emissions
(10 mg CH4 m)2 d)1, n = 6) exceeded those of Sphagnum
lawns (Fig. 1) and methane accumulated in the pore water
to a concentration of 706 lmol CH4 l)1 at 60 cm (SE =
136, n = 4).

Methane oxidation and production

The activity of methanotrophs was found in the entire root-
ing zone of cushion plants. Mean activities ranged from 10
to 86 lmol l)1 d)1 and 0.2 to 1.2 lmol g)1 DW d)1,
respectively (Fig. 6). The highest oxidation rates were found
in the lower part of the rooting zone where oxygen was in
the vicinity of methane-containing substrates (Figs 3, 4).
The activity of methanotrophs (10–15 lmol l)1 d)1) was
also found above the methane–oxygen interface. In the
rooting zone, methanotrophs are methane limited (Fig. 3a),
whereas, below the roots, methane consumption became
oxygen limited (Fig. 4). Oxidation rates in the field may be
62% lower, assuming an average soil temperature of 8�C
and a Q10 of 2, found for methanotrophs in the control
bog by Kip et al. (2010).

Mean potential methane production in the upper
120 cm ranged from 1 to 20 lmol l)1 d)1 and 0.04 to
0.36 lmol g)1 DW d)1, respectively (Fig. 6). Based on
volume, the highest production was found in the most
recently accumulated parts: dense peat that was little
decomposed and had the highest nutrient content. Because
Sphagnum peat has a three to five times lower density (some
20–30 g l)1), Sphagnum sites had a lower methane produc-
tion potential per surface area or volume compared with
cushion plants (density of 50–120 g l)1). In aerobic incu-

bations, methane production was below the detection limit.
Thus, the actual methane production is assumed to be neg-
ligible in the rooting zone of cushion plants because of
aerobic conditions (Fig. 4).

Samples taken from the rooting zone of cushion plants
showed a time-lagged increase in production, exceeding the
volume-based rates of Sphagnum sites (Fig. 6). The time-
lagged increase indicated that the community of methano-
genic bacteria had adjusted to the anoxic conditions of the
incubations. As the substrate from the rooting zone of cush-
ion plants had been subjected to oxygen release, a low
presence and activity of methanogens can be anticipated.
Edwards et al. (1998) found that substrates from aerobic
environments or exposed to oxygen after sampling exhibited
hampered activity of methanogens.

Discussion

In this study, methane dynamics revealed a tight but inverse
link to the presence of vascular plant roots. We found evi-
dence that the specific conditions in cushion bogs lead to
high oxygenation of the wetland soil well beyond the rhizo-
sphere (> 150 cm), thus limiting methane production and
methane release via plants. Crucial for extensive oxygena-
tion are the nutrient-poor conditions of these sites, limiting
soil oxygen demand, combined with high densities of very
long and aerenchymatous roots. These data are the first on
methane emissions and stocks in temperate bogs in the
Southern Hemisphere and Patagonia.

Cushion plants are a significant part of wetland and
mountainous vegetation in the Southern Hemisphere
(Gibson & Kirkpatrick, 1985; Blanco & de la Balze, 2004;
Squeo et al., 2006). Parts of these bogs consist of Sphagnum
vegetation, and methane emissions from these sites and
from a pure Sphagnum bog were low (Fig. 1). Wet lawns of
Sphagnum ssp. emitted 1–14 mg CH4 m)2 d)1, which is in
the lower range reported for Sphagnum-dominated vegeta-
tion (reviewed in Saarnio et al., 2009). The observed slow
carbon and methane turnover can be explained by summer
temperatures below 10�C (Daulat & Clymo, 1998; Segers,
1998), very low nutrient availability (Juottonen et al.,
2005; Schmidt et al., 2010) and low pH (Segers, 1998).

The larger part of the cushion bogs consists of cushion
plants, which are characterized by high densities of long ae-
renchymatous roots. These roots may function as a conduit
for methane release. However, in the rooting zone of cush-
ion plants, no methane was present, and only around this
zone did methane levels increase steeply with (both horizon-
tal and vertical) gradients of 200–300 lmol l)1 CH4 m–1

(Figs 2, 3). Therefore, although a large methane stock was
present at the ecosystem scale, methane emissions at cush-
ion plant sites were low, approximating zero (Fig. 1). The
main reason was the oxygenation of the rooting zone by
oxygen loss from the roots (Fig. 4). Root-derived oxygen
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Fig. 6 Depth profile of methane (CH4) oxidation rates that
exceeded the rates of potential methane production at 22�C. After
2 wk, methane production of cushion plant peat (grey circles) was
lower than that of Sphagnum peat (grey squares). By contrast, after
7 wk, cushion plants (black circles) revealed much higher potential
methane production than Sphagnum peat (black squares). Methane
oxidation rates (triangles) at 22�C were substantially higher at the
lower boundary of the rooting zone (dashed line) of cushion plant
site 1 (CP1). Error bars indicate SD, n = 4.
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suppressed methane production and increased methane oxi-
dation, thus diminishing methane stocks in the rooting
zone (Fig. 6). By contrast, studies on root–methane interac-
tions revealed that roots remained in contact with methane.
This resulted in methane emission rates exceeding those
common for Sphagnum vegetation (Popp et al., 2000; Ding
et al., 2004; Strack et al., 2006). Our study suggests that
densely growing cushion plants have a higher potential to
oxidize soil and methane than do common wetland species,
for example Phragmites ssp. (van der Nat & Middelburg,
1998), Oryza ssp. (Frenzel, 2000), Carex ssp. (Popp et al.,
2000; Ding et al., 2004) and Sphagnum ssp. (Larmola
et al., 2010). As a consequence of incomplete oxygenation,
the methane production in anoxic parts of the soil becomes
fuelled by easily decomposing root exudates and litter
(Joabsson & Christensen, 2001; Juottonen et al., 2005).
This ‘fuelling-effect’ of vascular plants was tested in this
study by long-term clipping of cushion plants. After cutting
off the oxygen supply to the roots, the redox potential
dropped well below 330 mV, indicating anoxic conditions
in the rooting zone (Fig. 5). Consequently, a substantial
methane stock built up within a few months in the upper
150 cm fuelled by decomposing roots. After 2 yr without
oxygen supply, methane stocks exceeded those of Sphagnum
vegetation (Figs 1, 6). Part of the built-up methane stock
may have resulted from decaying roots, especially at the
beginning of the experiment.

By contrast, living cushion plants can thoroughly oxygen-
ate the organic peat soil through oxygen leakage from
hundreds of root tips per litre of soil. Highly decomposed
cushion bog peats are likely to consume little oxygen because
of low soil temperatures (4–10�C) (Haraguchi, 1995;
Chapman & Thurlow, 1998; Allen et al., 2002) and carbon
densities (50 g C l)1). The recalcitrant nature of highly
decomposed peat (Chapman & Thurlow, 1998) and the low
nutrient availability, such as total P < 0.02% (Reddy et al.,
1999), further reduce oxygen consumption. The aerobic state
of the soil prevailed in the upper 120 cm despite a decrease in
root density with depth (Figs 3, 4). At root densities as low as
two to five tips per litre, found in the bottom 10 cm of the
rooting zone, an oxic state is unlikely to be maintained far
beyond the root surface. However, this zone of low root den-
sity separates the bulk root surface from methane. We suggest
that, in the upper profile, oxygen release rates exceed con-
sumption. The surplus oxygen is transported by infiltrating
rain water down the profile, where deeper root layers thus
receive additional oxygen, next to the in situ oxygen leakage.
Lateral groundwater flow can convey fairly oxidizing condi-
tions beyond the rooting zone. This is indicated by lower
methane stocks at the ecosystem level, as suggested by low
methane concentration in the upper 200 cm below
Sphagnum patches (Fig. 2) and pools (data not shown) in the
cushion bog. This is further indicated by methanotrophic
activity, which is maximal in the bottom 10 cm of the rooting

zone (Figs 3b, 6). Methanotrophic activity is highest where
upward diffusion of methane meets available oxygen
(Watson et al., 1997; Edwards et al., 1998). Despite the low
root density, sufficient oxygen is present in the bottom 10 cm
of the rooting zone to maintain methane oxidation (Figs 4,
6), which results in a spatial separation of roots and methane.
When soil is aerated by deep drainage, a similar separation of
roots and methane results in low or zero emissions (Roulet
et al., 1993; Bubier, 1995; Couwenberg et al., 2010). A thor-
ough oxygenation of the rooting zone is essential for sufficient
separation between roots and methane stock and, conse-
quently, for complete cessation of methane emission. This
has also been suggested by physical models of root–methane
interactions (Watson et al., 1997; Segers et al., 2001). Such
oxygenation of wetland soils by an extensive and deep root
biomass requires sufficient nutrients (van Bodegom et al.,
2005; Koelbener et al., 2010) that pristine bogs usually lack
(van Breemen, 1995; Kleinebecker et al., 2008). Higher
nutrient levels also increase oxygen consumption because
litter ⁄ peat formed under nutrient-rich conditions breaks
down more rapidly than recalcitrant Sphagnum litter from
pristine sites (Aerts et al., 1999; Chapin et al., 2003).
Incomplete oxygenation because of high soil oxygen con-
sumption then permits the co-existence of roots and
methane, resulting in methane emissions.

However, cushion plants, such as Astelia ssp. and Donatia
ssp., have specific traits which allow them to develop a
dense root system whilst still out-competing Sphagnum at
low nutrient levels. These traits are a dense apical growth,
high root to shoot ratio, very porous roots, low intrinsic
growth rate, their evergreen nature and their efficient nutri-
ent recycling (Gibson, 1990; Schmidt et al., 2010; C. Fritz,
unpublished). As a result of the high nutrient use efficiency
and a low biomass turnover, a dense root system can be
maintained even in the very nutrient-poor Patagonian bogs
(Kleinebecker et al., 2008; Schmidt et al., 2010). We show
that cushion plants can form two to four times more bio-
mass of fine roots (3590 g DW m)2) than other bog
vegetation (Moore et al., 2002). A similar growth strategy is
known from isoetid species growing at the bottom of nutri-
ent-poor, soft-water lakes. Isoetid species (such as Littorella
uniflora and Lobelia dortmanna) exhibit a dense root system
whilst growing slowly, and also oxidize entire mineral soil
layers (Smolders et al., 2002). The mutual interaction
between plant (traits) and soil conditions warrants further
investigation.

Conclusion

From our study, we conclude that, under specific circum-
stances, vascular plants are capable of oxidizing the bulk of
soil methane that might otherwise be released via the root
aerenchyma. We have highlighted an outstanding example
of an inverse relation between root density and methane
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release. The clear spatial separation of methane from cush-
ion plant roots resulted from the low oxygen consumption
that was exceeded by oxygen loss from the roots. The influ-
ence of vascular plants on methane cycling depends on
traits such as the formation of a dense root biomass in spite
of nutrient-deficient conditions. Rising temperatures and
habitat losses of cushion plants are expected to stimulate
future methane emissions from Patagonian bogs.
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