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EXTENSION OF POLYNOMIALS AND JOHN’S THEOREM
FOR SYMMETRIC TENSOR PRODUCTS

DANIEL CARANDO AND VERÓNICA DIMANT

(Communicated by N. Tomczak-Jaegermann)

Abstract. We show that for every infinite-dimensional normed space E and
every k ≥ 3 there are extendible k-homogeneous polynomials which are not
integral. As a consequence, we prove a symmetric version of a result of John.

1. Introduction

Every continuous linear functional defined over a normed space E can be ex-
tended to any superspace F ⊃ E, via the Hahn-Banach Theorem. For continuous
k-homogeneous polynomials or k-linear forms (with k ≥ 2) such an extension is
not always possible. This is related to the fact that the projective tensor norm πs

is not injective. Extendible polynomials are defined in [15] as those admitting an
extension to any larger space. They can be seen as the dual of the k-fold symmetric
tensor product of E with an injective tensor norm ηs [7, 3, 15] given by

k⊗
s,ηs

E
1

↪→
k⊗

s,πs

�∞(BE′).

Since the symmetric tensor norm εs is injective, every integral polynomial is
extendible. Thus, it is natural to ask about the existence of extendible noninte-
gral polynomials. In this direction, [4] and [6] proved independently that every
2-homogeneous extendible polynomial over a cotype 2 space is integral. On the
other hand, there exist extendible nonintegral k-homogeneous polynomials on �p,
for every p > 2 and k ≥ 2 (see, for example, [5]). These two facts focus the
question on the existence of an infinite-dimensional space where all the extendible
k-homogeneous polynomials are integral, for some k ≥ 3. Recently, Pérez-Garćıa
[16] proved that if k ≥ 4 there is no such space. We fill in the gap by proving the
same result for k ≥ 3.

In [12], Grothendieck asked about the existence of nonnuclear locally convex
spaces E and F such that the injective and projective norm are equivalent on
E ⊗ F and conjectured a negative answer. Pisier [17] provided a counterexample
exhibiting a Banach space P such that P ⊗ε P � P ⊗π P . In [13, 14], John proved
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that such an example is not possible for tensor products of order k ≥ 3. For locally
convex spaces he showed that

⊗k
ε E �

⊗k
π E if and only if E is nuclear. For

normed spaces, the conclusion also holds for tensor products of different spaces.

Theorem 1.1 ([13]). If the norms ε and π are equivalent in the tensor product⊗k
i=1 Ei, then all but two of the spaces E1, . . . , Ek are finite dimensional.

The fact that extendible and integral k-homogeneous polynomials never coincide
for k ≥ 3 means, in the tensor setting, that the norms ηs and εs are never equivalent
for k-fold symmetric tensor products. Therefore, the norms πs and εs are not
equivalent either, and thus we obtain the symmetric version of John’s result for
normed spaces.

We refer to [7], [9] and [10] for notation and terminology on tensor products,
polynomials and multilinear mappings on normed spaces.

2. The results

In [2], Boas showed estimates for the Bohr radius on �n
p := (Cn, ‖ · ‖p). For the

upper bounds he proved, for each p, the existence of a symmetric k-linear form on
�n
p as in (2.1) below with “small” norm. For our purpose, we need a symmetric k-

linear form having small norm on �n
2 and �n

∞ simultaneously. Therefore, we slightly
change the proof of Boas to obtain the following lemma.

Lemma 2.1. For each n ≥ 2 there exists a symmetric k-linear form Tn ∈ L(kCn)
of the form

(2.1) Tn(x1, . . . , xk) =
n∑

j1,...,jk=1

εj · x1(j1) · · ·xk(jk),

where εj = ±1, j = (j1, . . . , jk) and εj = εσ(j) for all permutations σ that verifies

‖Tn‖L(k�n
2 ) ≤

√
32k log(6k)k! n1/2,(2.2)

‖Tn‖L(k�n
∞) ≤ 2

√
32k log(6k)k! nk/2+1/2.(2.3)

Proof. To each choice of j1 ≤ j2 ≤ · · · ≤ jk we assign a different Rademacher
function rj . We consider for each t ∈ [0, 1] the k-linear form on C

n ×· · ·×C
n given

by

Ft(x1, . . . , xk) =
∑

j1≤j2≤···≤jk

rj(t)
∑

σ

x1(σ(j1)) · · ·xk(σ(jk)).

In the proof of [2, Theorem 4], it is shown that for every positive constant R2, λ2,
R∞, λ∞ the following inequalities hold:

µ
{
t ∈ [0, 1] : ‖Ft‖L(k�n

2 ) > 2
√

2R2

}
≤ 4(1 + 4k)2nke−R2λ2+

1
2 λ2

2k!,(2.4)

µ
{

t ∈ [0, 1] : ‖Ft‖L(k�n
∞) > 2

√
2R∞

}
≤ 4(1 + 4k)2nke−R∞λ∞+ 1

2 λ2
∞k!nk

,(2.5)

where µ denotes the Lebesgue measure on [0, 1].
Choosing, as in [2], R2 =

√
2k! log(8(1 + 4k)2nk) and λ2 = R2

k! , one obtains

µ
{

t ∈ [0, 1] : ‖Ft‖L(k�n
2 ) > 2

√
2R2

}
≤ 1

2
.
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Also, for R∞ =
√

2k!nk log(8(1 + 4k)2nk) and λ∞ = R∞
k!nk , we have

µ
{

t ∈ [0, 1] : ‖Ft‖L(k�n
∞) > 2

√
2R∞

}
≤ 1

2
.

Since the right-hand side of inequality (2.5) is a decreasing function of R∞ (for a
fixed λ∞), if we take R̃∞ = 2R∞, we obtain

µ
{

t ∈ [0, 1] : ‖Ft‖L(k�n
∞) > 2

√
2R̃∞

}
<

1
2
.

Therefore, ‖Ft‖L(k�n
2 ) ≤ 2

√
2R2 and ‖Ft‖L(k�n

∞) ≤ 2
√

2R̃∞ simultaneously for t
in a positive measure set. For any such t we can define Tn = Ft, which verifies
inequalities (2.2) and (2.3) since 8(1 + 4k)2nk < (6k)2nk, for all n, k ≥ 2. �

Since �n
∞ is 1-complemented in any larger space, the usual and the extendible

norms coincide in P(k�n
∞). This enables us to derive from the previous lemma the

following result (where Pe denotes the space of extendible polynomials and PI the
space of integral polynomials).

Lemma 2.2. For each n ∈ N there exists a k-homogeneous polynomial Pn ∈ P(k�n
2 )

such that

‖Pn‖Pe(k�n
2 ) ≤ C nk/2+1/2 and ‖Pn‖PI(k�n

2 ) ≥ D nk−1/2,

where C and D are positive constants independent of n.

Proof. Let Pn be the k-homogeneous polynomial associated to the symmetric k-
linear form defined in the previous lemma. We have

‖Pn‖Pe(k�n
2 ) ≤ ‖Pn‖Pe(k�n

∞) ‖id : �n
2 → �n

∞‖k = ‖Pn‖P(k�n
∞)

≤ ‖Tn‖L(k�n
∞) ≤ C nk/2+1/2.

For the other inequality, we define the symmetric tensor sn ∈
⊗k

s �n
2 by

sn =
∑

j

εj ej1 ⊗ · · · ⊗ ejk
,

where εj are the same signs as in the definition of Tn. Since

nk = Pn(sn) ≤ ‖Pn‖PI(k�n
2 ) ‖sn‖⊗k

s,εs
�n
2

and
‖sn‖⊗k

s,εs
�n
2

= ‖Pn‖P(k�n
2 ) ≤ ‖Tn‖L(k�n

2 ),

from inequality (2.2) we obtain the desired result. �
Now we use Dvoretzky’s theorem to extrapolate the situation in �n

2 to an arbi-
trary infinite-dimensional normed space.

Theorem 2.3. For any infinite-dimensional normed space E and any k ≥ 3, there
are extendible k-homogeneous polynomials on E which are not integral.

Proof. Suppose Pe(kE) = PI(kE). Then, there must be a constant M > 0 such
that ‖P‖PI(kE) ≤ M ‖P‖Pe(kE) for all extendible polynomial on E. If F ⊂ E is a
subspace, any extendible polynomial on F extends to an extendible polynomial on
E with the same extendible norm. Therefore, every extendible polynomial Q on F
is integral and

(2.6) ‖Q‖PI(kF ) ≤ M ‖Q‖Pe(kF ).
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By Dvoretzky’s theorem, for each n there exists an n-dimensional subspace Fn ⊂
E and an isomorphism jn : �n

2 → Fn with ‖jn‖ = 1 and ‖j−1
n ‖ ≤ 2. Let Pn ∈ P(k�n

2 )
be as in the previous lemma and define Qn = Pn ◦ j−1

n ∈ P(kFn). We have

‖Qn‖Pe(kFn) ≤ ‖Pn‖Pe(k�n
2 ) ‖j−1

n ‖k ≤ 2k C nk/2+1/2.

On the other hand,

D nk−1/2 ≤ ‖Pn‖PI(k�n
2 ) ≤ ‖Qn‖PI(kFn).

By (2.6), we obtain

D nk−1/2 ≤ M 2k C nk/2+1/2 for all n ∈ N,

which is impossible if k ≥ 3. �
Clearly, the above result is also valid for k-linear forms. Moreover, with slight

modifications we can show the existence of nonintegral extendible k-linear forms
on the product of different normed spaces, provided three of them are infinite
dimensional. So we have:

Theorem 2.4. If every extendible k-linear form on E1 × · · · ×Ek is integral, then
all the spaces but two are finite dimensional.

As an application of the previous theorems, first we note that Theorem 1.1 can
be deduced from Theorem 2.4. Actually, we have

Corollary 2.5. If the norms ε and η are equivalent in the tensor product
⊗k

i=1 Ei,
then all but two of the spaces E1, . . . , Ek are finite dimensional.

As for the symmetric version of this result, Floret [11] proved it for E = L∞(µ).
It is also simple to prove it for stable Banach spaces (i.e., spaces E such that
E × E � E). Indeed, for these spaces,

⊗k
s,εs

E �
⊗k

ε E and
⊗k

s,πs
E �

⊗k
π E.

Therefore, for stable spaces, the symmetric version follows from the result for the
full tensor product. As a consequence of Theorem 2.3, we obtain this result for
arbitrary normed spaces.

Corollary 2.6. For k ≥ 3, the norms εs and ηs are equivalent in the symmetric
tensor product

⊗k
s E if and only if E is finite dimensional. In particular,

⊗k
s,εs

E �⊗k
s,πs

E if and only if E is finite dimensional.
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