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We introduce a new ferromagnetic model capable of reproducing one of the most 
intriguing properties of collective behaviour in starling flocks, namely the fact that strong 
collective order coexists with scale-free correlations of the modulus of the microscopic 
degrees of freedom, that is, the birds’ speeds. The key idea of the new theory is that 
the single-particle potential needed to bound the modulus of the microscopic degrees 
of freedom around a finite value is marginal, that is, it has zero curvature. We study 
the model by using mean-field approximation and Monte Carlo simulations in three 
dimensions, complemented by finite-size scaling analysis. While at the standard critical 
temperature, Tc, the properties of the marginal model are exactly the same as a normal 
ferromagnet with continuous symmetry breaking, our results show that a novel zero-
temperature critical point emerges, so that in its deeply ordered phase the marginal model 
develops divergent susceptibility and correlation length of the modulus of the microscopic 
degrees of freedom, in complete analogy with experimental data on natural flocks of 
starlings.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous introduisons un nouveau modèle ferromagnétique capable de reproduire l’une des 
propriétés les plus intrigantes du comportement collectif des essaims d’oiseaux, à savoir 
le fait qu’un ordre collectif fort coexiste avec des corrélations sans échelle du module 
des degrés de liberté microscopiques, à savoir les vitesses des oiseaux. L’idée-clé de la 
nouvelle théorie est que le potentiel à un corps nécessaire pour lier le module des degrés 
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de liberté microscopiques autour d’une valeur finie est marginal, c’est-à-dire qu’il a une 
courbure nulle. Nous étudions le modèle en utilisant l’approximation du champ moyen et 
les simulations de Monte-Carlo en trois dimensions, complétées par l’analyse à l’échelle 
finie. Alors qu’à la température critique standard, Tc, les propriétés du modèle marginal 
sont exactement les mêmes que celles d’un ferromagnétique normal avec rupture de 
symétrie continue, nos résultats montrent qu’un nouveau point critique à température 
nulle émerge, de sorte que, dans sa phase profondément ordonnée, le modèle marginal 
développe une susceptibilité divergente et une longueur de corrélation du module des 
degrés de liberté microscopiques, en analogie complète avec les données expérimentales 
sur des essaims naturels d’oiseaux.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ferromagnetic models with O(n) rotational symmetry in their low-temperature phase develop a nonzero order parameter 
and massless Goldstone modes, which are consequence of the spontaneously broken continuous symmetry [1,2]. In turn, 
Goldstone modes give rise to infinite susceptibility and correlation length in the whole symmetry-broken phase [3]. In a 
finite-size system, the fact that the bulk correlation length is infinite has the practical consequence that the spatial range of 
the correlation function scales with the system’s size, L; in other words, there is no intrinsic length scale in the system apart 
from L itself, a physical state of affairs one normally describes by saying that the system has scale-free correlations [4]. In 
contrast with the emergence of massless (or zero, or marginal) Goldstone modes, in a normal O(n) ferromagnet the modulus
of the microscopic degrees of freedom remains a massive mode, hence it does not develop scale-free correlations in the 
ordered phase [5]. If we use the classic “Mexican hat” potential as a reference framework (Fig. 1, left), the Goldstone mode 
is represented by the flat direction circling around the potential (and therefore enabling the O(n) rotational symmetry), 
while the modulus mode is represented by the orthogonal direction, which is steep, namely non-flat, and whose non-zero 
curvature gives rise to a finite correlation length.

Natural flocks of starlings represent a notable exception to this physical scenario. Bird flocks are systems with obvious 
O(n) symmetry1 and a very large order parameter (or polarization), due to the tendency of each individual to align to its 
neighbours [6]. Indeed flocking models based on a self-propelled generalization of low temperature ferromagnets (whose 
most notable archetype is the Vicsek model [7]), have been quite successful in describing collective animal behaviour [8,
9]. The overarching idea of all these models is that ferromagnetism is essentially a mechanism for imitation: the role of 
the magnetic spins is played by the birds’ velocities, and the ferromagnetic interaction grants a mutual matching of the 
neighbours’ velocities and speed. In this context, the existence of a Goldstone mode, with consequent scale-free nature of 
the spatial correlations, has been actually observed in real experiments: the spatial span of the velocity correlation function, 
which measures the size of the regions over which velocity fluctuations are correlated, scales with the linear size L of the 
system [10]. However, another thing that experiments show is that, at variance with normal O(n) ferromagnetic systems, 
natural flocks have scale-free correlations also of the modulus of the velocities, namely of the birds’ speed [10]. This is 
extremely odd, as in the deeply ordered phase, in which flocks live, one would expect the potential regulating the bird’s 
speed to be steep, hence giving a short-range correlation function of the modulus. Hence, flocks’ phenomenology suggests 
that some further marginal mode, beyond the one prescribed by the Goldstone’s theorem, is regulating the birds’ velocities. 
Reconciling the paradox of strong collective order coexisting with scale-free modulus correlations is the task of this work.

A significant step towards solving this problem has been done in [11], where it was used a maximum entropy approach 
to infer directly from the data a model able to reproduce quite accurately the speed correlations. Essentially, the key ingre-
dient of the model in [11] is a Gaussian term regulating the fluctuations of the speed. What the inference shows is that, in 
order to give rise to the correct scale-free correlations of the speed, the coupling constant g of this speed-regulating Gaus-
sian term had to be small; more precisely, within the Gaussian theory, there is a simple relation showing that the smaller 
the speed control g is, the larger the correlation length of the speed; if g is so small that the correlation length gets larger 
than the system’s size, the resulting speed correlations are scale free. The theory developed in [11] has, however, a prob-
lematic aspect: being the model Gaussian, the same coupling constant g that needs to be small in order to make modulus 
fluctuations scale free, is also the only bound for the absolute value of the velocities; this means that in the thermodynamic 
limit, L → ∞, in order to have scale-free correlations, one needs g → 0, so that the Hamiltonian is actually unbounded. 
Hence, the calculation of [11] can only be interpreted as a Gaussian expansion of a more complete, yet unknown, theory. 
This is the theory we want to develop here.

1 This is true as long as we are considering the phenomenon of aerial display, namely flocks performing dynamical evolutions on top of their roosting site, 
and strictly on the plane orthogonal to gravity, which is a clear symmetry-breaking factor; in the case of migrating flocks, where an external preferential 
direction exists, the symmetry is lost.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. Left: in the standard O(n) potential (here represented for n = 2), the marginal modes are the (n −1) Goldstone’s transverse modes, while the curvature 
orthogonal to those is non-zero. Right: in the marginal potential, on the other hand, there is an extra marginal mode in the longitudinal direction.

The central idea of our approach simply emerges from the comparison of the two panels in Fig. 1. In a standard O(n)

model, there is a single-particle bare potential that keeps the modulus of the microscopic degrees of freedom bounded to 
some finite reference value; in this way one enforces a soft constraint on the microscopic degrees of freedom, which is an 
alternative to the hard constraint imposed, for example, by the classical Heisenberg model and also by the Vicsek model [7]. 
Of course, thanks to the universality guaranteed by the renormalization group, soft vs. hard constraints makes no difference 
at all to determine the critical properties of the system, which are only ruled by symmetry and dimensions [12]. At low 
temperatures, the system breaks the O(n) symmetry and starts fluctuating around one of the (continuously) many ground 
states of the potential. Although the transverse fluctuations are boosted by the Goldstone mechanism, the fluctuations of 
the modulus of the microscopic variables are suppressed by the presence of a non-zero longitudinal second derivative of 
the potential; this is why the modulus is not a scale-free mode in normal O(n) models.

This scenario, however, also suggests a possible solution to our problem. We can use a potential that has the same O(n)

symmetry, but it also has zero second derivative along the longitudinal direction (Fig. 1, right). At very low temperatures, 
where energy dominates over entropy, the potential will dominate the fluctuations, including those of the modulus, which 
therefore should become marginal, namely scale-free. If this is true, we also expect that by raising the temperature, not only 
we decrease the order parameter, but we certainly add entropic fluctuations to the theory, which should therefore build 
an effective mass to the modulus fluctuations, thus lowering their correlation length. Finally, at even larger temperatures, 
entropy should take over, and the system should reach the standard, finite-temperature, critical point, where marginality of 
all components of the order parameter is reached again. This – admittedly rather speculative – scenario is the one we test 
in the present work.

Before we provide the details of our calculation, a remark is in order. We will develop an equilibrium theory, namely the 
interaction network we will consider will be fixed, rather than time-dependent as in self-propelled systems, which flocks 
most definitely are. We do this for two reasons. First, there is solid evidence indicating that, at least for natural flocks 
of starlings, the time needed for the interaction network to significantly rearrange is far larger that the time needed for 
the birds’ velocities to locally relax, so that a quasi-equilibrium approximation makes sense [13]. Second, even though the 
precise underlying theory of flocks is surely self-propelled and out of equilibrium, it is possible that the explanation of 
scale-free speed correlations may actually depend on some sub-part of the theory, which is not crucially dependent on self-
propulsion, as the single particle potential regulating the speed; if an equilibrium explanation works, then its self-propelled 
counterpart is likely to work too. Of course, we cannot rule out a priori the hypothesis that the true explanation of scale-
free speed correlations is in fact an intrinsic off-equilibrium feature of the system, not requiring any particular speed-fixing 
potential. Once such alternative will be presented, only the comparison with the experiments will be able to select the right 
theory.

2. The marginal model

We consider a class of ferromagnetic models with O(n) symmetry, defined by the Hamiltonian [14],

H = J

2

N∑
i j

ni j(σ i − σ j)
2 +

N∑
i

V (σ i · σ i) − h ·
N∑
i

σ i (1)

where the N microscopic degrees of freedom σ i are vectors of dimension n, representing the spins in the ferromagnetic 
context, or the velocities in the context of flocking models. The first term is a standard ferromagnetic (i.e. alignment) 
interaction, of strength J , where nij represents the interaction (or adjacency) matrix, namely nij = 1 if the sites i and j
interact with each other, nij = 0 if they do not; in our simulation, nij will be nonzero only for i and j nearest neighbours. 
The discrete space structure is a simple cubic lattice of side L, in d = 3, and n = 3, which implies N = L3. The external 
field h is coupled to σ i , in order to calculate various quantities in what follows. The single-particle potential V is needed 
to keep the modulus of each vector σ i (which we indicate as σi ) close to some reference nonzero value, giving rise to 
the competition between energy and entropy necessary to produce a second-order phase transition [15]. The model has a 
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Gibbs–Boltzmann equilibrium probability distribution, P ∼ exp (−βH), where β is the inverse of the temperature T , which 
is a measure of the noise in the system, related to the accuracy of each bird in monitoring its neighbours’ velocity and 
regulating its own.

The single-particle potential V is chosen to be a function of σ i · σ i , hence sharing the same O(n) symmetry as the 
ferromagnetic interaction. In this way, the whole low-temperature, ordered phase of the model is characterised by the 
spontaneous breaking of the continuous O(n) symmetry, which, through Goldstone’s theorem, provides scale-free correla-
tions of the standard susceptibility and correlation length [1,2]. As we have seen, the challenge is to find a model capable of 
developing also scale-free correlations of the modulus in the deeply ordered phase. We consider the two following potentials 
(see Fig. 1),

V (σ · σ ) = λ (σ · σ − 1)2 , standard (2)

V (σ · σ ) = λ (σ · σ − 1)4 , marginal (3)

where λ is a parameter with the same physical dimensions as J and T . The standard potential (Fig. 1, left) is the one 
giving rise to the classic Heisenberg and O(n) ferromagnetic phenomenology [3]; it does not have scale-free correlations of 
the modulus when in the ordered phase, and it will be studied by us chiefly as a reference case, to provide a comparison 
with our new model. The marginal potential (Fig. 1, right), on the other hand, has the simplest algebraic form necessary to 
provide a zero second derivative not only along the transverse direction (Goldstone mode), but also along the longitudinal 
direction, and it is our candidate to produce scale-free correlations of the modulus in the deeply ordered phase. The idea 
is the following: the magnetic susceptibility is given by the inverse of the second derivative of the Gibbs free energy in its 
minimum, namely in the equilibrium state. If the system is at very low temperature, the entropic contribution to the Gibbs 
free energy is sub-leading, so that, in the vicinity of its minimum, the free energy is not that far from the bare energy; 
because at very low temperature alignment will be high, the ferromagnetic term is negligible, so that the Gibbs free energy 
(close to its minimum) will be similar to the single-particle potential V . Hence, it seems reasonable that the vanishing 
longitudinal second derivative of the marginal potential might cause a divergence of the modulus susceptibility. Let us first 
check this idea at mean-field level.

3. Mean-field model

In the mean-field case, the nearest-neighbour interaction is replaced by a term that links every spin with each other 
[16], thus we have the fully-connected Hamiltonian,

H = J

2N

∑
i j

(σ i − σ j)
2 + λ

∑
i

(σ i · σ i − 1)4 (4)

where the coupling J has been divided by the number of sites in the system N to have an extensive Hamiltonian. The 
external field will not be needed here, so it has been set to 0. To simplify the notation, in what follows we will indicate any 
O(n)-symmetric function f (σ · σ ), as f (σ ). The partition function of the system Z is:

Z =
∫ ∏

k

dσ k e−βH =
∫

dm
∫ ∏

k

dσ k e−βH δ

⎛
⎝βNm − β

∑
j

σ j

⎞
⎠ (5)

where we have explicitly introduced the magnetization m = (1/N) 
∑

i σ i and we have disregarded all subleading factors of 
order (log N)/N or higher. By using a Fourier representation of the δ-function, we obtain,

Z =
∫

dm eNβ Jm2
∫

dx exp

{
βN

[
m · x + 1

β
log

∫
dσ e−β( Jσ 2+V (σ )+σ ·x)

]}
(6)

where m = |m| and σ = |σ |. In the limit N → ∞, we can use the saddle-point method to evaluate the integral in x, which 
gives the equation fixing the saddle-point value x0 as a function of m (and β),

m =
∫

dσ σ e−β[S(σ )+x0·σ ]∫
dσ e−β[S(σ )+x0·σ ]

(7)

with S(σ ) = Jσ 2 + V (σ ). We note that, in the saddle point, the magnetization is equal to its equilibrium value, meq =
(1/N) 

∑
i 〈σ i〉. We finally obtain

Z =
∫

dm e−βNg(m) (8)
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Fig. 2. Mean-field Gibbs free energy, g(m), for n = 3, at different temperatures. Left: in the standard O(n) model, the curvature of the free energy in 
its minimum vanishes only at the finite critical temperature, Tc. Right: in the marginal model, the free energy has a zero-curvature minimum also at 
T = 0, giving rise to the divergence of the modulus susceptibility. By raising the temperature, the minimum acquires a finite second derivative, thanks 
to fluctuations, so that a nonzero mass emerges. By further increasing the temperature, the standard critical point Tc is reached, where the mass of the 
whole vectorial degree of freedom m is zero again, as the curvature of g(m) in m = 0. The curvature of the free energy in the equilibrium state reaches a 
maximum some way between T = 0 and T = Tc .

where the mean-field Gibbs free energy per particle, g(m), is therefore given by,

g(m) = − Jm2 − m · x0(m) − 1

β
ln

∫
dσ e−β[S(σ )+x0(m)·σ ] (9)

Notice that g(m) is a O(n)-symmetric function of the modulus of the magnetization. The mean-field Gibbs free energy is 
linked to the probability of m by the relation, P (m) = e−βNg(m)/Z .

From (9), we can compute g(m) numerically for the marginal potential; the results are shown in Fig. 2 (right) for n = 3. 
As we expected, at T = 0 the free energy has a flat (i.e. marginal) minimum, which, as we shall soon see, is responsible for a 
zero-temperature divergent susceptibility of the modulus. This marginal minimum is of course the zero-temperature relic of 
the minimum of the marginal potential. The interesting point is that by raising the temperature, the free-energy minimum 
develops a nonzero curvature (namely a mass) due to the entropic effects, hence lowering the modulus susceptibility. By 
further increasing the temperature, g(m) becomes flat again at the finite (bare) critical temperature, Tc, as it happens for any 
standard ferromagnetic model. At, Tc, though, the order parameter (i.e. the abscissa of the minimum) goes to zero, hence 
it makes no sense to distinguish between modulus and direction, and one has just one (normal) diverging susceptibility. 
Finally, above Tc the paramagnetic phase takes over.

As expected, the novel behaviour of the marginal model emerges for low temperature. Hence, we perform a saddle-point 
expansion for β � 1 in both equations (7) and (9). The algebra is rather intricate in the case of the marginal potential, 
because the first nonzero derivative of V (σ ) in its saddle point σ = 1 is the fourth, rather than the second as in the 
standard potential. We first calculate the equilibrium value of the magnetization, namely the minimum of g(m),

meq 	 1 − V ′′′′′(1)

8V ′′′′(1)

T

J
= 1 − 5

4

T

J
(10)

where we gave the exact form of the coefficients for n = 1, although the scaling with T and J does not depend on n. The 
susceptibility of the modulus of the magnetization is given by (x0 = |x0|),

χ−1
mod = g′′(meq) = −2 J − dx0

dm

∣∣∣∣∣∣
m=meq

(11)

which, to leading order in T , gives,

χmod 	 4

V ′′′′(1)

J

T
= 1

90

J

λT
(12)

We conclude that, at mean field level, the marginal potential gives a standard critical transition at a finite temperature 
Tc and a novel zero-temperature divergence of the susceptibility of the modulus of the order parameter, with mean-field 
critical exponent,

γmod = 1 mean field (13)
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Fig. 3. (a) Marginal model: order parameter (polarization) as a function of the temperature for several sizes. As can be seen from the plot, the system 
undergoes a phase transition from a polarized phase for small temperatures, to a disordered phase for high temperatures. The critical temperature of the 
system is around T 	 1.7. Notice that the polarization goes to 1 linearly for T → 0. (b) Longitudinal susceptibility as a function of the transverse one, 
parametric plot in magnetic field (log–log scale). For both models, the relation between susceptibilities, Eq. (16), holds in the symmetry-broken phase; in 
d = 3 we have χ‖(h) ∼ χ⊥(h)1/2, so lines are best fit to the data with exponent fixed to 1/2. System parameters: size L = 10, temperature T = 0.5, field 
h = (h, 0, 0) with h varying from 0.1 to 1.

The mean field results go exactly in the expected direction and are therefore encouraging. It remains to be seen whether 
this behaviour is preserved in finite dimension. To do this, we will perform numerical simulations.

4. Monte Carlo simulations

To study the properties of the marginal model, we perform Monte Carlo (MC) simulations on a d = 3 cubic lattice. We 
used the Metropolis algorithm [17], applied to continuous spins: at each trial a random quantity uniformly distributed 
between ±� is added to each component of the selected spin. The value of � is chosen heuristically for each temperature 
by fixing the acceptance rate to ∼ 0.23 [18]. Simulations were made for different sizes, from L = 8 up to L = 20. In all 
simulations, we set J = 1, λ = 1. The spins are three dimensional, n = 3. All thermal averages, 〈·〉 are MC time averages.

4.1. Tests of the marginal model

For T smaller but close to Tc, namely in proximity of the critical fixed point, the marginal model must have the same 
behaviour as the standard O(n) models. First of all, we check that a standard ordering transition occurs at some finite Tc . 
To this aim, we compute the polarization order parameter,2

φ =
〈∣∣∣∣∣∣

1

N

∑
i

σ i

∣∣∣∣∣∣
〉

(14)

The order parameter of the marginal model for different sizes is shown in Fig. 3a, from which we see that a standard 
ordering transition occurs around Tc ∼ 1.7, and that the order parameter goes linearly to 1 at zero temperature.

In order to test the behaviour of the marginal model in the symmetry-broken phase, T < Tc (but in the proximity of Tc), 
we calculate the transverse and the longitudinal susceptibilities, in the presence of an external field h. Since the system is 
at equilibrium, the susceptibility matrix is given by [16],

χαγ = d〈σ (α)〉
dh(γ )

= β

N

∑
i, j

〈
σ

(α)
i σ

(γ )

j

〉
−

〈
σ

(α)
i

〉 〈
σ

(γ )

j

〉
(15)

where α, γ = x, y, z. In the symmetry-broken phase, fluctuations are dominated by their transverse components (with re-
spect to the order parameter direction) [15], hence the susceptibility matrix is dominated by χ⊥(h), where h = |h|. For 

2 Even though the polarization φ is not the actual magnetization modulus m, it has the advantage of being unaffected by the wandering of spins in 
finite-size MC simulations, thus it can be measured and it provides reliable information about the magnitude of the system’s magnetization. Indeed, φ
differs from the theoretical value of m only by a small offset, which goes to zero with T .
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Fig. 4. (a) Modulus susceptibility as a function of temperature. Simulation parameters: L = 20, h = 0. The modulus susceptibility of the marginal model 
grows for vanishing temperature while the standard model’s remains small across the whole symmetry-broken phase. Inset: same plot in log–log scale. 
(b) Modulus correlation length as a function of temperature. Also this quantity grows for the marginal model as T → 0, while it remains finite in the 
standard model. Inset: log(r C(r)) vs. r in the marginal model, showing that the anomalous dimension is very small, so that a fit of ξ is not problematic in 
this representation. T = 0.05.

h → 0 (and T < Tc), Goldstone’s theorem prescribes that χ⊥(h) → ∞: this is the standard Goldstone marginal mode, re-
sponsible for scale-free correlations of the transverse fluctuations in the ordered phase. The less intuitive, and yet classic, 
result is that also the longitudinal susceptibility, χ‖(h), diverges for h → 0 [3]. This is a consequence of the coupling of 
the longitudinal fluctuations with the transverse ones; essentially, if we call θ the (small) phase fluctuation of the spins, 
transverse fluctuations are proportional to sin θ ∼ θ , whereas longitudinal fluctuations are proportional to 1 − cos θ ∼ θ2. 
This implies that, in the limit h → 0, standard O(n) models satisfy the relation [19,20],

χ‖(h) ∼ χ⊥(h)ε/2 (16)

where ε = 4 − d. The result of this test is shown in Fig. 3b: for both marginal and standard models, Eq. (16) holds. We 
conclude that in the symmetry-broken phase, close to Tc, the marginal model has no difference from a standard O(n)

ferromagnet, as it was expected from its symmetry properties.

4.2. Low-temperature behaviour of the marginal model

At the mean-field level, the interesting new feature of the marginal model, namely the growth of the modulus sus-
ceptibility, emerges for small T ; hence, this is the regime we need to explore with simulations. In complete analogy with 
the standard susceptibility, the modulus susceptibility is defined as the sum of the correlations of the fluctuations of the 
modulus, namely,

χmod = β

N

∑
i, j

〈σiσ j〉 − 〈σi〉〈σ j〉 (17)

where σi ≡ |σ i | is the modulus of the microscopic degree of freedom. It is essential to understand that the longitudinal 
susceptibility, χ‖ , calculated in the previous Section, is not the same as the modulus susceptibility, χmod [19]. Transverse and 
longitudinal modes are the projection of the fluctuations along the directions perpendicular and parallel to the spontaneous 
order parameter, and for this reasons they are both coupled with the phase fluctuation θ : indeed, when θ = 0, not only 
there is no transverse fluctuation, but there is no longitudinal fluctuation either. Instead, a fluctuation of the modulus may 
occur also for θ = 0, because the modulus is the degree of freedom truly orthogonal to the phase. This is the reason why, 
in a standard O(n) ferromagnet, χ‖ diverges in the whole broken-symmetry phase (for h = 0), while χmod does not. The 
divergence of χmod is the new physical feature we are after, and indeed Fig. 4a shows that our guess was correct: while χmod
of the standard model remains finite throughout the whole symmetry-broken phase, in the marginal model the modulus 
susceptibility grows quite rapidly, approaching T = 0. In order to calculate the precise exponent of this growth, we need to 
perform finite-size-scaling analysis, and to do that, we need a correlation length.

The normalized connected correlation function of the modulus fluctuations, Cmod(r), is defined in the standard way,

Cmod(r) = C u
mod(r)/C u

mod(0) , C u
mod(r) = 1

q(r)

∑(〈σiσ j〉 − 〈σi〉〈σ j〉
)
δ(ri j − r) (18)
i, j
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Fig. 5. Finite-size scaling (FSS) analysis of the marginal potential. Simulation parameters: h = 0. Scaling of the modulus susceptibility for various low 
temperatures T ∈ [10−4 : 10−2] and using all the simulated sizes of the system. The collapse of the curves for different sizes occurs with the critical 
exponents γ = 1.08 and ν = 0.55. We tuned the critical exponents using a chi-by-eye procedure.

where q(r) = ∑
i, j

δ(ri j − r) is the number of pairs at distance r (because we are on a static lattice, such number does not 

fluctuate). Normalization is important, as we want to capture the change in the correlation only due to the change of its 
spatial span, that is, of its correlation length, not of its amplitude. Following the general convention, we write the connected 
correlation function for large r as,

Cmod(r) ∼ e−r/ξ

rd−2+η
(19)

where ξ is the correlation length. The anomalous dimension η [21] is usually much smaller than 1, and a semi-log plot of 
r Cmod(r) in d = 3 (Fig. 4b, inset) shows that the marginal model close to T = 0 is no exception; hence, for fitting purposes, 
we neglected η and we work out ξ from the linear fit of log(r Cmod(r)). The results are reported in Fig. 4b: a clear increase 
of the correlation length of the modulus is observed in the marginal model by lowering the temperature, while it is not 
observed in the standard model. This is interesting, as it means that bona fide long-range correlations (eventually scale-free 
for ξ � L) are truly developed by the new model in the deeply ordered phase, which is exactly what we were after in order 
to explain flock phenomenology. It therefore seems that we have indeed resolved the paradox: we have large correlations 
coexisting with large-order parameter.

The sharp increase of both the susceptibility and the correlation length supports the idea that in the marginal model 
T = 0 acts as a true critical point. To test this hypothesis, we run finite-size-scaling (FSS) analysis [4,22]. If in the bulk we 
have

χmod ∼ T −γmod , ξmod ∼ T −νmod (20)

FSS prescribes that, for finite L, one should observe the following scaling form of the susceptibility [4],

χmod = Lγmod/νmod f
(
L/ξmod

) = Lγmod/νmod f
(
LT νmod

)
(21)

where f is an unknown scaling function. Therefore, we can determine the exponents γmod and νmod by plotting 
χmodL−γmod/νmod vs. LT νmod and imposing a collapse of all the data obtained at different sizes and temperatures. The re-
sults of FSS are reported in Fig. 5: we obtain a very good FSS collapse with the following critical exponents,

γmod = 1.08 , νmod = 0.55 (22)

Notice that the exponent γmod is comparable with its mean-field counterpart, and that both exponents are quite close to 
their standard values at the finite Tc [23,24]. Notice also that these exponents imply ξmod ∼ χ

1/2
mod, namely that the growth 

of ξmod is much slower than that of χmod, as it can be clearly appreciated from Fig. 4. The excellent FSS behaviour we find 
suggests that, for the marginal model, T = 0 behaves indeed as a true critical point.

5. Conclusions and perspectives

At least at the theoretical level, the marginal model offers a successful way to resolve the apparent paradox of natural 
flocks: scale-free correlations of the modulus coexisting with strong collective order. The marginal model has a new critical 
point at T = 0, where modulus susceptibility and correlation length diverge, so that strong correlations of the modulus are in 
fact not merely coexisting with, but a consequence of collective order. Moreover, all the phenomenology of the standard O(n)
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models, in particular the order–disorder transition and the Goldstone modes, is preserved. Of course, the phenomenology 
we found deserves a deeper theoretical study. The only theory we did here was mean-field, which is quite minimal. It would 
be important to write a Landau–Ginzburg-like field theory and investigate the zero-temperature critical point through the 
renormalization group. This is left for future work.

The zero-temperature critical point of the marginal model indicates that, provided that the system’s order is strong 
enough, the critical point will give rise to large modulus correlation, eventually scale free when ξmod becomes larger than L. 
An interesting prediction of the marginal model is therefore that there should be a link between polarization and modulus 
correlation length. More precisely, the MC simulations give

ξmod ∼ 1

T 1/2
∼ 1

(1 − m)1/2
(23)

It would be interesting to test this prediction in real data; however, if real flocks live in the deeply scale-free regime, 
ξmod � L, it could be hard to test (23), because one is unable to measure the bulk correlation length in the scale-free 
regime. Nevertheless, we hope that a more refined analysis of real flocks data may suggest some way out of this problem. 
Also, we note that in order to test the marginal potential on real flocks data, one should study the parameter space ( J , λ, T )

carefully, so to match the experimental values of the polarization and of the modulus correlation length. This certainly 
requires further numerical and analytical work.

It is worth noticing that, at the biological level, a single particle marginal potential is nothing particularly strange: it 
simply means that a single bird has largish non-Gaussian fluctuations of the speed around its physiological value (about 
10 m·s−1 for starlings). But, because of the power 4 in the marginal potential, these fluctuations are still very much 
bounded, a physiologically crucial requirement that was not met by the approach of [11]. The interesting point suggested 
by the marginal model is that, even though single-bird fluctuations of the speed are non-Gaussian, once the bird inter-
acts with other animals within the group, the effect of fluctuations is that the speed correlation length and susceptibility 
decrease, meaning that also individual speed fluctuations are depressed by the social interaction. We find this mechanism 
rather interesting, also at the biological level.

As we have already remarked in the § “Introduction”, the marginal model shows that even in an equilibrium system it is 
possible to have scale-free behaviour of the modulus degree of freedom in a phase with high polarization. This, of course, 
does not demonstrate that the right explanation of that empirical phenomenon is an equilibrium (or quasi-equilibrium) 
one. But it does prove that intrinsic off-equilibrium explanations, from the self-propelled nature of active systems, are not 
strictly necessary. Of course, the next step would be to study a self-propelled generalization of the marginal model, where 
the variables σ i become real velocities, vi . This can be done merging the marginal model with preexisting Vicsek-like 
models of self-propelled particles [7,9,25], through the equations,

dvi

dt
= −dH(t)

dvi
+ ζ i (24)

dxi

dt
= vi (25)

where the “Hamiltonian” now is time dependent through the adjacency matrix, nij(t) [13] and the potential within H is the 
marginal one. We would be very surprised if such a self-propelled model, in its symmetry-broken phase, did not develop 
the same scale-free modulus phenomenology as the equilibrium marginal model we studied here (much as the Gaussian 
model of [11] works both at and off-equilibrium). Yet one should check.

We conclude with a general remark about correlations in collective biological systems. Speed fluctuations in flocks are 
not the only instance in which correlations are stronger than any purely mathematical reason would prescribe (as Gold-
stone’s theorem). Neural assemblies [26], insect swarms [27], bacterial clusters [28], and proteins [29] are examples of this 
phenomenon. In such cases, one way to explain the data is to look for a parameter x that has been tuned to be close to some 
critical point, thus giving rise to large susceptibility and correlation length [30]. There are two tricky issues in this approach: 
first, in finite-size systems, the maximum of the correlation length occurs at a value of x that depends on the system’s size; 
hence, the system cannot be hard-wired once and for all at the bulk critical point. Secondly, what is delicate about ‘tun-
ing’ is that the parameter cannot be too small, nor too large; some precision is required, which may be hard to achieve, 
although most fascinating when it occurs [31]. The model we introduced here offers an interesting alternative to “tuning” 
at criticality. When the critical point is at the boundary of some parameter (the temperature, in the marginal model), first 
we do not have to worry about the finite-size dependence of the optimal value of the parameter, as this remains stuck 
at the boundary for all sizes; secondly, pushing the parameter as close as possible to its boundary value is somewhat less 
conceptually demanding than tuning it at its size-dependent optimal value. It may be that this kind of “boundary critical 
point” has therefore some general relevance in collective biological systems with anomalously large correlations.

One could ask, however, whether we are merely shifting the problem from something quite tricky (tuning at criticality), 
to something else even more tricky (a marginal potential). In this respect, we first note that there is no obvious biophysical 
constraint dictating that individual fluctuations must be marginal: even though, of course, physiology requires most kind 
of biological fluctuations to be bounded (certainly speed fluctuations in birds must be!), we see no specific reasons why 
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they should be bounded in a non-Gaussian way, i.e. with a power larger than 2 in the logarithm of the probability distri-
bution. This fact suggests two kind of considerations: first, one could invert the argument and claim that it is actually the 
Gaussian form to be rather specific, with all larger powers being more generic; this is not overly convincing, though, as the 
vanishing of the first nontrivial term in the Taylor expansion of any function seems to require some non-trivial justification. 
Second, we are left with the functional argument: the consequence of a marginal bounding potential is to have scale-free 
correlations of the fluctuations coexisting with large order parameter, which could be a biologically relevant condition for a 
collective system to work efficiently. If this is the case, individual marginal fluctuations may be the result of an evolutionary 
process, rather than an accidental biophysical constraint. However, for this interpretation to be more firmly established, one 
would need a solid proof that large groups that lack scale-free correlations and large order parameter fail to achieve some 
important biological aim. Irrespective of how reasonable this seems to be, we believe that more work, theoretical, numerical 
and, most importantly, experimental, needs to be done to prove this point.
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