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Abstract— In this work, a trajectory tracking control design is 

proposed for the planar vertical takeoff and landing (PVTOL) 

aircraft using Linear Algebra Theory. The resulting control law 

has an easy implementation since not complex equation must be 

solved. The tracking is achieved providing convergence of the 

tracking errors to zero and simulations results show the good 

performance of the proposed controller.  
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I. INTRODUCTION 

The Planar Vertical Take Off and Landing (PVTOL) 

aircraft represents a challenging nonlinear systems control 

problem due to the fact that this system is under-actuated, 

nonlinear, and is non-minimum-phase when controlling some 

specific outputs. The dynamic model of the PVTOL has three 

degrees of freedom and two control inputs. Although this 

particular system is a simplified aircraft with a minimal 

number of states and inputs, it retains the main features that 

must be considered when designing control laws for a real 

aircraft.  

Numerous design methods for the flight control of the 

PVTOL aircraft model exist in the literature. In [1] a state 

feedback controller was designed by employing the use of a 

finite-time convergent control law; then, a finite-time observer 

such that the unknown states can be recovered in finite time 

and thus reducing the output feedback stabilization problem to 

the state feedback one. In [4] Olfati-Saber gave a globally 

stabilizing smooth static state feedback law in explicit form 

for the VTOL aircraft with arbitrary ε ≠ 0 and in the same way 

as [5], it presents backstepping designs with the aid of special 

saturation functions. In 2011, [6] proposed an output feedback 

sliding mode controller of a PVTOL where a sliding mode 

observer is used to estimate the velocity. [7] proposed a 

feedback design based on a new bounded backstepping 

method with applicability to cases where the velocity 

measurements may no be available.  In 2007, Huawen Ye [2] 

transformed a PVTOL subsystem into 4-D chains of 

integrators with nonlinear perturbations and then the bounded 

control for the chain of integrators used in [3] was moderately 

modified and applied to the perturbed case. [8] has used an 

optimal control approach to design a robust hovering control. 

Saif Al-Hiddabi [9] has studied the execution of a maneuver 

for which the aircraft is intended to follow a circular path in a 

vertical plane using the approach development in [10] which 

is based on a decomposition of the aircraft vertical dynamics 

and the aircraft horizontal and roll dynamics. 

We have shown in the state of the art that numerous design 

methods for the flight control of PVTOL aircraft model exist 

in the literature and all of them improve the performance of 

the system control in a particular interest point of view, 

however the resulting control law has a relative 

implementation complexity. In this paper, we propose a 

tracking control of a PVTOL aircraft using a technique based 

on linear algebra theory to achieve an easy implementation 

control law. The convergence to zero of tracking errors related 

to all system states variables are taken into account and 

demonstrated. 

The paper is organized as follows. In section II some 

necessary mathematical preliminaries are briefly mentioned. 

In section III the PVTOL aircraft model is described. In 

section IV the proposed linear algebra based controller is 

presented. In section V the convergence of tracking errors to 

zero is demonstrated. Section VI shows the performance of 

the proposed controller through simulations results and finally 

in section VII brief conclusions are commented. 

II. PRELIMINARIES 

Here some mathematical preliminaries are briefly mentioned 

to have a better understanding of the proposed controller. 

A. Markov Property  

A process with a Markov property means that, given the 

present state, future states are independent of the past states.  

In the case that one process takes discrete values and is 

indexed by a discrete time, this can be reformulated as follows: 

 

n n (n-1) (n-1) 0 0 n n (n-1) (n-1)R(X = x | X = x ...X = x )= R(X = x | X = x )
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 In other words, the description of the present state fully 

captures all the information that could influence the future 

evolution of the process [19]. 

B. Theory of simultaneous linear equations 

Let us consider the problem of solving the system of an 

equations     , where   is an       matrix and   an       

vector. The system will have solution if and only if it is 

possible to express the vector   as a linear combination of the 

columns of  , that is if   belongs to the column space of  . 

The column space of   is a subspace constructed with all 

combinations of the columns of  . For each       matrix 

there will be a subspace of     [17]. 

 

III. THE PVTOL AIRCRAFT MODEL 

We are interested in a trajectory tracking control of a 

PVTOL aircraft. This system has the natural restriction of 

movement in a vertical-lateral plane as shown in fig. 1.  The 

aircraft states are the position of the aircraft center of mass x, 

y, the roll angle   of the aircraft, and the corresponding 

velocities   ,   ,   . The control inputs    and    are 

respectively, the thrust (directed out the bottom of the aircraft) 

and the rolling moment about the aircraft center of mass.  

 

Fig.1 Front view of PVTOL aircraft. 

 

The PVTOL aircraft dynamics from fig.1 is modelled by 

the following equations: 

 

- 1 0 2mx = -U  sin( )+ U  cos( )    (1) 

  1 0 2-my = -U  cos( )+ U sin( )- mg   (2) 

2J  =U  (3) 

  

Dividing (2) and (3) by mg and (4) by J we obtain: 

 

/2 1

0 22

U mg
d -x/g -sin( ) cos( ) 0

JU=
-y/g cos( ) sin( ) 1dt

mgJ

 
 

 
                  

   (4) 

/2 =U J
 (5) 

 

Where J is the mass moment of inertia about the axis 

through the aircraft center of mass and along the fuselage and 

mg represents the gravitational force exerted on the aircraft 

center of mass. If we define: 



01 1

2 2

Ju U /mgx -x/g
= ; = and =

y -y/g u U /J mg

      
             



Then, the rescaled dynamics becomes: 

 

 1

2

ux -sin( ) cos( ) 0
=

y cos( ) sin( ) u 1

 
 

      
               (6) 

2 = u
 (7) 

 

For our PVTOL system, the outputs are the position of the 

aircraft center of mass x and y. The rolling angle  , his 

derivate     and    ,   ,  are internal states. 

The parameter   is a small coefficient which characterizes 

the coupling between the rolling moment and the lateral 

acceleration of the aircraft which is usually negligible and not 

always well-known. Therefore, it is possible to suppose that 

   , [11], [12], [13], then: 

 

1

1

2

x -sin( )u

y = cos( )u 1

u







 



 

 (8)

 

 

On the other hand, several authors [14], [15], [16] have 

shown that by an appropriate change of coordinates it is 

possible to obtain a representation of the system without the 

coupling   term.   

An nth order differential equation can be converted into an 

n-dimensional system of first order equations. There are 

various reasons for doing this, one being that a first order 

system is much easier to solve numerically (using computer 

software) and most differential equations you encounter in 

―real life‖ (physics, engineering etc) don’t have nice exact 

solutions. Taking this into account, the representation of the 

system in spaces states become a useful tool. For the PVTOL 

aircraft system the representation is shown bellow.  

 

)

)

1 1 2

2 2 5 1

3 3 4

4 4 5 1

5 5 6

6 6 2

x = x x = x

x = x x = -sin(x u

x = y x = x

x = y x = cos(x u 1

x = x = x

x = x = u






 



  



 

 (9) 

 

Note that the    state represents the x lateral displacement 

of the aircraft and    represents the vertical y displacement 

and these are the variables to be controlled. 

IV.  LINEAR ALGEBRA BASED CONTROLLER 

Let us consider the general following differential equation: 

 

θ 

-1 

εu2  u2  u1  

x 

y 

Y 

X 
0 
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(10) 

 

Where y represents the output of the system to be 

controlled, u the control action, and t the time. The values of 

     at discrete time      , where    is the sampling period, 

and n ∈ {0, 1, 2, 3, . . .} will be denoted as   . Thus, when 

computing        by knowing     , (10) should be integrated 

over the time interval                     as follows: 

 

 
( )

( ) ( ) , ,
0

0

n 1 T

n 1 n
nT

y y f y u t dt


     (11) 

 

There are several numerical integration methods to 

calculate       [18]. For instance, the Euler and trapezoidal 

method approaches can be used [(12) and (13) respectively]. 

 

 ( ) , ,n 1 n 0 n n ny y T f y u t  
 (12) 

   ( ) , , , ,0

n 1 n n n n n 1 n 1 n 1

T
y y f y u t f y u t

2
     

 (13) 

 

Where      on the right-hand side of (13) is not known and, 

therefore, can be estimated by (11). The use of numerical 

methods in the simulation of the system is based mainly on 

the possibility to determine the state of the system at instant n 

+ 1 from the state, the control action, and other variables at 

instant n (Markov property) [19]. So,       can be substituted 

by the desired trajectory and then the control action to make 

the output system evolve from the current value    to the 

desired one can be calculated. To accomplish this, it is 

necessary to solve a system of linear equations for each 

sampling period, as we show later. This work proposes 

applying this approximation to the model of a PVTOL aircraft 

and thus obtaining the control action that enables the aircraft 

to follow a preestablished trajectory during its navigation. 

Through the Euler’s approximation of the PVTOL aircraft 

system  (9),  the following set of equations is obtained:  

 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

)

)

1 n 1 1 n 0 2 n

2 n 1 2 n 0 5 n 1 n

3 n 1 3 n 0 4 n

4 n 1 4 n 0 5 n 1 n

5 n 1 5 n 0 6 n

6 n 1 6 n 0 2 n

x = x T x

x = x -T sin(x u

x = x T x

x = x T cos(x u 1

x = x T x

x = x T u




















 
 




 (14) 

 

This can be expressed in vectorial form as: 

 

1(n+1) 1(n)
2(n)

2(n+1) 2(n)
5(n)

3(n+1) 3(n) 1(n)4(n)

0
5(n) 2(n4(n+1) 4(n)

6(n)5(n+1) 5(n)

6(n+1) 6(n)

x - x
x 0 0

x - x -sin(x ) 00
x - x ux 0 0

= T +
cos(x ) 0 ux - x -1

x 0 0x - x
0 10x - x

                     
    
    
        

)





 
 

 




 (15) 

 

If the desired trajectory                    
 
  is known, then 

                 
 

  in (15) can be substituted by 

                   
 
and thus it will be possible to calculate 

the control actions   ,    necessary to make the aircraft go 

from the current state              
 

 to the desired one 

                   
 
. So we can write: 

 

1(n+1) 1(n)
2(n)

2(n+1) 2(n)
5(n)

3(n+1) 3(n) 1(n)4(n)

0
5(n) 24(n+1) 4(n)

6(n)5(n+1) 5(n)

6(n+1) 6(n)

xd - x
x 0 0

x - x -sin(x ) 00
xd - x ux 0 0

= T +
cos(x ) 0 ux - x -1

x 0 0x - x
0 10x - x

                     
    
    
        

(n)





 
 

 




 (16) 

 

Then, from (16) we can operate to get the following system 

of linear equations: 

 

1(n+1) 1(n)

2(n)

0

2(n+1) 2(n)

0

3(n+1) 3(n)
5(n)

4(n)

1(n) 0

5(n) 2(n) 4(n+1) 4(n)

u
0

5(n+1) 5(n)

A 6 (n)

0

6(n+1) 6 (n)

0

xd - x
x

T

x - x

T0 0
xd - x-sin(x ) 0

x
u T0 0

cos(x ) 0 u x - x
1

0 0 T
0 1 x - x

x
T

x - x

T







 
 

 
           

 
 




b













 
 
 
 
 
 
 

 (17)

 

 

Equation (17) represents a system of six linear equations, 

with two unknown variables (        and allows in each 

sampling instant, calculating the control actions in order that 

the aircraft achieves the desired trajectory. Note that if we 

denote the vector which is on the right side of (17) as   and 

the vector that contains the control actions as u, the system 

can be written in the classic system equation form     . 

 Now, the condition so that this system can have exact 

solution is that vector    belong to column space of   . In 

order for the aircraft to follow a desired trajectory, the angular 

position must be calculated from de previous equations system 

and we denote it as       . The equation system expressed in 

(17) can be partitioned as show (18) and (19): 

 

( , , ) ; ( ) 0y f y u t y 0 y 
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1(n+1) 1(n)

2(n)

0

3(n+1) 3(n)

4(n)

0

5(n+1) 5(n)

6(n)

0

xd - x
x

T

xd - x
x

T

x - x
x

T












   (18) 

 

2(n+1) 2(n)

0

5(n)
4(n+1) 4(n)1(n)

5(n)
2(n) 0

6(n+1) 6(n)

0

x - x

T
sin(x ) 0

x - xu
cos(x ) 0 1

u T
0 1

x - x

T

 
 
  
              
 
 
    (19) 

 

From (19) it is possible to obtain: 

 

( )
5(n) 2(n+1) 2(n)

5(n)

5(n) 4(n+1) 4(n) 0

-sin(x ) x - x
tg x

cos(x ) x - x T
  


         (20)  

 

Equation (20) represents the necessary orientation (angle  ) 

to make the linear system equations in (17) have exact 

solution and the aircraft  tend to the reference trajectory. 

In order for the tracking errors tend to zero in a smoothly 

way, (18), (19) and (20) are rewritten as: 

 

1(n+1) 1 1(n) 1(n) 1(n)

2(n 1 )

0

3(n+1) 3 3(n) 3(n) 3(n)

4(n 1 )

0

5(n+1) 5 5(n) 5(n) 5(n)

6(n 1 )

0

xd K xd x - x
xr

T

xd K xd x - x
xr

T

xr K xr x - x
xr

T







     

     



     
  (21) 

( )
2(n+1) 2 2(n) 2(n) 2(n)

5(n)

4(n+1) 4 4(n) 4(n) 4(n) 0

xr K xr x - x
tg xr

xr K xr x - x T

   
 

      (22) 
 

1

1

2(n+1) 2 2(n) 2(n) 2(n)

0

5(n)
4(n+1) 4 4(n) 4(n) 4(n)

5(n)

0

6(n+1) 6 6(n) 6(n) 6 (n)A

0

b

xr - K xr x x

T
sin(xr ) 0

xr - K xr x x
cos(xr ) 0 u 1

T
0 1

xr - K xr x x

T

     
 

          
   
    

    
 
   

  (23) 

 

Note that         ,         represent the speed references 

that the aircraft should have in the instant       to achieve 

the desired trajectory and     represents the necessary angular 

position. 

The constants                       are design 

parameters of the proposed controller and they adjust in some 

way the convergence rate of actual states to the desired states. 

Using (21) and (22) it is possible to calculate    and then 

solve the system        to get the necessary control action 

vector   as follows: 

 
T T

1 1 1A Au A b          (24) 

 

Operating (24) we get: 

 

1(n) 5(n) 1(1,1) 5(n) 1( 2,1)

2(n) 1( 3,1)

u -sin(xr )b +cos(xr )b1 0
=

0 1 u b

    
         

         (25)  

 

Where         ,         represents the columns of vector 

  . Finally, rewriting (25) the necessary control effort in order 

that the aircraft follow a desired trajectory, can be expressed 

as: 

 

1(n) 5(n) 1(1,1) 5(n) 1( 2,1)

6(n+1) 6 6(n) 6(n) 6(n)

2(n)

0

u -sin(xr )b +cos(xr )b

xr - K xr x x
u

T




    




         (26)  

 

Were: 

2(n+1) 2 2(n) 2(n) 2(n)

1(1,1)

0

4(n+1) 4 4(n) 4(n) 4(n)

1( 2,1)

0

xr - K xr x x
b

T

xr - K xr x x
b 1

T

   


   
 

 

  (27) 

 

Note that the resulting control law has not complicated 

terms to solve because most of them are simple operations and 

they can be easily implemented in a simple microcontroller.  

 

V. CONVERGE TO ZERO OF TRAKING ERRORS 

 

In this section, the convergence to zero of control errors is 

demonstrated. As it was shown in (14), the state         can 

be written as: 

 

( ) ( ) ( )6 n 1 6 n 0 2 nx = x T u   

 

And replacing the proposed control law expressed in (26): 

 

( ) ( )

6(n+1) 6 6(n) 6(n) 6(n)

6 n 1 6 n 0

0

xr - K xr x x
x = x T

T


   
  

 

 ( )6(n+1) 6 n 1 6 6(n) 6(n)xr x = K xr x   (28) 
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Note that the right and left side of (28) are the error of     

state (the real state respect to the calculated reference value) at 

the instant       and     respectively, so we can write: 

  

( )6(n+1) 6 6 ne K e

 (29) 

 

The equation (29) represents the time evolution of error and 

as we know 
60 K 1   then ( )6 ne 0  when n . A 

similar analysis is made for the state      . 

 

( ) ( ) ( )5 n 1 5 n 0 6 nx = x T x   

 

Replacing ( )6 nx by the respective reference value added to its 

errors, the previous equation is rewritten. 

 

( ) ( ) ( ) ( )( )5 n 1 5 n 0 6 n 6 nx = x T xr e    (30) 

 

Using (21) and (30) 

 

 
( ) ( ) ( )

5(n+1) 5 5(n) 5(n) 5(n)

5 n 1 5 n 0 6 n

0

xr K xr x - x
x = x T e

T


    
   
    

 (31) 

Operating 

 

 ( ) ( ) ( )5 n 1 5 5 n 0 6 ne = k e T e   (32) 

 

As we know 
50 K 1   and ( )6 ne 0  then ( )5 ne 0  

when n . 

 

For the states ( )2 nx  and ( )4 nx the demonstration is a little 

different. From (14) 

 

( ) ( ) ( ) ( ))2 n 1 2 n 0 5 n 1 nx = x -T sin(x u  (33) 

 

Using Taylor series the sin function can be expressed as 

follows: 

 

( ) ( ) ( ) ( )) ) ( )5 n 5 n 5 n 5 nsin(x sin(xr cos x e   (34) 

 

Were:  

 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ),

5 n 5 n 5 n

5 n 5 n 5 n 5 n

e x xr

x xr x xr and 0 1  

 

    
 (35) 

 

Replacing (34) in (33) we get: 

 

 ( ) ( ) ( ) ( ) ( ) ( )) ( )2 n 1 2 n 5 n 5 n 5 n 1 n 0x = x - sin(xr cos x e u T   (36) 

 

Operating with (26) and (22) it is possible to get: 

 

1(1,1)

1(n) 0

5(n)

b
u T -

sin(xr )
  (37) 

 

Replacing (37) in (36) and operating 

 

( ) ( ) ( ) ( ) ( )( )2 n 1 2 2 n 5 n 1 n 0 5 ne K e cos x u T e  
 

(38) 

     

Where: 

 

( ) ( ) ( )

( ) ( ) ( )

2 n 1 2 n 1 2 n 1

2 n 2 n 2 n

e xr x

e xr x

   

 
 

 

Equation (38) represents a time evolution of 
2x state error 

and, doing a similar analysis, the analog expression can be 

found to 
4x  state: 

  

( ) ( ) ( ) ( ) ( )( )4 n 1 4 4 n 5 n 1 n 0 5 ne K e sin x u T e  
 

(39) 

  

Where: 

 

( ) ( ) ( ) ( )( ),5 n 5 n 5 n 5 n

4(n 1 ) 4(n 1 ) 4(n 1 )

4(n) 4(n) 4(n)

x xr x xr and 0 1

e xr x

e xr x

  

  

    

 

 

 

 

Putting the equations (38) and (39) in matrix form: 

 

( ) ( ) ( ) ( )

( )
( ) ( )

( )

( )
2 n 1 2 n 5 n 1 n 02

5 n
44(n 1 ) 4(n) 5 n 1 n 0

M

e e cos x u TK 0
e

0 Ke e sin x u T








      
              

 (40) 

 

The coefficients of matrix M in (40) are non-linear and they 

are bounded (see appendix on [21]).The coefficients

20 K 1  , 
40 K 1   and as we showed before ( )5 ne 0 , 

then according to (40) ( )2 ne 0 and ( )4 ne 0 when n . 

The expression of state 
1x  is defined by (14): 

 

( ) ( ) ( )1 n 1 1 n 0 2 nx = x T x   

 

And replacing ( )2 nx  in a similar way to (30) it is possible to 

get:  

 

( ) ( ) ( ) ( )( )1 n 1 1 n 0 2 n 2 nx = x T xr e  
 (41) 

 

( ) ( ) ( )

1(n+1) 1 1(n) 1(n) 1(n)

1 n 1 1 n 0 0 2 n

0

xd K xd x - x
x = x T T e

T


   
 

 (42) 

And then, 
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( ) ( ) ( )1 n 1 1 1 n 0 2 ne = k e T e 
 (43) 

 

In the same way, the time evolution error of  
3x  state can 

be found: 

 

( ) ( ) ( )3 n 1 3 3 n 0 4 ne = k e T e 
 (44) 

 

The coefficients
10 K 1  , 

30 K 1   and as we showed 

before ( )2 ne 0 ,
 ( )4 ne 0 , then according to (43) and (44) 

( )1 ne 0
 
and

 ( )3 ne 0 when n . 

 

SIMULATIONS RESULTS 

 

In this section, we present some simulation results using 

MATLAB and SIMULINK in order to observe the 

performance of the proposed control law. In the simulation we 

have considered two different examples with the same 

constants                                    
          . For the first example we took a senoidal 

reference profile for the aircraft with a null initial condition of 

all states. The reference and real position of the PVTOL 

aircraft on the x-y plane is shown in Fig.1 and the time 

evolution of lateral and vertical displacement is plotted in Fig. 

2. As we mentioned before, the internal dynamics (the states 

which are not directly reflected on the output system) should 

stay bounded along the resulting tracking. Fig.3 shows the real 

internal states of the system (which are linear and angular 

velocities of the aircraft          and the angular position  ) 

and the generated references that should be followed      
            . Finally the necessary controls efforts to 

achieve the desired tracking are shown in Fig.4. Note that in 

each case the solid blue line in the figures is the real value of 

states and the doted red line the reference one. 

 

Fig. 1  Reference and real position of the PVTOL aircraft on the x-y plane 

 

In the second example we are considering the initial 

condition        ,         ,        ,        , 

         ,           and the reference is just a point in 

the origin, so the aircraft should go from         to 

       . The trajectory described by the aircraft is 

practically a line between the initial and desired position 

which is shown in fig.5. The proposed control law has reached 

the shortest way to reach the desired point (line) and 

consequently a good way to save energy. The time evolution 

of lateral and vertical displacement is plotted in Fig. 6 which 

shows the finite time convergence of the state to the desired 

values. Fig.7 shows the real internal states of the system and 

the generated references that should be followed and Fig.8 the 

resulting controls laws.  

 

 

Fig. 2 Time evolution of  lateral and vertical displacement of the aircraft. 

 
Fig. 3 Linear and angular velocities of the aircraft and angular position 
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Fig. 4 Control actions u1 (thrust) and u1 (rolling moment). 

 
Fig. 5 Trajectory  described by the aircraft with no null initial conditions. 

 

 
Fig. 6 Time evolution of lateral and vertical displacement of the aircraft with 

no null initial conditions. 

 

 
Fig. 7 Linear and angular velocities of the aircraft and angular position 

with no null initial conditions. 

 
Fig. 8 Control actions u1 (thrust) and u1 (rolling moment) with no null 

initial conditions. 

 

VI. CONCLUSIONS 

 

 In this work, a new approach to control The Planar 

Vertical Take Off and Landing (PVTOL) aircraft by using 

linear algebra theory and numerical methods has been 

presented. The design of the proposed control law by using 

Linear Algebra tools is intuitive, and the final expression for 

the control signals, which will be directly implemented on the 

aircraft, is presented. The proposed control law leads the 

trajectory-tracking errors to zero as it was demonstrated. The 

presented simulations results show that the trajectory error 

between the desired and the real trajectory of the aircraft is 

very small and has a good tracking performance showing the 

feasibility of the developed algorithms.  The required 

precision of the proposed numerical method for the system 

approximation is smaller than the one needed to simulate the 

behavior of the system. This is because, when the states for 

the feedback are available, in each sampling time, any 

difference from accumulative errors is corrected (e.g., 

rounding errors). Thus, the approach is used to find the best 
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way to go from one state to the next one according to the 

availability of the system model.  

An appealing characteristic of this controller is its simple 

implementation in any programming language, besides the 

proposed methodology for the controller design can be applied 

to other types of systems. 
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