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a b s t r a c t

The study of community structure became an important topic of research over the last
years. But, while successfully applied in several areas, the concept lacks of a general and
precise notion. Facts like the hierarchical structure and heterogeneity of complex networks
make it difficult to unify the idea of community and its evaluation. The global functional
known as modularity is probably the most used technique in this area. Nevertheless,
its limits have been deeply studied. Local techniques as the one by Lancichinetti et al.
(2009) [1] arose as an answer to the resolution limit and degeneracies that modularity has.

Here we propose a unique growth process for a fitness function based on the algorithm
by Lancichinetti et al. (2009) [1]. The process is local and finds a community partition that
covers thewhole network, updating the scale parameter dynamically.We test the quality of
our results by using a set of benchmarks of both heterogeneous and homogeneous graphs.
We discuss alternative measures for evaluating the community structure and, in the light
of them, infer possible explanations for the better performance of local methods compared
to global ones in these cases.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, community detection became one of the top research topics in the area of Complex Networks. Due in
part to the explosion of social networking, and also to its application in diverse areas as ecology and computational biology,
an interest arose in defining, detecting, evaluating and comparing community structures. For a thorough, yet not exhaustive,
reference of its applications, see the survey by Fortunato [2].

The early research by Newman startedwith use of betweenness to divide the network intomodules [3], and the definition
of modularity to evaluate communities [4]. Then he proposed using the modularity as a functional to be maximized [5].
Different optimization techniques were developed, of which we recall the algorithm by Guimerà et al. based on simulated
annealing [6] for its good results, and the Louvain algorithm [7] for its fast convergence within large networks.

Later works questioned the global optimization methods based on modularity, for being prone to resolution limits
(Fortunato [8]) and extreme degeneracies (Good et al. [9]). Local techniques were proposed, as the Clique Percolation
Method (CPM) (Palla et al. [10]), and the algorithm in Lancichinetti et al. [1], based on a fitness function. Both of them
find overlapping communities, and in the latter, the notion of natural community arose. The natural community of a vertex
is a locally-computed set, and its size depends on a resolution parameter α.

It has also been observed that the resolution limits for modularity found in Fortunato et al. [8] are particularly common
in heterogeneous graphs with heavy-tailed community sizes and vertex degree distributions (see Ref. [2], Section VI.C).
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In these graphs, small communities will often be masked into larger ones by modularity maximization techniques when
they are interconnected just by a few links.

In this work we detect communities based on a fitness function analogous to the one defined by Lancichinetti et al. in
Ref. [1]. After analyzing the role of the resolution parameter α in these functions, we propose a uniform fitness growth
processwhich scans thewhole graph andwhose resolution parameter is updated dynamically. Then,we extract a community
partition from the output of this process. The details of our method are described in Sections 2 and 3, and the algorithmic
complexity is discussed in Section 4.

In Section 5 we show the results. We use a benchmark developed in Ref. [11] to build a dataset of heterogeneous and
homogeneous networks. We observe an important improvement using our fitness growth process when compared to the
global modularity maximization techniques, which suggests that local methods may outperform global ones in these cases.
In order to discuss this conjecture, we analyze the consequences of the resolution limits and give a possible explanation to
the differences in performance between the two methods.

As a measure for comparing community structures, Danon et al. [12] proposed using the normalized mutual information.
We shall use it in order to make comparisons with global methods and with community structures known a priori. We also
apply the algorithm to real networks and show the results. Finally, we discuss the robustness (repeatability of the results)
of our process.

2. Our method

Given a graphG = (V , E), thework by Lancichinetti et al. [1] define a process based on a fitness functionwith a resolution
parameter α such that, given a set C ⊂ V :

f (C) =
kin

(kin + kout)α

where kin is the number of edges that join vertices in C , and kout is the number of edges that join some vertex in C to some
vertex not in C . This notion of community is related to the one proposed by Radicchi et al. [13]. In fact, a choice of α = 1
corresponds to the definition of weak community introduced in that paper.

The process starts with a community made up by the seed vertex v and proceeds by stages, where in each stage the steps
are: (1) select a vertex whose addition increments the fitness function, and add it to the present community; (2) delete from
the present community all the vertices whose deletion increments the fitness function. The algorithm stops when, being in
stage 1, it finds no vertex to add. Step 2 is time consuming, and usually very few vertices are deleted, but it is necessary due to
the local, vertex-by-vertex nature of the analysis. The authors called the final result of the algorithm the natural community
of v. The resolution parameter α is related to the natural community size.

In order to obtain a covering by overlapping communities, they select a vertex at random, obtain its natural community,
select a vertex not yet covered at random, obtain its natural community, and so on until they cover the whole graph.

In this process, the resolution parameter α of the fitness function is kept fixed. The authors perform an analysis in order
to find the significant values of α.

Our contribution extends that work to define a uniform growth process. This process covers the whole graph by making a
course throughout its communities. Wemodify the fitness function f (C) and analyze the role of α in the termination criteria
for the process. Then we propose an algorithm for increasing the fitness function monotonically while traversing the graph,
dynamically updating the parameter. Finally, a cutting technique divides the sequence of vertices obtained by the process, in
order to get a partition into communities.

2.1. Previous definitions

We shall deal with simple undirected graphs G = (V , E), with n = |V | vertices andm edges (here | ·| denotes the cardinal
of a set). To avoid unnecessary details, we assume that E ⊂ V × V is such that (v, w) ∈ E implies that (w, v) ∈ E.

We set δE(v, w) = 1 if (v, w) ∈ E, δE(v, w) = 0 in the other case. We then have the following expression for the degree
of a vertex v

deg(v) =


w∈V

δE(v, w).

Thus, |E| =


w∈V deg(w) = 2m. We shall use two measures, mV and mE , the first one on V and the second one on V × V .
Given C ⊂ V ,

mV (C) =


v∈C

deg(v)/|E|

is the normalized sum of the degrees of the vertices in C . Given D ⊂ V × V ,

mE(D) =


(v,w)∈D

δE(v, w)/|E|.



2280 M.G. Beiró et al. / Physica A 392 (2013) 2278–2293

Notice that when C1, C2 ⊂ V are mutually disjoint,mE(C1 × C2) is the normalized cut between C1 and C2, i.e., the number of
pairs (v, w) ∈ E such that v ∈ C1 and w ∈ C2. Notice also that mV is the marginal measure of mE , and that these measures
are in fact probabilities.

Let C ⊂ V , and v ∈ V . We denote

kiC (v) =


w∈C

δE(v, w)

and

koC (v) =


w∉C

δE(v, w).

Thus kiC (v) is the number of vertices in C joined to v, and koC (v) is the number of vertices not in C joined to v; it follows
that kiC (v) + koC (v) = deg(v).

We shall also use ski(C) =


v∈C kiC (v), and sko(C) =


v∈C koC (v).

2.2. A growth process

Given a fitness function f on the subsets of V , we define a growth process for f as a sequence of subsets of V , such that
each subset is obtained from the previous one, either by the incorporation or the elimination of a vertex. This sequence starts
with a seed node and finishes by covering all the set V .

Given a seed node v ∈ V , we shall represent a growth process for f with seed v is a double sequence

D00,D10, . . . ,D1k1 , . . . ,Da0, . . . ,Daka , . . . ,Db0, . . . ,Dbkb

of subsets of V , such that for each a such that 0 ≤ a ≤ b, we have a subsequence Da0, . . . ,Daka .

• D00 = {v}, k0 = 0.
• For a ≥ 0,D(a+1)0 = Daka andD(a+1)1 is obtained fromD(a+1)0 by adding to it one vertex such that f (D(a+1)1) > f (D(a+1)0).
• For k ≥ 1,Da(k+1) is obtained from Dak by elimination of a vertex (different from the seed vertex v), such that

f (Da(k+1)) > f (Dak).

In addition, we assume that for each a > 0, there is no vertex w ∈ Daka such that its elimination induces an increase in f ,
and that there is no vertex out of Dbkb whose addition induces an increase in f . Alternatively, we may describe the process
by v + s1w1 + · · · srwr , where the signs si (1 or −1) determine whether the vertex wi is added or eliminated in this step, for
example v +w1 +w2 +w3 +w4 −w5 +w6 means that in the first four steps we added w1, w2, w3, w4, in the fifth step we
eliminated w5 (which of course must be equal to some of the previously added vertices) and in the sixth step we added w6.

2.3. Special cases

For C ⊂ V , consider mV (C), cE(C) = mE(C × (V \ C)), which we shall abbreviate mV , cE when there is no place for
ambiguity. Recall that mV is the normalized sum of the degrees of the vertices in C , and cE is the normalized cut defined by
C .

We shall deal with two parametric families of fitness functions, with a real parameter t > 0:

Lt =
mV − cE
m1/t

V

and

Ht = mV (1 − mV/2t) − cE .

The first of these families is equivalent to the one used in Lancichinetti et al. [1], with α = 1/t .

2.4. A differential analysis

In the following, we show these two facts:

• In both fitness functions, Lt and Ht , changing the resolution parameter t does not affect essentially the evolution of
the growth process, but only defines the termination criteria. I.e., nodes that are candidates for addition (elimination)
under some value of the resolution parameter, will remain candidates for addition (elimination) when the resolution is
decreased.

• Both fitness functions, Lt and Ht , are essentially equivalent, in the sense that candidates for addition (elimination) for the
Lt process are also candidates for addition (elimination) for the Ht process.

In order to prove this, let C ⊂ V , and w ∈ V . Suppose that we are to add w to C , if w ∉ C , or to eliminate w from C , if
w ∈ C , obtaining in either case a new set C ′

= C ± w. Let us denote ∆mV = mV (C ′) − mV (C), ∆cE = cE(C ′) − cE(C), and
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let s, t > 0 be two fixed values of the parameter. Then we have the following approximate expression for the difference
quotient of Lt ,

∆Lt
∆mV

≈ L′

t =
1

m1/t
V


1 −

∆cE
∆mV

−
L1
t


.

For the difference quotient of Ht we obtain

∆Ht

∆mV
≈ H ′

t =


1 −

∆cE
∆mV

−
mV

t


.

Notice then the following relations

H ′

t = H ′

s +
t − s
ts

mV (1)

m1/t
V L′

t = m1/s
V L′

s +
t − s
ts

L1 (2)

H ′

t = m1/t
V L′

t + (L1 − mV )/t. (3)

Eq. (1) shows us that if t > s and H ′
s > 0, then H ′

t > 0, which means that if the vertex w is a candidate for addition
(elimination) to C (from C) for the Hs process, it is also a candidate for addition (elimination) for the Ht process.

Eq. (2) shows us analogously that if t > s and L′
s > 0, then L′

t > 0, which means that if the vertex w is a candidate for
addition (elimination) to C (from C) for the Ls process, it is also a candidate for addition (elimination) for the Lt process.

This shows that the parameter t does not play an essential role during the growth process for Ht or Lt , but merely
establishes the termination criteria.

Eq. (3) shows a delicate fact: If a vertex w is a candidate for addition (elimination) for the Lt process, andmV < L1 (this is
usually true, notice that whenmV > L1, cE > mV (1−mV ), which contradicts the notion of community, because the second
term would be the mean of the first one if the vertices were to be selected randomly) then it is a candidate for addition
(elimination) for the Ht process. Thus, both processes are essentially equivalent, their difference lying in the termination
criteria. In exceptional cases, communities obtained with the Ht fitness functions are bigger than those obtained with the Lt
fitness functions.

There are approximations involved, so that our previous comments are rough and qualitative: our experience testing
both fitness functions confirms them.

2.5. Natural communities

The following is a formalization of the procedure described in Lancichinetti et al. [1] to obtain the natural community of
a vertex v, generalized for any fitness function.

Algorithm 1: Natural communities
Input: A graph G = (V , E), a fitness function f, a vertex v ∈ V
Output: A growth process D00,D10, . . . ,Da0, . . . ,Daka , . . . ,Db0, . . . ,Dbkb
begin1.1

D00 = {v}1.2
m = 01.3
while there exists w out of Dm0 such that f (Dm0 + w) > f (Dm0) do1.4

Dm1 = Dm0 + w1.5
k = 11.6
while there exists w ∈ Dmk, w ≠ v : f (Dmk − w) > f (Dmk) do1.7

Dm(k+1) = Dmk − w1.8
k = k + 1;1.9

end1.10
D(m+1)0 = Dmk1.11
m = m + 11.12

end1.13

end1.14

The output of this ‘‘algorithm’’ is a growth process for f , v+w1+w2±w3±· · ·±wr−1+wr , such that there is now not in
Dr0 with f (Dr0+w) > f (Dr0). EachDj0, 0 ≤ j ≤ k satisfies that there is now ∈ Dj0, w ≠ v, such that f (Dj0−w) > f (Dj0).Dr0
is a possible ‘‘natural community’’ with seed v.

Remark. Notice that the preceding prescription is not complete, because both the w that we choose to add, as well as the
w that we choose to eliminate, depend upon a criterion that we do not fix.
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2.6. Uniform growth processes

In the previous subsection we have described a method to obtain a natural community with seed v and fitness function
f . Applying this with f = Ht and fixed t , for different values of t we obtain different communities. Although it is not strictly
true that ‘‘the bigger the t , the bigger the community’’, we have noticed in our differential analysis that this is essentially the
case. Thus, it is reasonable to wonder whether it is possible to obtain all these communities with a unique process, starting
with the smallest ones and proceeding with the biggest ones. The answer is affirmative, as we shall see now.

Let us assume that we have our parametric family of fitness functions Ht : t > 0. We shall call ∂(C) to the boundary of C ,
that is the set of nodes not in C that have one or more connections to nodes in C . Given C and w ∈ V such that kiC (w) > 0,
there always exists tc = tc(C, w) > 0 such that Htc (C ± w) = Htc (C). Indeed, we have:

Ht(C ± w) = (mV + ∆mV )(1 − (mV + ∆mV )/2t) − (cE + ∆cE)

= mV (1 − mV/2t) − cE −
∆mV

t
(mV + ∆mV/2) + ∆mV − ∆cE

= Ht(C) −
∆mV

t
(mV + ∆mV/2) + ∆mV − ∆cE

and it follows that

tc =
∆mV (mV + ∆mV/2)

∆mV − ∆cE
satisfies our exigencies. We also see that

∆Ht = −
∆mV

t
(mV + ∆mV/2) + ∆mV − ∆cE

and it follows that ∆Ht > 0 when t > tc and w ∈ ∂(C), and that ∆Ht > 0 when t < tc and w ∈ C .
Let v +

M
i=1 siwi be an algebraic expression with the previously introduced meaning, where we naturally assume that

each time we eliminate a vertex, that vertex had previously been added. Let D0 = v and for r > 0,Dr = v +
r

i=1 siwi. We
assume that for each r , 0 ≤ r < M, kiDr (wr+1) > 0.We shall consider values 0 = t0, t1, . . . , tr associated to this expression,
tr = max{tr−1, tc(Dr−1, wr)} when sr = 1, tr = tr−1 < tc(Dr−1, wr) when sr = −1. Thus, t0, . . . , tr is a non-decreasing
sequence, and D0, . . . ,Dr is a growth process for Ht if t > tr . We call D0, . . . ,DM a uniform growth process for H .

Algorithm 2: A growth process for H
Input: A graph G = (V , E), a vertex v ∈ V
Output: A growth process for H: D00,D10, . . . ,Da0, . . . ,Daka , . . . ,Db0, . . . ,Dbkb
begin2.1

D00 = {v}2.2
ta = 02.3
m = 02.4
while there exists w in ∂(Dm0) do2.5

let w0 be such that tc(Dm0, w0) = minw∈∂(Dm0)(tc(Dm0, w))2.6
ta = max{ta, tc(Dm0, w0)}2.7
Dm1 = Dm0 + w02.8
k = 12.9
while there exists w ∈ Dmk, w ≠ v : tc(Dmk, w) > ta do2.10

Dm(k+1) = Dmk − w2.11
k = k + 1;2.12

end2.13
D(m+1)0 = Dmk2.14
m = m + 12.15

end2.16

end2.17

The output of this ‘‘algorithm’’ is a uniform growth process forH , which ends by covering thewhole graph. The successive
truncations of the sequence thus obtained are natural communities for v at different resolutions. In the sequel we assume,
with empirical evidence, that these natural communities are made up of small subcommunities, which are inserted one
after another during the growth process. The following section explains how to detect these communities.

3. Extracting the communities

The previous section described the growth process, which outputs a sequence DM = v +
M

i=1 siwi. Some vertices of
the graph may be inserted, removed and later reinserted during this process. We filter this sequence in order to generate
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a new one which only keeps the last insertion of each vertex. In this way we obtain a subsequence S of the original one,
such that each vertex appears once and only once throughout it. Now, as the growth process tends to choose the vertices
by their strong linkage to the natural community built so far, we state that two consecutive vertices in the sequence either
belong to the same community or they are border vertices. Considering that the first case is the most frequent, an algorithm
is needed in order to cut that sequence S into a list of communities C = (C1, C2, . . . , CN). The cuts are made by observing
the behavior of the function

S(w) =
cE(C(w))

mV (C(w))
,

where C(w) are the sublists of S, from the start of the last partial community up tow.We shall use the term partial community
to denote the evolving set of nodes since the last cut in the process and up to the current node. The criterion to decide the
closure of the community and the start of a new partial community is an increase in the function S(w).

In other words, the function considers the sequence of vertices added since the start of the last partial community, Ci,
and computes the evolution of the quotient between the ‘‘cut of the partial community with its external world’’ (cE) and the
‘‘mass of the partial community’’ or cumulated degree (mV ).

To understand the statistical behavior of this function, we shall consider a community C = (v1, v2, . . . , vn) whose
vertices have amixing parameterµ. That is, they share a fractionµ of its edges with other communities and a fraction 1−µ
with their own community. We shall call Ci to the successive subsets built by the growth process within the community C .
The control parameter for the subdivision is then

Si = S(vi) =
mE(Ci × (V \ Ci))

mV (Ci)
= 1 − L1(Ci).

Our statistical analysis will be based in the following relations:

mE(Ci × (V \ C)) = µmV (Ci)

mE(Ci × Ci) = λimE(Ci × C).

The first follows from the hypothesis that all the vertices in C share a similar µ. The second is just a definition of a
parameter λi which belongs to the interval [0, 1].

From these equations it can be shown, by a straightforward calculation and using the additivity ofmE , that

Si = µ + (1 − µ)(1 − λi)

(1 − µ)λi = L1(Ci).

We assume that L1 has a monotone increasing behavior throughout the community construction, and this implies a
monotone decreasing behavior on Si also, even without assuming a constant µ. We also observe that, for the last vertex in
the community, S = µ (because λ = 1).

Now, let us see what happens when the community is finished and we incorporate a vertex v from another community
C ′, which has a different mixing parameter µ′. We shall call C+ to C ∪ {v}, and we define ϵ by the relation

mE({v} × C) = ϵ mE({v} × (V \ C ′)) = ϵµ′mV ({v})

which represents the proportion of external connections from v ∈ C ′ going to vertices in C .
The new value of our control parameter is then

S+
=

mE(C+
× (V \ C+))

mV (C+)

and it can be shown that

S+
= µ +

(1 − 2ϵµ′
− µ)mV ({v})

mV (C+)
.

If the mixing parameters are not very high or ϵ is small, which is expected, this new value S+ will break the decreasing
behavior of S inducing the closure of C and the start of a new partial community C ′ with v′ as its first node v′

1.
We can now resume the behavior of S(w) in the following way:

• The function starts from S(w) = 1 when the first node of the community is incorporated (w = v1).
• The function S(w) decreases from 1 up to µ throughout the community.
• The function S(w) will increase when the community is finished and the process tries to incorporate an

external node w′.
• Under that condition, a new community is started with that external node and S(w′) is set to 1.

Fig. 1 shows the behavior of S(w) for the growthprocess on four different networks: dolphins [14], football [3], an instance
of the LFR benchmark [11] (see Section 5) and a collaboration network [3]. We remark the decreasing trend of the function
inside each community, reaching minimum values between 0.2 and 0.5 in general, which points out the average µ (and
consequently, the cohesion) of each discovered community.
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Fig. 1. The cuts in the growth process in different networks: dolphins [14], football [3], an instance of the LFR benchmark [11] (see Section 5) and a
collaboration network [3]. In the first two ones we show the complete growth-process; the others are an extract of the full process.

4. Algorithmic complexity

In this section we shall prove that the proposed method for detecting community structure has a computational
complexity of O(n · kmax + m · log(n)). We shall analyze the growth process in Section 2 (described in Algorithm 2) and
the extraction of communities described in Section 3. We will use the notation N (v) for the neighborhood of v (the set of
vertices which have an edge with v), and kmax for the maximum degree, i.e., kmax = max{k(v), v ∈ V }.

We begin by analyzing the growth process at a certain step r , when the natural community is Dr = v +
r

i=1 siwi. The
instruction 2.6 in Algorithm 2 points out that we must incorporate the node w in the boundary of Dr with the minimum
tc(Dr , w). We observe, from the expression of tc , that

tc(Dr , w) =
∆mV

∆mV − ∆cE
· (mV + ∆mV/2).
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Fig. 2. Structure kept during the process for the natural community Dr and its boundary, ∂(Dr ). In each structure, the nodes are grouped by degree
(represented by the columns with values 1, 2, . . . , kmax). Nodes with the same degree are kept in a logical structure ordered by increasing ∆cE , like a tree
or map (represented by the two-way arrows). The values at the head of these structures are the only ones that need to be considered at each step. In this
example, v1 and v4 are considered for addition, and v1 is chosen because it minimizes tc . Using these structures, the complexity of the growth process was
reduced to O (n · kmax + m · log(n)).

Given the subset of all the nodes in the boundary having the same degree as w, the one with the minimum tc is the one
that minimizes ∆mV

∆mV −∆cE
. For a given degree, minimizing this expression is the same as minimizing ∆cE . So, if we group the

nodes in the boundary into lists according to their degree, and we order each list by increasing value of ∆cE , then we can
assure that the node in the boundary which minimizes tc must be at the head of one of these lists. Then we propose to keep
an updated structure with the boundary ∂(Dr) (see Fig. 2). We shall need an analogous structure for the natural community
Dr for the eliminations; this structure is also shown in the same figure. In this waywe reduce the complexity from analyzing
all the boundary into analyzing kmax nodes at most.

We shall call lmax to the maximum length of one list, and these lists will be implemented with a direct access, ordered
structure, as a map or tree. The operations of insertion preserving order have complexity O(log(lmax)), while the access has
complexity O(1). We are now ready to analyze the complexity of the r-th step.

1. Looking for the nodew with theminimum tc(Dr , w) implies finding theminimum between the heads of each of the lists.
This has a complexity O(kmax).

2. Updating the structures involves:
(a) Removing w from its list in the ∂(Dr) structure. Complexity O(1).
(b) Updating ∆cE for w to (−∆cE). Complexity O(1).
(c) Inserting w into the k(w)-list in the Dr structure. Complexity O(log(lmax)).
(d) Updating ∆cE for the neighbors of w, i.e., v ∈ N (w):

i. If v ∉ Dr , update ∆cE to ∆cE − 2/(2m). Complexity O(1).
ii. If v ∈ Dr , update ∆cE to ∆cE + 2/(2m). Complexity O(1).

(e) Reinserting (or inserting) the neighbors of w in the lists:
i. If v ∈ Dr , reinsert it into the k(v)-list of the structure for Dr , ordered by its new value of ∆cE . Complexity

O(log(lmax)).
ii. If v ∉ Dr , v ∉ ∂Dr , insert it into the k(v)-list of the structure for ∂Dr , ordered by its new value of ∆cE . Complexity

O(log(lmax)).
iii. If v ∉ Dr , v ∈ ∂Dr , reinsert it into the k(v)-list of the structure for ∂Dr , ordered by its newvalue of∆cE . Complexity

O(log(lmax)).

Putting all together, the complexity of this step is O(kmax + |N (w)| · log(lmax)).
Now, the steps during the growth processmay consist not only of incorporations, but also of eliminations. The elimination

condition is resumed in the instruction 2.10 in Algorithm 2.
The logic of eliminations is exactly the same: i.e., it consists on analyzing the heads of the lists in the structure for Dr ,

looking for a value of tc bigger than the actual ta. In that case, the node is removed from Dr and its neighbors are updated in
an analogous way as with the incorporations, and with a similar complexity.
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During all our experiments, we verified that the eliminations are scarce, and we shall assume that they are at most, of
the same order as the incorporations. We can assume that the process consists only of incorporations in order to calculate
the complexity. Under this hypothesis, each node is incorporated only once in the process, and the complexity of the growth
process can be expressed as:

O


w∈V

(kmax + N (w) · log(lmax))


.

The sum over all the neighbors of N (w) can be translated into the fact that every edge in the network is considered only
once. Regarding lmax, we cannot make any assumption. In heavy-tailed degree distributions, the amount of nodes with a
certain small degree value, may be of O(n), so we shall bound lmax with n. Thus, we have a complexity of

O (n · kmax + m · log(n)) .

In the initialization of the process, the ∆cE and ∆mV of the nodes are both set to the node degrees. This step does not
change the complexity.

Finally, as a result of the growth process in Algorithm 2, we get a sequence CM of vertex insertions interleaved with some
eliminations. Obtaining the subsequence S where each vertex appears once and only once requires running through CM
twice, and has a complexity O(n). The cutting algorithm of Section 3 runs over S only once, computing S(w) for each node
based on the values of cE andmV , which were already computed during the growth process. The complexity here is linear.

Thus, the complexity of our method is dominated by the growth process and is O (n · kmax + m · log(n)).

5. Results and discussion

In this sectionwe show the results of our localmethod applying it to (i) a benchmark of heterogeneous and homogeneous
networks, (ii) real networks of different sizes and(iii) random networks. In Section 5.1.1 we use some statistical tools to
evaluate the method and compare it to global ones. In Section 5.2 we show that the algorithm is robust for large networks
with a well-defined community structure, and in Section 5.3 we use it to analyze a scientific collaboration network.

5.1. Benchmarking with a set of heterogeneous networks

We evaluated our algorithm with a benchmark proposed in Lancichinetti et al. [11]. We used their software to create
sets of random graphs following a power law for the vertex degree distribution (exponent α) and for the community size
distribution (exponent β). Each set of graphs contains instances with different values of the mixing parameter µ, ranging
from 0.05 to 0.80 (themixing parameter is the fraction of neighbors that each vertex has in communities other than its own).
Our comparisons are similar to the ones performed in Refs. [15,12].

We built 4 sets:

• BENCH1: Heterogeneous networks; α = 2.0; β = 3.0; ⟨k⟩ = 10; kmax = 50; 1, 000 nodes
• BENCH2: Homogeneous networks; k = 10; 1, 000 nodes
• BENCH3: Heterogeneous networks; α = 2.0; β = 3.0; ⟨k⟩ = 10; kmax = 50; 5, 000 nodes
• BENCH4: Homogeneous networks; k = 10; 5, 000 nodes.

For each set we constructed 1,600 graphs with 100 instances for each values of the mixing parameter µ, which moves
between 0.05 and 0.80 in steps of 0.05.

We have used this benchmark for different reasons:

• It simulates networks with heterogeneous distributions as those of real networks. These distributions provide greater
challenges to the community discovery algorithms with respect to fixed-degree networks like the ones generated by the
Girvan–Newman benchmark [3]. For example, heterogeneous networks are subject to resolution limit problems when
global methods are applied.

• The parameters adjust tightly to the proposed values, and the distribution of µ follows a roughly bell-shaped curve
around the desired value of µ.

• It has a low complexity, which makes it suitable to generate a big set of graphs.

Fig. 3 analyzes the results for the different benchmarks. We used the normalized mutual information (see Appendix A) to
compare our partition with the one issued from the benchmark generation, for each network instance. The 1,600 instances
of each benchmark are grouped by their µ value. We used the boxplot command of the R statistical software [16]. This
command computes the quartiles for the distribution of the results for a certainµ, displaying: themedian (second quartile);
boxes representing the 3rd and the 1st quartiles; and whiskers that are placed at the extremes of data.

The results are successful for a wide range of values ofµ. In general, themutual information is larger than 0.90 for values
of the mixing parameter up to 0.60. This behavior was also observed in other benchmarks with values of α and β ranging
from 1.00 to 3.00, which we do not reproduce here. We also run some tests on large networks with 1,000,000 nodes and
µ = 0.45 generated with the same benchmark, and obtained values of the mutual information around 0.99.
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Fig. 3. Statistical analysis of the normalized mutual information between our partition and the communities known a priori as a function of the mixing
parameter µ, for each of the four benchmark sets. Each box represents the 100 networks generated for each µ value.

5.1.1. A comparison with other methods
Fig. 4 compares the partitions foundwith our growth process based on theH fitness function against those obtainedwith

two other methods:
• The Louvain algorithm [7], which is one of the most efficient modularity-based methods.
• Infomap [17]. This algorithm by Rosvall and Bergstrom is based on compression of the information about the graph

structure. This is the best performing algorithm on the LFR benchmark [18].

The points represent median values of the normalized mutual information for the 100 different networks generated for
each value of the mixing parameter µ, in the BENCH3 and BENCH4 sets. The reference partition is the one computed a priori
by Lancichinetti’s benchmark, from which the networks are generated. So when we mention the mutual information for
the growth process we mean the mutual information against the pre-computed communities. The same holds for the mutual
information for the Louvain and Infomap algorithms.

We observe that our growth process outperforms Louvain for the detection of communities in the benchmarks, and that
the difference in performance increases for higher values of the mixing parameter µ. This behavior seems to be related to
the resolution limit of modularity-based methods. On the other hand, the growth process is surpassed by Infomap, whose
performance is known to be very good on the LFR benchmark.

In order to make a comparison regarding the resolution limit of modularity, we analyze howmany pairs of communities
found with our growth process would be usually joined by agglomerative modularity maximization techniques, because
their union increases modularity. In Fig. 5 we show the results of this analysis for the BENCH1 set. The y-axis represents
the percentage of ‘joinable’ pairs (Ci, Cj), i ≠ j in a given partition C (i.e., the amount of ‘joinable’ pairs in relation to
|C| · (|C| − 1)/2 ). The boxes represent the 100 network instances for a given value of the mixing parameter µ in the
x-axis. The left plot corresponds to Lancichinetti’s a priori partition, while the right plot is for the communities that we
obtain. The linear behavior of the percentage as a function of µ explains why modularity-based techniques tend to fail
when the values of µ are bigger. In fact, the Louvain algorithm cannot find these communities because they are merged
until a local maximum is achieved, at least theoretically: this may be slightly affected by the precision parameter included
in the software for stability reasons.

Fig. 6 shows a comparison with the original Lancichinetti’s method for an instance of BENCH1 with µ = 0.20. When we
ran Lancichinetti’s algorithm we chose a value of α = 0.70, so that its resolution was consistent with that of the a priori
communities. The three subfigures represent the community cover found by Lancichinetti’s method with α = 0.70 (top),
the community partition found by our growth process (center) and the a priori community partition defined by the LFR
benchmark (bottom). Each subfigure contains a binary matrix whose column axis holds the vertices of the graph and the
row axis represents the communities found by each method. The matrix has a 1 (black dot) in position (i, j) when the i-th
vertex in the order belongs to the j-th community in the order.

The vertices are ordered in the same way in the three subfigures, and this order is defined by the index of the vertices in
our growth process. The communities are ordered on the row axis by computing the center of mass of its rows. The election
of these orders naturally implies that the matrix for our growth process (center) displays a stair shape.
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Fig. 4. Comparison between our growth process, Louvain’s modularity-based method and Infomap for the BENCH3 (left) and BENCH4 (right) sets of
benchmarks. We consider the communities generated a priori by Lancichinetti’s benchmark and use them as reference partitions. In the upper subfigures
we compare the normalizedmutual information (against the reference partitions) for bothmethods. In the lower subfigures we compare the ratio between
the size of the community partitions found by the methods and the size of the reference partitions. The points always represent median values for the 100
networks generated for each µ value.

Fig. 5. Boxplots representing the percentage of community pairs (Ci, Cj), i ≠ jwhose join increasesmodularity in the instances of theBENCH1 set. Each box
represents the 100 instances generated for each µ value. (a) Lancichinetti’s a priori communities. (b) Communities obtained by our fitness growth process.
It is a remarkable fact that the original (a priori) communities are not local maxima for modularity, and that this trend grows when mixing parameter µ

increases. In other words, the benchmark generates partitions for which modularity optimization techniques would tend to fail. We also point out that a
similar plot for the partitions obtained by the Louvain algorithm would show a constant zero for the percentage of joinable pairs. This is a mandatory fact
for any modularity maximization agglomerative technique which attains a local maximum.

The presence of black segments in the top and bottom subfigures implies that vertices which are consecutive in our
growth process are part of the same community in Lancichinetti’s cover or in the a priori partition, respectively. Notice also
that in Lancichinetti’s cover (top) many vertices belong to several of its communities due to the overlapping. In fact, there
is a strong coincidence between our communities and those in Lancichinetti’s cover, except for the fact that some of the
communities in the cover are essentially the same, i.e., they have a high overlap.

The comparison with the a priori partition (bottom) confirms the fact that our growth process visits the communities
one after the other, which is a relevant thesis in our work. The isolated vertices in the bottom figure represent misclassified
vertices and are usually located at the borders of the intervals that in the growth process order represent communities.
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Fig. 6. Comparison between Lancichinetti’s method and our growth process, for an instance of BENCH1 with µ = 0.2. The three subfigures represent
the community cover found by Lancichinetti’s algorithm with α = 0.70 (top), the community partition found by our growth process (center) and the
community set up a priori by the LFR benchmark (bottom). Each of the subfigures contains a binary matrix. Each matrix has one column for each vertex
and one row for each community in the respective community structure. The matrices have a 1 (black dot) in position (i, j) when the i-th vertex in the
order belongs to the j-th community in the order. The vertices (columns) are always ordered according to their position in our growth process, and the
communities (rows) are ordered by computing the center of mass of its rows in an increasing fashion. The election of these orders naturally implies that
the subfigure for our growth process (center) displays a stair. From observing the existence of black segments in the top and bottom figures we see that:
(i) Lancichinetti’s process visits some communities several times; (ii) Throughout our growth process we find the different communities in Lancichinetti’s
cover; (iii) Our growth process visits the a priori communities one after the other.

Table 1
Summary of results for the analyzed networks. The columns represent: network size (number of vertices and edges),
average number of communities foundwith the Fitness Growth Process and standard deviation, and the amount of modules
discovered by Louvain’s algorithm.

Network n m ⟨|CFGP |⟩ stdev(|CFGP |) |CLouvain|

karate 34 78 3.21 0.54 4
dolphins 62 159 6.31 2.09 5
football 115 613 12.57 0.82 10
e-mail 1,133 5,451 173.86 9.30 10
BENCH1 1,000 5,022 148.74 2.13 22
arXiv 9,377 24,107 1,573.52 22.59 62
CondMat 36,458 171,736 5,476.10 38.53 802
WWW 325,729 1,090,108 19,972.11 78.77 358

ER100 100 508 16.09 2.77 8
ER1k 1,000 5,111 173.59 7.80 16
ER10k 10,000 100,261 1,732.26 26.52 10

5.2. Robustness analysis

In order to study the robustness of our method in real networks, whose communities are generally unknown a priori, we
propose to analyze themutual information betweendifferent partitions starting from randomly chosen vertices, and observe
the repeatability of the results. The studied networks include karate club [19], the bottlenose dolphins network [14], the
American college football network [3], an e-mail interchange network [20], Erdös–Rényi random graphs ER* [21], an
instance from the BENCH1 benchmark with µ = 0.30 (see Section 5.1), a portion of arXiv [22], a collaboration network in
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Fig. 7. Boxplots (with density) representing the results for different real networks and some Erdös–Rényi random graphs. The networks are spread over
the x-axis. Each boxplot with density is composed by a white central point representing the median, a black segment whose extrema represent the first
and third quartiles, and a vertical curve which is an approximation to the histogram function of the mutual information values. These values of mutual
information compare the partitions obtained from different seed vertices in the network to a reference partition obtained from a fixed seed vertex.

Fig. 8. Community size and node degree distribution for the collaboration network CondMat. The histograms were built with a log-binning procedure.

Condensed Matter CondMat [3], and a portion of the World Wide Web network WWW [23]. Table 1 shows the sizes of these
networks.

Fig. 7 shows the boxplots, together with the density functions, of the mutual information for each network. In each
of them we picked a random vertex as seed, run the algorithm, and took the resulting partition as the reference partition.
Then we started the algorithm from other seed vertices, and measured the mutual information between these partitions
and the reference partition. In small networks, we considered all the vertices, and just 1000 different vertices for arXiv,
CondMat and the WWW network. The fact that we just consider one reference partition to compare with the others and do
not make an all pairwise comparison is justified by the transitivity relationship that we develop in Appendix B.

The first observation of Fig. 7 is that the random graphs (ER100, ER1k, ER10k) show small values of mutual information
when the robustness analysis is performed. This is an expected result, as it is in accordance with the fact that ER graphs do
not have a community structure, as Ref. [24] point out.

The karate case is interesting because many instances have a mutual information of 0.74. In these, the amount of
misclassified nodes is just 4, but as they represent a considerable fraction of the whole network (34 nodes) the mutual
information has an important fall. Something similar happens in the dolphins network. The other networks present high
values of mutual information with small dispersions (i.e., boxplots are quite narrow). This trend is even more noticeable
in the large networks. In fact, the WWW is an interesting case because all the mutual information values that we found lay
around its median value of 0.989 with extremes at 0.989 ± 0.02, which means, by transitivity, that the different partitions
found when starting the process from different vertices, are quite similar between them.

5.3. Application to a collaboration network

Finally, we applied our algorithm to a network of coauthorships from the Condensed Matter E-Print Archive (CondMat).
We analyzed the giant component of the network, composed by 36,458 vertices and 171,736 edges. The resultwas a partition
with 5,508 communities. Both the community size distribution and the degree distribution follow a power-law on the
community size (see Fig. 8) which may be due to the self-similarity of the network [25].

While the biggest community in this network contains about 31% of the graph edges (53,880 internal connections), it has
only 406 vertices (the 1.1%). Evidently, this community has a strong cohesion.
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6. Conclusions

The work by Lancichinetti et al. [1] suggests the possibility of using different fitness functions for detecting local
communities under a general procedure. In this workwe have defined a fitness functionHt , depending on a real parameter t ,
andwe have shown that it is essentially equivalent to the original one, which depends on a resolution parameter α. Thenwe
proved an important fact: neither α nor t plays an important part in the vertex selection criteria, but only in the termination
decision. This means, for example, that we can obtain a local community Ct for some t , and then build the local community
for t ′ > t by taking Ct and continuing the process until t ′. So we proposed a unique fitness growth process which finds an
ordering of the vertices such that the different communities lie one after the other. This sequence is the input of a cutting
algorithm that extracts a community partition of the graph. The algorithm is freely available to the scientific community
as an open-source software [26]. The algorithmic complexity was studied and we proposed efficient data structures that
reduce it to O (n · kmax + m · log(n)). We remark that for networks which can be adjusted to a power-law distribution with
exponent β, kmax is O( β

√
n) [27] and the complexity is then O


n1+1/β

+ m · log(n)

.

We also exploited a benchmark of heterogeneous graphs to test our method. On one side, we tested the correctness of
the results by comparing them against communities defined a priori. On the other side, we gave an explanation on why
global methods tend to fail on some heterogeneous networks. These ideas were illustrated using the normalized mutual
information.

Finally, we showed that the method is robust for many real networks. By analyzing random graphs, we pointed out
that the behavior of the method may allow us to differentiate networks with a strong community structure from randomly
connected ones.

As a future work we plan to study different ways of changing the vertex selection criteria of the growth processes, taking
advantage of specific properties of the graphs of interest. We also intend to extend the results for detecting situations of
overlapping communities.
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Appendix A. Mutual information

For the purpose of comparing different community structures, we used the normalized mutual information [12]. In order
to define it in terms of random variables, we consider the following process: we pick a vertex v at random from V with a
uniform distribution, and define a random variable X1 on V related to partition C1. This variable assigns to each vertex the
subindex of the community it belongs to. The distribution of X1 is

P[X1 = i] = pi =
|Ci|

|V |
,

where i = 1, 2, . . . , |C1|. The entropy of C1 is defined by

H(C1) = −

|C1|
i=1

pi · log (pi) .

If we introduce a second partition C2 with its related random variable X2 on the same sample space V , the joint
distribution of X1, X2 is

P[X1 = i, X2 = j] = pij =
|Ci ∩ Cj|

|V |
,

where i = 1, 2, . . . , |C1|, j = 1, 2, . . . , |C2|. In these terms, the normalized mutual information is expressed by

NMI(C1, C2) = −2 ·

|C1|
i=1

|C2|
j=1

pij · log


pij
pi·pj


|C1|
i=1

pi · log (pi) +

|C2|
j=1

pj · log

pj
 ,

where
|C1|

i=1
|C2|

j=1 pij · log


pij
pi·pj


= MI(C1, C2) is the mutual information. The following equality holds:

MI(C1, C2) = H(C1) + H(C2) − H(C1, C2),

where H(C1, C2) is the joint entropy. NMI(C1, C2) falls between 0 and 1, and gives an idea of the similarity between
partitions in terms of the information theory, i.e., in terms of the information about C1 that lies in C2, or vice versa.
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Fig. B.1. Functional relationship between two normalizations of the mutual information: NMI1 and NMI2 .

The inherent idea is that a partition C of a graph gives us some information relative to the classification of vertices into
groups. This amount of information is measured by its entropy, H(C).

In fact, the denominator inNMI(C1, C2) togetherwith the−2 constant represents a normalization by the average entropy
of the partitions, H(C1)+H(C2)

2 . A normalized mutual information of 1 implies that the partitions are coincident.

Appendix B. Normalizations and triangular inequalities

Throughout this paperwe used the normalization of themutual information proposed in Appendix A, i.e.NMI .We remark
that other normalizations also exist, like:

NMI2(C1, C2) =
MI(C1, C2)

H(C1, C2)

which has the advantage that 1 − NMI2 is a metric [28]. Although we consider it more correct to use this normalization,
we shall hold to the first one for consistency with other works in the literature. Anyway, we were able to find a transitivity
property for NMI too (we call it NMI1 in the following equations). In fact, observing that:

2
1 − NMI1(C1, C2)

=
H(C1, C2)

H(C1) + H(C2) − H(C1, C2)

1
1 − NMI2(C1, C2)

=
H(C1) + H(C2)

H(C1) + H(C2) − H(C1, C2)

we can deduce a functional relationship between these two:

2
1 − NMI1(C1, C2)

−
1

1 − NMI2(C1, C2)
= 1.

This relationship produces a hyperbole as in Fig. B.1. The good behavior of the function around (1, 1) assures that values
of NMI1 close to 1 imply values of NMI2 close to 1 too. The transitivity of the metric implies that if NMI2(x, y) ≥ 1 − ϵ and
NMI2(x, z) ≥ 1 − ϵ, then NMI2(y, z) ≥ 1 − 2ϵ. Then, by the functional relationship, NMI1(y, z) will be close to 1 too.

In other words, if NMI(CR, C1) is high and NMI(CR, C2) is high, then NMI(C1, C2) is also high. This result is used in
Section 5.2, where CR is a reference partition used to analyze our algorithm’s robustness.
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