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Abstract

We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the
boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equa-
tion. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of
solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux
boundary condition.
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1. Introduction

The purpose of this article is to address the Neumann boundary value problem for a nonlocal
diffusion equation.
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Let J:RY — R be a nonnegative, symmetric J(z) = J(—z) with fRN J(z)dz = 1. Assume
also that J is strictly positive in B(0, d) and vanishes in R \ B(0, d). Equations of the form

u,(x,t)z(]*u—u)(x,t):/J(x—y)u(y,t)dy—u(x,t), (1.1)
RN

and variations of it, have been recently widely used to model diffusion processes, see [1-3,
6,7,11,14]. As stated in [7] if u(x,t) is thought of as a density at the point x at time ¢ and
J(x — y) is thought of as the probability distribution of jumping from location y to location x,
then fRN J(y—x)u(y,t)dy = (J *u)(x, t) is the rate at which individuals are arriving at position
x from all other places and —u(x,t) = — fIRN J(y — x)u(x,t)dy is the rate at which they are
leaving location x to travel to all other sites. This consideration, in the absence of external or
internal sources, leads immediately to the fact that the density u satisfies Eq. (1.1).

Equation (1.1), so called nonlocal diffusion equation, shares many properties with the classical
heat equation u; = Au such as: bounded stationary solutions are constant, a maximum principle
holds for both of them and, even if J is compactly supported, perturbations propagate with
infinite speed.

Given a bounded, connected and smooth domain, £2, one of the most common boundary
conditions that has been imposed to the heat equation in the literature is the Neumann boundary
condition, du/on(x,t) = g(x,t), x € 052.

Let us state our model equation. We study

u;(x,t)=/f(x—y)(u(y,t)—u(x,t))der / J(x—y)gly,0)dy, (1.2)

Q2 RN\ 2

for x € £2. In this model we have that the first integral takes into account the diffusion inside £2.
In fact, as we have explained the integral f J(x —y)wu(y,t) —u(x,t))dy takes into account the
individuals arriving or leaving position x from other places. Since we are integrating in £2, we
are imposing that diffusion takes place only in §2. The last term takes into account the prescribed
flux (given by the data g(x, ¢)) of individuals from outside (that is individuals that enter or leave
the domain according to the sign of g). This is what is called Neumann boundary conditions.

Our first result for this problem is the existence and uniqueness of solutions and a comparison
principle.

Theorem 1.1. For every ug € LY(2) and g € L ((0, 00); L' RN \ £2)) there exists a unique

loc
solution u of (1.2) such that u € C([0, 00); LY(2)) and u(x,0) = up(x).
Moreover the solutions satisfy the following comparison property:

ifup(x) <vo(x) inS2, thenu(x,t)<v(x,t) inS$2 x[0,00).

In addition the total mass in §2 satisfies

/u(y,r>dy=fuo(y>dy+ff / J(x = )g(y,s)dydx ds. (1.3)
0

Q2 Q 2 RN\
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Once existence and uniqueness of solutions is proved an important aspect in evolution equa-
tions is the asymptotic behavior as time evolves. In this context, we study the asymptotic behavior
of solutions for certain fluxes on the boundary.

First, we deal with a flux independent of time, that is, g(x,7) = h(x). As happens for the
heat equation, in this problem, when # verifies a compatibility condition, we prove that solutions
converge exponentially fast as + — oo to the unique stationary solution of the problem with the
same total mass as ug. If the compatibility condition is violated then solutions become unbounded
as t — 0o. We have the following result.

Theorem 1.2. Let in addition J € L>(RY). Let h € L'(RN \ ) such that

O=f / J(x —y)h(y)dydx. (1.4)

2 RN\Q2

Then there exists a unique solution ¢ of the problem

0=/J(x—y)(¢>(y)—§0(x))dy+ / J(x — y)h(y)dy (1.5)

2 RN\

that verifies |, o U0 = f o ¢ and the asymptotic behavior of solutions of (1.2) is described as
follows: there exists B = B(J, §2) > 0 such that

|u@) = ¢ 200, <€ P lluo = @l 12 (1.6)
If (1.4) does not hold then solutions of (1.2) are unbounded.

Next, we prescribe the boundary flux in such a way that it blows up in finite time. We consider
a flux of the form

gx,t) =h(x)(T —1)~7, (1.7)

with a nonnegative and nontrivial function A.

For this problem we analyze the possibility that the solution becomes unbounded at time 7" a
phenomenon that is known as blow-up in the literature. For blowing-up solutions we also analyze
the rate of blow-up (that is the speed at which solutions go to infinity at time 7") and the blow-up
set (that is the spatial location of the singularities).

We find that blow-up takes place in strips of width d (recall that J is positive in B(0, d) and
zero outside) around the support of 4 with blow-up rates that increase as the strips get closer to
the support of 4.

Before stating our theorem we need some notation. We set £29 = §2, By = supp(h) and define
recursively fori > 1

B; = {x e\ UBj: d.Bi-) <d}

j<i
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and
2, =82,1\B.

We also define the functions w;, w; : RY — R by

1
w1 (x) = [ 6= vmma.
(@—1)
RN\
w;(x) = ! - / J(x —y)wi—1(y)dy forl<i<a,
(¢ —1i)
RN\ &2;

i1 (x) = f J(x = Wh(y)dy

RN\ 2

and

w; (x) = f J(x —y)wi—1(y)dy forl <i<[a].
RN\ &2;

We can now state our result.
Theorem 1.3. Let in addition J € L®[RN). Assume h € L*@RN \ 2), h > 0,
f_Q fRN\Q J(x — y)h(y)dydx # 0. Then, the solution of (1.2) with g(x,t) = h(x)(T —1t)™¢

blows up at time T if and only if @ > 1.
If « > 1 is not an integer the blow-up set, B(u), is given by

Bw= |J B

1<i<[e]
with the asymptotic behavior
(T — t)“_iu(x, t) — wi(x) wuniformlyinB;ast — T

for each i such that 1 <i < [«].
If o is an integer the blow-up set, B(u), is given by

Bw= |J B

1<i<a
with the asymptotic behavior,

(T — ) "u(x,t) —> wi(x) uniformlyin Bi ast — T
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for eachi such that 1 <i <« and

u(x,t)

T —p > Pel) uniformly in By ast > T.

Observe that blow-up in the whole domain (global blow-up) is possible. Indeed this happens
for large values of « (depending on 2, h and d).

One can compare this result with the corresponding one for the heat equation with bound-
ary flux du/dn(x,t) = h(x)(T — t)*. For the heat equation solutions blow up if and only if
o > 1/2 and in this case max, u(x,t) ~ (T — 1)~ ®t1/2 Therefore the occurrence of blow-up
and the blow-up rate for nonlocal diffusion are different from the corresponding ones for the heat
equation.

Finally we consider a nonlinear boundary condition of the form

gy, 0)=ul(y,1) (1.8)

where u is the extension of u# from the boundary to the exterior of the domain in the following
form: let us assume that a neighborhood of width d of 362 in RY \ £ can be described by
coordinates (z,s) where z € 0§2 and s is the distance from the point to the boundary, then we
set u(z,s) = u(z). For this nonlinear boundary condition with nonlocal diffusion we have the
following result.

Theorem 1.4. Let in addition J € C(RY). Then, positive solutions blow-up in finite time if and
only if p > 1. As for the blow-up rate, there exist constants C, ¢ > 0 such that

(T — ) V=D Cmaxu(x, 1) < C(T — )~ V/P=D, (1.9)
X

Moreover, the blow-up set is contained in a neighborhood of 052 of width Kd, where K =
[p/(p = D]

There is a large amount of literature dealing with blow-up for parabolic equations and sys-
tems see for example the survey [9], the book [13] and references therein. When blow-up is due
to nonlinear boundary conditions see for example [10,12], the surveys [4,8] and the references
therein. It is known that solutions of the heat equation with a nonlinear boundary condition
given by a power blow up in finite time if and only if p > 1, the blow-up rate is given by
llu(x, )| ooy ~ (T — 1)~/ @(P=1) and the blow-up set is contained in d£2. Hence the blow-
up rate and set are different but the blow-up set contracts to the boundary as the support of J
becomes smaller. Observe that for J fixed the blow-up set can be the whole domain £2 if p is
sufficiently close to 1.

Organization of the paper. In Section 2 we prove existence, uniqueness and the comparison
principle, in Section 3 we deal with the problem with g(x,?) = h(x), in Section 4 we analyze
the blow-up problem and finally in Section 5 we study the problem with a nonlinear boundary
condition.

2. Existence, uniqueness and a comparison principle

In this section we prove Theorem 1.1 and give as remarks several consequences of the proof
that will be used later in the paper.
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As in [5], existence and uniqueness will be a consequence of Banach’s fixed point theorem so
we give first some preliminaries.
Fix f9p > 0 and consider the Banach space

X, =C(10,10]; L' (£2))
with the norm

lwll = max [w. 0],

N A

(£2)

We will obtain the solution as a fixed point of the operator T : X;, — X, defined by

Too.¢ () (x. 1) = wo(x) + / / (= ) (w(is) = w, ) dyds
0 £

t

—I—/ f J(x —y)g(y,s)dyds. (2.1)

0 RN\
The following lemma is the main ingredient in the proof of existence.

Lemma 2.1. Let wo, 20 € L'(2), g,h € L®((0, to); L'(RN \ 2)) and w, z € X;,, then there
exists a constant C depending only on §2 and J such that

| Towo. (W) = Teg n (@) ||| < llwo = zoll L1¢2) + Cro{llw — 2l + 118 = 2l oo (0.19): 21 @M\ 2)) |-

Proof. We have

/ [T £ (W) 0) — T 4 () 1) dx
2

< f |wo — zol(x) dx
2

dx

t
+f //J(x—y)[(w(y,s)—z(y,s))—(w(x,s)—z(x,s))]dyds
0 0

t

+/f f TG = )(g(r.s) — h(y.9)) dyds

2 70 RM\@2

dx.
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Hence

/|Tw0,g(w)(x9 t) - TZO,h(Z)(X, f)| dx

t t
< llwo — zoll 1) +/f‘(w(y,s) —z(y,s))‘dyds—l—//!(w(x,s) —z(x,s))|dxds
0 £ 0 2

t
+/ f 1g(y,s) —h(y,s)|dyds.

0 RN\
Therefore, we obtain,
| Two.g (w) = Tep w2 ||| < llwo — 20l 212y + Cro{llw — zlll + 18 — 2l oo (0,100 11 RN\ 2)) }
as we wanted to prove. O

Theorem 2.1. For every ug € L' (§2) there exists a unique solution u of (1.2) such that u €
C ([0, 00); L1 (2)). Moreover, the total mass in 2 verifies,

/u(y,t)dy=/uo(y)dy+// / J(x —y)g(y,s)dydxds. (2.2)

2 Q2 2 RN\

Proof. We check first that 7, , maps X, into X,,. From (2.1) we see that for 0 < 11 <1, <1,

[ Tug. () (12) = T, e ) @D 1

//‘w(y s)|dyds-|—/ / ‘g(y s)!dyds

5] RN\.Q

On the other hand, again from (2.1)
” Toug, g (w) (1) — UJOHLl(_Q) < Ct{|||w||| + ||8||L00((0,t0);L1(RN\9))}-

These two estimates give that T, ,(w) € C([0, 1p]; L! (£2)). Hence T, ; maps X, into Xy.
Choose 1y such that Cty < 1. Now taking 7o = wo = uo, g = h in Lemma 2.1 we get that T, ,
18 a strict contraction in X;, and the existence and uniqueness part of the theorem follows from
Banach'’s fixed point theorem in the interval [0, #y]. To extend the solution to [0, o0) we may take
as initial data u(x, f9) € L'(£2) and obtain a solution up [0, 2¢]. Iterating this procedure we get
a solution defined in [0, 00).
We finally prove that if u is the solution, then the integral in £2 of u satisfies (2.2). Since
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t
u(x,t)—uo(x)z//J(x—y)(u(y,s)—u(x,s))dyds
0 2

t

+/ / J(x—y)g(y,s)dyds.

0 RN\

We can integrate in x and apply Fubini’s theorem to obtain

t
fu(x,t)dx—/uo(x)dx:// / J(x—y)g(y,s)dydxds

2 2 0 2 RV\@
and the theorem is proved. O
Now we give some consequences that we state as remarks for the sake of future references.

Remark 2.1. Solutions of (1.2) depend continuously on the initial condition and boundary data.
Let u be a solution of (1.2) with initial datum u and v a solution of (1.2) with g replaced by &
and initial datum vg. Then for every 7y > 0 there exists a constant C = C(fg) such that

Orgntzg(t()”u(', t) - U(', I)HLI(.Q) < C””(’ 0) y U(', O) HLI(Q) + C”g - h“Loo((OJO);Ll(RN\.Q))‘

Remark 2.2. The function u is a solution of (1.2) if and only if

t
u(x, 1) = e A0 () + f / =AW 1 yyu(y, ) dyds
0 2

t

+ / / e AWE) 1 (x _ y)g(y,5)dyds, 23)
0 RN\@

where A(x) = [, J(x — y)dy.
Observe that A(x) >« > 0 (x € £2) for a certain constant .

Remark 2.3. From the previous remark we get that if u € L*°(£2 x (0,T)), up € C k(§2) with
0<k<oo,ge L®MRN\ 2 x(0,T)) and J € WEI(RN), then u(-, 1) € C¥(£2 x [0, T1).

On the other hand, if J € L®(RN), ug € L*(2) and g € L'RY \ £ x (0, T)), there holds
that u € L°°(£2 x (0, T)). (See Corollary 2.3 for an explicit bound in the case of continuous
solutions.)

We now define what we understand by sub and supersolutions.
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Definition 2.1. A function u € C([0, T); L'(£2)) is a supersolution of (1.2) if u(x,0) = up(x)
and

uz(x,t)>/l(x—y)(u(y,t)—u(x,t))der / J(x —y)g(y,1)dy. (2.4)
Q RN\

Subsolutions are defined analogously by reversing the inequalities.

Lemma 2.2. Let ug € C(£2), ug >0, and u € C(2 x [0, T1) a supersolution to (1.2) with g > 0.
Then, u > 0.

Proof. Assume that u(x,t) is negative somewhere. Let v(x, ) = u(x,t) + ¢t with ¢ so small
such that v is still negative somewhere. Then, If we take (xo, fp) a point where v attains its
negative minimum, there holds that 7o > 0 and

vt (X0, 10) = us(x0,70) + & > f J(xo — y)(u(y. 10) — u(xo, 10)) dy
2

= [ 160101 =G0 10) dy >0
2

which is a contradiction. Thus, # > 0. O

Corollary 2.1. Let J € L®(RN). Let ug and vy in L' (£2) with ug > vy and g, h € L*((0, T);
L'®RN \ £2)) with g > h. Let u be a solution of (1.2) with u(x,0) = uy and Neumann datum g
and v be a solution of (1.2) with v(x, 0) = vy and Neumann datum h. Then, u > v a.e.

Proof. Let w =u — v. Then, w is a supersolution with initial datum uo — vo = 0 and boundary
datum g — h > 0. Using the continuity of solutions with respect to the initial and Neumann data
and the fact that J € L®(RY), we may assume that u, v € C(£2 x [0, T]). By Lemma 2.2 we
obtain that w = u — v > 0. So the corollary is proved. O

Corollary 2.2. Let u € C(£2 x [0, T) (respectively v) be a supersolution (respectively subsolu-
tion) of (1.2). Then, u > v.

Proof. It follows the lines of the proof of the previous corollary. O

Corollary 2.3. Let u be a continuous solution of (1.2) with u(x,0) = ug and Neumann datum
g€ L®(RN\ 2) x (0, T)). Then,

t

u(x, 1) < supug + f sup f J(x = y)g(y, s)dyds. 2.5)
2 2
0 RN\ 2
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Proof. Let

t

v(f)=Sllpuo+fsup f J(x —y)g(y,s)dyds.
2 2
0 RN\

Then, v is a continuous supersolution of (1.2). By the previous corollary we get the esti-
mate (2.5). O

Corollary 2.4. If J € L°(R™) and u € C([0, T]; L' (2)) is a solution of (1.2) with u(x,0) €
L®(£2), g € L0, T; L' RN \ 2)) then, (2.5) holds.

Proof. Let u, be the solution of (1.2) with u,(x,0) = uy(x) and Neumann datum g, €
L®(RN \ 2) x (0, T)) such that g, — g in L' (RN \ £2) x (0, T)) and u}l — ug in L' (£2)
with [Jugll L= 2) < lluollLoe (). B

The result follows from the application of Corollary 2.3 to the functions u, € C(§2 x [0, T'])
and taking limits as n — co. 0O

3. Asymptotic behavior for g(x, ) = h(x)

In this section we study the asymptotic behavior, as t — oo, of the solutions of problem (1.2)
in the case that the boundary data is time independent. So we will assume throughout this section
that g(x,¢) = h(x) and that J € L?(R"). We start by analyzing the corresponding stationary
problem so we consider the equation

0= / J(x =) (p(y) — o)) dy + / J(x — y)h(y)dy. (3.1)
2 RN\ Q2
Integrating in £2, it is clear that a necessary condition for the existence of a solution ¢ is that
Oz/ / J(x —y)h(y)dydx. 3.2)
2 RN\

We will prove, by means of Fredholm’s alternative, that condition (3.2) is sufficient for exis-
tence and that the solution is unique up to an additive constant.
To do this we write (3.1) in the form

p(x) — K(p)(x) =b(x), (3.3)

where

b(x) = a(x) f J(x = Wh(y)dy,

RN\R2

K(@)(x) = a(x) / T = ey dy
22
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and

—1
a(x)= (/J(x—y)dy) .

2

We consider the measure

dx

e

and its corresponding space Li of square integrable functions with respect to this measure.
We observe that, due to our assumptions on J, the operator K maps Li into Li and as an
operator K : L7, — L7, is compact and self adjoint.

We look now at the kernel of I — K in Li. We will show that this kernel consist only of
constant functions. In fact, let ¢ € ker(/ — K). Then ¢ satisfies

w(x)=a(x)/J(x—y)fp(y)dy-
2

In particular, since J € L>(RY), ¢ is a continuous function. Set A = max .5 ¢(x) and consider
the set

A={xeQ2|px)=A}.

The set A is clearly closed and nonempty. We claim that it is also open in 2. Let xo € A. We
have then

0 (0) = a(x0) / T (0= V() dy.
2

Since a(xg) = (f_Q J(xo —y) dy)_1 and ¢(y) < ¢(xp) this implies ¢(y) = ¢(xo) for all y €
£2 N B(xg, d), and hence A is open as claimed. Consequently, as 2 is connected, A = 2 and @
is constant.

According to Fredholm’s alternative, problem (3.1) has a solution if and only if

dx
/b(x)— =0
Q

a(x) N
or equivalently

/ f J(x —y)h(y)dydx =0.

2 RN\@2

We have proved
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Theorem 3.1. Problem (3.1) has a solution if and only if condition (3.2) holds. Moreover any
two solutions differ by an additive constant.

We will address now the problem of the asymptotic behavior of the solution of (1.2). The next
proposition shows the existence of a Lyapunov functional for solutions of (1.2). Its proof is a
direct computation and will be omitted.

Proposition 3.1. Let u(x, t) be the solution of (1.2). Let us define

1 2
F(u)(t)=Z//J(x—y)(u(y,t)—u(x,t)) dydx
2 2

_/ / Jx —y)h(y)u(x,t)dydx. (3.4)

2 RN\

Then

%F(u)(t) = —2f(ut)2(x, 1)dx.
2

We are now in a position to state and prove a result on the asymptotic behavior of continuous
solutions.

Theorem 3.2. Let u be a continuous solution of (1.2) with g(x,t) = h(x) where h satisfies the
compatibility condition (3.2). Let ¢ be the unique solution of (3.1) such that

/(p(x)d)C:/uo(x)dx.
2 $2

Then
ux,t) > p(x) ast— oo 3.5)

uniformly in 2.
When (3.2) does not hold, solutions of (1.2) are unbounded.

Proof. Set w(x,t) =u(x,t) — ¢(x). Then w satisfies

w[<x,t>=fJ(x—y><w<y,r>—w(x,r>)dy

2

and [, w(x,1)dx =0.
By the estimate given in Corollary 2.3 we have that [|w|| L2 x[0,00)) 18 bounded in 2 x
[0, 00) by [luo — @l Lo (s2)-
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Setting A(x) = o J(x —y)dy and integrating, the above equation can be written as

t

w(x, ) =e A (x,0) + / e~ AW=s) / J(x —y)w(y,s)dyds.
0 2

We note that A(x) is a smooth function and that there exists & > 0 such that A(x) > « for all
x € £2. We observe that for x1, xo € £2 one has

|e™A0D! _ o= ACD o™t A(xy) — A(x2)].

With this inequality in mind it is not difficult to obtain, via a triangle inequality argument, the
estimate

lw(xi, 1) — wxz, )] < D(|AGx1) — Ax2)| + |w(xg, 0) — w(xz, 0)])

where the constant D is independent of ¢. This implies that the functions w(-, t) are equicontin-
uous. Since they are also uniformly bounded, they are precompact in the uniform convergence
topology.

Let #, be a sequence such that t, — oo as n — oco. Then the sequence w(-, t,,) has a subse-
quence, that we still denote by w(-, t,), that converges uniformly as n — oo to a continuous
function . A standard argument, using the Lyapunov functional of Proposition 3.1, proves
that ¢ is a solution of the corresponding stationary problem and hence ¥ is constant. As
f o w(x, t)dx = 0 this constant must be 0. Since this holds for every sequence t,, with t,, — oo,
we have proved that w(-, #) — 0 uniformly as r — oo as we wanted to show.

When (3.2) does not hold the equation satisfied by the total mass, (2.2), implies that u is
unbounded. 0O

We end this section with a proof of the exponential rate of convergence to steady states of
solutions in L2. This proof does not use a Lyapunov argument. It is based on energy estimates.
First, we prove a lemma that can be viewed as a Poincaré type inequality for our operator.

Lemma 3.1. There exists a constant C > 0 such that for every u € L*(82) it holds

f(u<x> — W) dx < cf/ (= ) (uly) — u()>dydx.
2 2

2

where (u) is the mean value of u in §2, that is

(u) = ﬁ/u(x)dx.
2

Proof. We can assume that (1) = 0. Now let us take a partition of R" in non-overlapping cubes,
T;, of diameter of length #. Using an approximation argument we can consider functions u
that are constant on each of the cubes 7;, u|7, = a;. We will only consider cubes 7; such that
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T; N $2 # (. For this type of functions we have to prove that there exists a constant C indepen-
dent of the partition such that

> |Tila} <CZZ/fJ(x—y>dydx (ai — ap)’.

Recall that there exist ¢ > 0 and r > 0 such that J(x — y) > o for any |x — y| < 2r.
If the centers of two cubes 7;, Ty, are at distance less than r and & < r we have

//J(x ) dydx (@i — ap > o T || Tkl (i — ap)>-
T; T

Given T;, Ty two cubes intersecting §2 there exists a number ¢, depending only on §2 and r
but not on 4, such that there exist a collection of at most £, not necessarily pairwise adjacent,
cubes T}, ..., T}, intersecting §2 with T, = T;, T}, = T} and such that the distance between the
centers of 7, and Tj, ., is less than r. Since all the involved cubes have the same measure, we
have

-1
T3 || Tl (ai — a)* < zz(z | T [ (@, —aij)Z)

m=1
2 £—1
£ > f / J(x —y)dydx (a;, — aj,,)* (3.6)
o
M T Tt

The intermediate cubes used in (3.6) corresponding to each pair 7;, T; can be chosen in such
a way that no pair of cubes is used more than a fixed number of times (depending only on
the diameter of 2 and r) when varying the pairs 7;, Tj. Therefore, there exists a constant C,
depending only on J and 2 but not on #, such that

Sy minie - a2 <c XY [ o= ydyixa-a
i k i k T T,

On the other hand, as we are assuming that
> ITilai =0,
i

we get

D Y T Tl — a)® > 21821 ) |Til (@)’
k i

1

and the result follows. 0O
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Now let us take the best J-Poincaré constant that is given by

B= inf f_(zf:z](x—)’)(M(y)—u(x))zdydx

3.7
uel2(£2) Jo (u(x) — (u))?dx 3.7)

Note that by Lemma 3.1 8 is strictly positive and depends only on J and £2.
Now let us prove the exponential convergence of u(x, t) to the mean value of the initial datum
when the boundary datum vanishes, i.e., # = 0.
Theorem 3.3. For every ug € L*(2) the solution u(x, t) of (1.2) with h =0, satisfies
|G, £) = o) |32y < € P 1o — (o) (3.8)
s L2(2) 0 0 L2(2) .

Here B is given by (3.7).

Proof. Let

1
H(t) = 5/(u(x,r) — (u0))*dx.

2

Differentiating with respect to ¢ and using (3.7), recall that (#) = (up), we obtain

1 1
H’(t):—E//J(x—y)(u(y,t)—u(x,t))zdydxg—ﬁif(u(x,t)—(uo))zdx.
2 2 2

Hence
H'(t) <—BH().
Therefore, integrating we obtain,
H(t) <e P H(0).
As we wanted to prove. O
As a corollary we obtain exponential decay to the steady state for solutions of (1.2) with 4 # 0.
Corollary 3.1. For every ug € L>(82) the solution of (1.2), u(x, t), verifies
It = @117 20, < e P lluo = 1172 (3.9)

Here ¢ is the unique stationary solution with the same mean value as the initial datum, and B is
given by (3.7).

Proof. It follows from Theorem 3.3 by considering that v = u — ¢ is a solution of (1.2) with
h=0. O
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4. Blow-up for g(y,t) =h(y)(T —t)™®

Now we analyze the asymptotic behavior of solutions of (1.2) when the flux at the boundary
is given by

gy, ) =h)(T —1)~*

with A > 0 and [, fRN\Q J(x — y)h(y)dydx > 0. We will also assume that the initial data,
and hence the solution, is nonnegative. Throughout this section u(x, ) will denote the solution
of (1.2) with boundary and initial data as described above. Also in this section we will assume,
without loss of generality, that T < 1. This makes the quantity — In(7" — ¢) positive which helps
to avoid overloading the notation.

Throughout this section we will assume that J € L (RN and we will use the notation intro-
duced in the introduction.

First, we prove that @ = 1 is the critical exponent to obtain blowing-up solutions.

Lemma 4.1. The solution u(x,t) blows up at time T if and only if « > 1.

Proof. Set

M(t) :/u(x,t)dx,
Q
then one has

iy L _
MO =g [ [ 16— yhdyax>

2 RN\@2

(T -0

Hence, if « > 1 M (¢) is unbounded as t /' T and the same is true for the solution u(x, t).
On the other hand, if @ < 1 we consider the solution of the ordinary differential equation

o C - .
Z(l)—m with z(0) = zo,

that is a supersolution of our problem if C and z¢ are large enough. Since z(#) remains bounded
up to time 7, a comparison argument shows that so does u(x,t). 0O

Lemma 4.2. There exists a constant C such that for each integer i such that 1 <i < «, the
solution u(x, t) verifies

C : o
u(X,l‘)gm in$2;_1ifi #«a

and

ulx,t) < —CIn(T —1t) in$2;_1ifi =«.
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Proof. If ¢ > 1 we have that

Cy

O= T e

is a supersolution to our problem for C; large enough, therefore

u(x,t) < in £2p.

1
(T —1)«1
If @ = 1 the argument can be easily modified to get
u(x,t) < —CiIn(T —t) 1n £2.

Now for x € £2; we have

ut<x,r>=f1<x—y)(u<y,t>—u<x,z))dy

2

which implies

ut(x,t)</J(x—y)(u(y,t)—u(x,t))dy+/1(x—y)u(y,t)dy-

2 B,
Assume that o > 2. In this case, in view of (4.1), we can use the function

)

Z(I)ZW,

with C; large enough, as a supersolution in £2; to obtain that

C
2 in £21.

As before if @ =2 we get

ux,t) < —CyIn(T —t) 1in £2;.

.1

4.2)

(4.3)

The previous argument can be repeated to obtain the conclusion of the lemma with the con-

stant C = max; g Cj. O

We can describe now precisely the blow-up set and profile of a blowing-up solution.

Theorem 4.1. If « > 1 is not an integer the blow-up set, B(u), is given by

Bw= ] B

I<i[a]
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with the asymptotic behavior

(T —)* 'u(x,t) > w;i(x) uniformlyinB; ast — T

for each i such that 1 <i < [«].
If o is an integer the blow-up set, B(u), is given by

Bw= |J B
1<i<a
with the asymptotic behavior
(T — ) "u(x, 1) —> wi(x) uniformlyin Bi ast — T
foreachi such that 1 <i <« and

u(x,t)

(T -0 Wy (x) uniformly in By ast — T.

Proof. We have

h(y)

m@&%=fJ@—yXM%0—ouD@H-/qJ@—y)
2

RN\

We prove first the theorem in the case when o = 1. Integrating (4.4) in ¢t and using that, by
Lemma4.2, u(x,t) < —CIn(T —t) we get

ILICTL R (x)' < 0 o ] /ln(T—r)dr+m—Tﬁ) (x)
T -0 S TmT = =T —0) “In(T -1
0

This proves that

u(x,t)

Jim W—t) =wi(x) uniformly in £29.

Also if x € £21 (4.4) reads
s (x, 1) = f TG — )y, 1) — e, 1) dy.
2

Integrating in ¢ and using again Lemma 4.2 we have

ulx,t) <u(x,0)— C/ln(T —r)dr.
0

Hence u is bounded in §2; and the theorem is proved if o = 1.
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Assume now that o > 1 and consider the change of variables
v (x,8) = (T —0)* lu(x, 1), s=—In(T —1).
Since u verifies (4.4), vy satisfies

(01)s (x, 5) = / T =)W1 s) — vix, ) dy

2

+ / J(x —y)h(y)dy — (¢ — D)vi(x, s). 4.5)
RN\

Integrating in s we obtain

vi(x,s) —wi(x)

= e~ @ DSy (x, 0) 4 e~@ D / e / J(x = y)(vi(y.r) —vi(x, r))dydr
0 17,
— e @ D5y (x). (4.6)

If o # 2 since, by the previous lemma, v; is bounded we get
[ui(x,8) —wi ()| < C (e + e @) 4.7)
for some constant C. This implies that
(T — 0% u(x, 1) = wi (x) (4.8)

uniformly in 29 ast — T.
We note that if o < 2, since wq(x) vanishes in £21, (4.7) implies

|v1(x, s)| <Ce @D forx e
and hence
u(x,t) <C forxe £2;.

Consequently, if 1 <« < 2 the blow-up set of u is §£2g \ £2; = B; and the asymptotic behavior
at the blow-up time is given by (4.8).

We have to handle now the case « = 2 which is slightly different. In this case instead of
estimate (4.7) there holds

v (x, 8) — w1 (x)| < C(se™ + e~ @ D7), (4.9)
This still implies that
(T — ) Vu(x, 1) > wi(x) (4.10)

uniformly in £2¢9 as t — T but does not ensure that u is bounded in £2.
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If x € £21 one has
ut(x,t)=/1(x—y)(u(y,t)—u(x,t))dy+/J(x—y)u(y,t)dy—/J(x—y)u(x,t)dy-
2 By By

Integrating in t we obtain

t
u(x,t)—//](x—y)u(y,r)dydr:u(x,O)—l—h+12,
0 B

where

Il(x,t)://J(x—y)(u(y,r)—u(x,r))dydr

0 2

and

t
Iz(x,t):—/fj(x—y)u(x,r)dydr.
0 B

Now using the fact that for z € £21 one has u(z,t) < —CIn(T —t), it can be checked that

Ii(x,1) : :
———— — 0 uniformly in 2y ast — T
In(T — 1)
and also
D(x,t . .
L) — 0 uniformly in 2y ast — T.
In(T —1t)

Moreover since (T — t)u(y, t) — wi(y) uniformly in By as t — T one has

1 t
_m//J(X—y)u(y,r)dydre/J(x—y)un(y)dy
0 B B,

uniformly in 2y ast — T.
Putting together this information we deduce that

u(x,t)

—m —>/J(X —ywi(y)dy

Bi

uniformly in £2y ast — T.
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Finally since u(x,t) < —CIn(T —¢) in §£21 we can argue as in the proof of the case @ =1 to
show that # remains bounded in £2;. So we have shown that if « = 2, then the blow-up set, B(u),
of u is given by

Bu)=8B,UB;
with the asymptotic behavior

lim (T — t)u(x,t) = wi(x) uniformly in £2¢
t—T

and

u(x,t)

tl)n} m = 1])2 (.X) uniformly n 91 .

If o > 2 setting
va(x,s) = (T — ) u(x,t), s=—In(T —1),

we obtain for x € £21 the equation

(V2)s(x,5) =" / Jx =) (02(y,8) —va(x,5))dy — (@ = 2)va(x,5).  (4.11)
2

This can be written as

(v2)g(x,5) = / J(x = y)(v2(y. s) — v2(x,5))dy

£2

+/J(x — iy, s)dy — vl(x,s)fl(x —y)dy
B B
— (@ —2)va(x, s). (4.12)
Again integrating in s, after observing that by (4.7) |vi(x, s)| < Ce™ since x € §21, we obtain

that

s

va(x,5) —e” @28 f e~ @ f J(x — y)vi(y,r)dydr
0 B

<C(e™d +e @) (4.13)

for some constant C provided that o # 3.
Also by (4.7) one has that

'/J(x—y)v1(y,S)dy—/J(x—y)wl(y)dy’<Ce‘s
B

Bi



C. Cortazar et al. / J. Differential Equations 234 (2007) 360-390 381

and consequently

S
wy(x) — e~ @28 / e @2 / J(x —y)vi(y,r)dydr| < Ce™".
0 B

This, together with (4.13), implies that for all x € £2;
}vz(x, §) — wz(x)| < C(e_s + e_(a_z)s)
for some constant C and hence
(T — )% 2u(x, 1) = wa(x)

uniformly in £2;.
The above procedure can be iterated to obtain for all integers i such that 1 <i < «

|v,-(x, §) — w; (x)! < C(e_s + e_(“_i)s) for all x € £2,_4 (4.14)
for some constant C and hence
(T — )" ux, 1) = w; (x) (4.15)
uniformly in £2;,_;. Moreover, it follows from (4.14) that for x € 24, if « is not an integer,
|v[a] (x, s)‘ < Ce (@ labs
and hence
u(x, 1) < C forall x € 2.

In this fashion we have proved that, if « is not an integer, the blow-up set of u is |_J 1<i<[a] B;
and the behavior of u near time 7 in B; is given by (4.15). This proves the theorem in the case
that « is not an integer.

In the case that « is an integer one can argue as in the proof of the case « = 2 to obtain the
result in that case. O

S. Blow-up with a nonlinear boundary condition
In this section we deal with the problem
Uy = / J(x — y)(u(y, 1) —u(x, t)) dy + f J(x —y)yuf(y,t)dy,

Q RN\
u(x,0) =ugp(x). (5.1)
Here we assume that J € C(RV), ug € C(£2), uo > 0 and # is the extension of u to a neigh-

borhood of §2 defined as follows: take a small neighborhood of 352 in RV \ £ in such a way
that there exist coordinates (s, z) € (0, sgp) x 052 that describe that neighborhood in the form
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y =z + sn(z) where z € d§2 and n(z) is the exterior unit normal vector to 052 at z. We set

u(y,t) =u(z,t).

We also assume that d < s therefore for any x € £2, B;(x) N (RN \ £2) is contained in the above
mentioned neighborhood.

We address now the problem of local existence in time and uniqueness of solutions.

As in the previous sections we set

AG) =fJ<x—y>dy

2

and observe that there exists o > 0 such that A(x) > « for all x € £2.
As earlier we obtain a solution of (5.1) as a fixed point of the operator T defined by

t

Tu(x,1)=e A y(x) + / e AWI=s) / J(x = y)u(y,s)dyds

0 2
t

+/6—A(x)(t—s) f J(x —y)uP(y,s)dyds.
0 RN\ Q2

We split the proof of existence into two cases. We deal first with the case p > 1 since in this
case we have uniqueness of solutions. In this direction we have the following theorem.

Theorem 5.1.

(a) Let p > 1. There exists to > 0 such that problem (5.1) has a unique solution defined in [0, tg).
(b) Let p < 1. There exists to > 0 such that problem (5.1) has at least one solution defined in

[0, 7p).

Proof. Fix M > ||ug||co, fo > 0 and set

X={uec(@x10.0)|u>0, llull=  sup |utx.n|<2m}.
(x,1)€82 x[0,19)

If 1y is chosen small enough, then 7 maps X into X. Indeed, we have for t <ty and u € X

t

| Tutx, )] < e ug(x) + / e A=Y / J(x = |uy, )| dyds

0 2
t

+fe—A(x)(t—s) ] J(x — y)|u (y,s)|dyds
0 RN\ 2
<M +1(2M + 2M)P) <2M

if #g is small.
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Proof of (a): We will prove that for p > 1 we can choose 7y in such a way that T is a strict
contraction. In fact, for t <fpand u;,ur € X

t

}Tume>—7uxwasg/e—ﬂﬂ“ﬂ{/ch—ynumyﬁ>—uxywndyds
0 2

t

+/e—A(x)(l—S) / J(x — y)|ﬁf(y,s) — ﬁg(y,s)\dy ds
0 RN\§2

<to(1 4 p@M)P~")luy — ual|
and part (a) of the theorem follows via Banach’s fixed point theorem.

Proof of (b): We have that 7 maps X into X if 7y is small enough. We claim that the operator
T :X — X is compact. Indeed, for t1, 1, < 1y, u € X and x1, x € £2 we have

|Tu(x1,t1) — Tu(xz,tz)‘

< Jem A0 (xp) — e A2y (xy) |
H 19}

+ /e_A(xl)(“_s)/J(xl —y)u(y,s)dyds—/e_A(XZ)(Q_S)/J(XZ—)’)M(y,S)dde
0 $2 0 2

I

N fe—A(xl)m—s) / J(x1 — )i (. s)dyds
0 RN\.Q

%)
. / e~ AL2)(12—s) / J(x2 = )l (y,s)dyds
0 RN\ Q2

As in the proof of Theorem 3.2 we have that for x1, x; € £ one has
|e—A(x1)t _ e—A(X2)2‘| g e_att|A(x1) _ A(.XZ)‘

with o > 0. This inequality plus the fact that J is integrable imply, via a triangle inequality ar-
gument, that the family {7« | u € X} is equicontinuous and, since it is bounded, it is precompact
in (X, || - I). Consequently, since T is clearly continuous in X, it is a compact operator and the
claim is proved. Part (b) of the theorem now follows from Schauder’s fixed point theorem. O

Remark 5.1. We observe that the same argument of the proof of part (a) of Theorem 5.1 provides
existence of a unique solution if the boundary nonlinearity takes the form f(z) with f locally
Lipschitz.

Now we prove a comparison lemma for solutions of (5.1).



384 C. Cortazar et al. / J. Differential Equations 234 (2007) 360-390

Lemma 5.1. Let u be a continuous subsolution and v be a continuous supersolution of problem
(5.1) defined in [0, ty). Assume u(x,0) < v(x,0) forall x € 2. Then

ulx,t) <v(x,t)
forall (x,1) € 2 x [0, tp).

Proof. Assume, for a contradiction, that the lemma is not true. Then, by continuity, there exist
x1 € 2 and 0 < t1 < tp such that u(xy,t;) =v(xy, 1) and u(x,t) < v(x,t) for all (x,¢) € £2 x
[0, £1). We have now

O0=u(xy,t1) —v(xy, 1)
— o~ Aln (M(X1, 0) — v(xl,O))
1
+/e_A(x1)(“_s)/J(x1 —)(u(y,s) —v(y,s))dyds

0 2
3]

+/6—A(x1><n—s> / J (1 = Y) (@ (yrs) =57 (y.5)) dyds <0
0 RN\

a contradiction that proves the lemma. O
Now we use this comparison result to prove the lack of uniqueness for p < 1.

Proposition 5.1. In the case p < 1 with ug = 0 there exists a nontrivial solution of problem (5.1).
Hence this problem does not have uniqueness.

Proof. Let b(t) be a positive solution of b" = b? with b(0) = 0 and 0 < a(x) < y be a continuous
function with a(x) =y on 0£2. Let y > 0 be so small as to have

1 f J(x —y)dy >2y
RN\ Q2

for every x € £2. Then,
v(x, 1) =a(x)b(t)

is a subsolution to our problem for a certain interval of time, (0, 7).

Let € > 0 be given and consider a locally Lipschitz function f; such that f.(s) =s? for s >
¢/2. It follows from Remark 5.1 that there exists a unique solution, wg, of (5.1) with the boundary
nonlinearity replaced by f,;(w) and initial data w, (x, 0) = €. By the comparison principle w, > ¢
and hence it is a supersolution of (5.1).

By comparison, the sequence w, is monotone increasing in €. In particular, for every & w,
is defined on the interval [0, #;] where w; is defined. Therefore, by monotone convergence, we
obtain that the limit

w = lim w;,
e—0

is a solution with w(x, 0) = 0.
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Using again the comparison principle we obtain that w, (x, 1) > v(x,t) for 0 <t < min{z, #1}.
Hence, w(x,t) > 0 for every 0 < t < min{tg, #1} and all x € supp(a). O

We address now the blow-up problem for solutions of (5.1). In this direction we have the
following theorem.

Theorem 5.2.

(a) Let p > 1, then every nontrivial solution of (5.1) blows up in finite time.
(b) Let p < 1, then every solution of (5.1) is globally defined in time, by this we mean that it
exists for all t € [0, c0).

Proof. Proof of (a): Let u be a solution of (5.1) and assume, for a contradiction, that it is globally
defined in time.
Since u > 0 and f_Q J(x —y)dy <1 we have for x € £,

wi (e, 1) > —ux, 1) + / J(x = )il (v, 1) dy.
RN\ 2

Here we have used that the equation is satisfied for x € 952.
Integrating on 952, denoting by d S, the surface area element of 952, we get

—fu(x HdS, > fu(x t)dS,y +/ / J(x —y)uP(y,t)dydS,.

02 RN\ 2

f / J(x —y)dydS, >0

92 RN\ 2

Since

an application on Jensen’s inequality implies that
p
—/u(x 1)dS, > — /u(x t)de—I—C(f / J(x —yu(y, t)ddex>
02 RN\

for some constant C > 0.
Now,

//J(x—y)ﬁ(y,ndydsx

12 RN\

2%///](x—a—sn(a))u(a,t)dSadstx

02 0 982
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:%f/|:/J(x—a—sn(a))ds:|u(0, 1)dSy dS,
0

082082

>5|asz|fu(a, )dSs,
082

if 0 < ¢ < d 1s small enough. (Recall that J(z) > ¢ > 0 for |z| < d/2.)
Thus, if we call

m(t) = / u(x,t)dSy,

982

we have

m'(t) = —m(t) + ymP (¢).

This implies that m(t) — oo in finite time if for some #, m(#g) is large enough.

(5.2)

Since we are assuming that u(x, t) is defined for every ¢ > 0, it holds that m(¢) is defined (and
finite) for all ¢+ > 0. Let us see that this leads to a contradiction. Let v(x, t) be the solution of

(1.2) with g =0 and v(x, 0) = ug. By Theorem 3.2 we get that

v(x, 1) = — [ uo,
|1£2]
2

uniformly in §2. Since u is a supersolution for the problem satisfied by v, there exists #; > 0 such

that for r > 1,

1
u(x,t))m/uozco>0.
2

Therefore,

M(t) = f u(x,t)dx

2

t
>M(n>+ff / J(r = y)i? (v, 8) dydx ds

1 2 RN\.Q

> M(t) + (t — tr)ech.

Arguing as before we get that

1
1) = ——M(t
u(x, 1) 6] (t2)
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for ¢ large enough. Now

B 1082| »
m(to) = | u(x,ty)dx > mM(zz) C(M(n) + (r2 — r)ecy).
as82

This implies that m(#() is as large as we need if #( is large enough, hence m (¢) is not defined for
all times and we conclude that u blows up in finite time.

Proof of (b): Let p < 1 and let u be a solution of (5.1). Set v(t) = C(t + 1) . It is directly
checked that

1
I

€ e,
p

V() = =

Picking C such that

we have that v is a supersolution of (5.1). Moreover taking C larger, if necessary, such that
u(x,0) <v(0) in £2 we obtain by Lemma 5.1 that

u(x,r) <v()

as long as u is defined. This implies the theorem in the case p < 1. The case p =1 is proved in
the same fashion but using v(z) = Ce’ as a supersolution. O

Our next result is an estimate of the blow-up rate of blowing-up solutions of (5.1).

Theorem 5.3. Let u be a solution of (5.1) that blows up at time T. Then there exists a constant
C such that

(p— 1~ YP=D(r — )=V =D ¢ H”(" 7 ”LOO(Q) <C(T —t)~ V=D, (5.3)
Proof. Let
v(r) = (p — 1)—1/(P—1)(T _ t)—l/(p—l).
One can easily check that v is a supersolution of our problem. If for some #y € (0, 7)) one has
[ 10)] oy < (0,
then there exists T > T such that

ux,t) <(p— 1)_1/(1’_1)(f —19)" VD),
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Let v(?) :=(p — 1)_1/(1’_1)(f — 1)~ 1/(P=D that is also a supersolution to our problem in the
interval [zy, T).
Using a comparison argument, we obtain
ux, 1) < (p =1~ VDT ==,
for all t € (tg, T'). This contradicts the fact that T > T and hence

(p— 1)—1/(P—1)(T _ t)—l/(P—l) < Hu(’ t)HLOO(_Q)'

The proof of the reverse inequality is more involved. By Eq. (5.2), if

m(t):/u(x,t)de—>oo ast /T,

082
we have
m(t) < C(T — 1) Y@=, (5.4)
Now, we claim that
t
(T — /=D / / J(x —y)a?(y,s)dyds < C, (5.5)
0 RN\Q2

for all x € 9£2. In fact, if this does not hold, there exists a sequence (x,,t,) with x, € 952,
t, /' T, such that

In
(T — zn)l/@—”f f J(xp, — )P (v, s)dyds — oo.
0 RM\£2

By compactness we may assume that x, — xo € d§2. Hence

tll

(T — tn)l/(’"“f / i’ (y,s)dyds — oo.

0 RN\2)NB(xp,2d)
Therefore there exists a point x| € 952 such that for a subsequence that we still call ¢,,

In

(T — z,,)l/“’—”/ / il (y,s)dyds — co.

0 (RN\2)NB(x1,d/4)
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Since every function involved is nonnegative and J(z) > ¢ > O for |z| < d /2 we get

tn
(T — w”“’—“f f JG — )P (v, 5)dyds — 0o,
0 RN\ 2

forevery x € 082 N {|x — x1| < d/4}.
Using (2.3), we get

In
(T —to)V P Dy, 1) > (T — tn)l/(l’—“f f J(& = )P (y,s)dyds — oo.
0 RN\Q

Therefore,
(T — 1) /P Vm(t) = (T —1,) /P~ / u(x,t,)dSy — 00,
d952

which contradicts (5.4). The claim is proved. _
Using again that J(z) > ¢ > 0 for z < d/2 we get that (5.5) holds for every x € £2. In fact,
first we see that for every x € 052

t
(T — z)1/<P—1>/ / uP(o,5)dS, ds < C.
0 982NBg/4(x)

Then, since 952 is compact we deduce that

t
(T —z)1/<P—1>/fu1’(a, s)dS,ds < C.

0 952

This immediately implies, by using that J € L™, that (5.5) holds for every x € £2.
Now, let fortyp < T,

M= max (T — )P Vux,1)=T — )P Duxy, n).
2x[0,10]

This implies by using again (2.3) that
1
M<C +/e—A(x1)(ll—S) / J(x1 —y)Mdyds <C + (1 . e_A(xl)tl)M.
0 2

So that, since A(x) > a > 0,

M<C,

with C independent of #y. The result follows. 0O
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Corollary 5.1. Let u be a solution of (5.1) that blows up at time T. Then, the blow-up set, B(u),
verifies

B(u) C {x € 2 | dist(x, 082) < Kd} (5.6)
where K =[p/(p — 1)].
Proof. The proof follows from the results in Section 4. O
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