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1 Introduction

In the present manuscript our focus is on advancing some new calculational methods for

non-commutative gauge field theories. These gauge field theories are defined in a space-

time endowed with a non-commutative product, which we take to be the familiar Moyal

product. Such theories become non-local when this Moyal product is applied to fields [1–3]

and appear naturally in some quantum mechanical models and string theory [4–7]. This

feature of non-locality, along with the presence of an intrinsic minimal length scale, make

non-commutative field theories mimick some aspects of theories of quantum gravity [8],
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which is one of the main reasons why they still draw quite some attention in the literature.

Due to the presence of so-called UV/IR mixing [9], which involves non-planar diagrams and

may affect the (non)renormalisability of such theories, of particular interest are the renor-

malisation properties of non-commutative gauge field theories, and thus of their one-loop

effective actions. This is a prototypical example of a study which can be performed using

first-quantised, or worldline, techniques. Indeed, it has been shown that non-commutative

field theories are linked to phase-space worldline path integrals. This was developped

in [10, 11] for (complex-) scalar field theories and in [12, 13] for a U(1) gauge theory.

The worldline formalism was initially developped as an efficient tool to obtain one-

loop QCD amplitudes and effective actions [14, 15], but has by now become a well estab-

lished approach to performing numerous computations in various Quantum Field Theories

(QFT) [16]. Originally inspired by string theory, it provides a first quantised approach to

QFT that in many cases demonstrates superior calculational efficiency and better mani-

fests gauge invariance. In the area of non-Abelian QFTs some examples where first quan-

tised approaches have been used as the main working tool include strong-coupling expan-

sions [17, 18], multi-loop effective actions [19], the spinning particle approach to Yang Mills

amplitudes [20–24], as well as to the Standard Model physics [25] and to Grand Unified

scenarios [26].

In this work we develop a phase-space worldline model to study the one-loop effective

action of U(N) Yang-Mills (YM) theories on D-dimensional (Euclidean) non-commutative

spacetime that provides a completely first-quantised representation of the one-loop effec-

tive action of a non-Abelian vector field, combining and extending recent advances in the

worldline description of colour and spin degrees of freedom [23, 24, 27]. In this way, the

additional information about both colour and spin degrees of freedom will appear as path

integrals over auxiliary variables. A significant advantage of this approach is that it is no

longer necessary to carry out the path ordering usually required to deal with matrix valued

potentials that enter the worldline action since this prescription is produced automatically

by integration over the auxiliary variables.

Moreover, we shall demonstrate that our approach unifies contributions from the

“gauge sector” (associated to the physical degrees of freedom of the vector field) and the

“ghost sector” (that maintains gauge invariance) into a single model — selection of each

sector is achieved by simply fixing a Chern Simons level in a path integral over further

auxiliary variables. Thus the extended worldline model seems to be a useful and gen-

eral approach to describing all aspects of our calculations in a democratic manner. From

this final worldline representation we extract the U?(N) β-function from the field theory

two-point function as a simple application and verification of our model.

Following this philosophy, our main result is that, upon applying the background field

method, the one-loop effective action for a U(N) Yang-Mills field on Moyal space-time can

be written as a difference of two terms that represent the contribution from the gauge

sector and the ghost sector respectively, viz.

Γ[A] = Γ[A]1,1 − 2Γ[A]1,0 , (1.1)

– 2 –
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where

Γ[A]%,r := −1

2

∫ ∞
0

dT

(4π)
D
2 T 1+D

2

∫
Dp

∮
Dx

∮
D [ψ̄, ψ]

∮
D [c̄, c]

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π

× exp
(
−S%,r[p, x, ψ̄, ψ, c̄, c, ϕ, ϑ]

)
. (1.2)

The integral over T is the Schwinger proper time integral familiar in worldline calculations,

whilst p and x represent the momentum and coordinates of the embedding of periodic point

particle trajectories in (commutative) Euclidean space RD. Following this, the conjugate

pairs ψ̄and ψ and c̄ and c are auxiliary Grassmann worldline fields that produce the Hilbert

spaces associated to the spin and colour degrees of freedom. Finally, the modular integrals

over ϕ and ϑ are what remain after gauge fixing local unitary symmetries associated to

the spin and colour fields. These integrals act to project onto the subspace of the Hilbert

space associated to spin r forms and the fully anti-symmetric U(N) representation with

dimension % through Chern-Simons terms in the worldline action

S%,r[p,x, ψ̄,ψ, c̄, c,ϕ,ϑ] =

∫ 1

0
dt

[
−ip·ẋ+p2+c̄aċa+ψ̄ ·ψ̇+TVa

b

(
c̄acb+

1

2
δab

)
+

−2iT ψ̄µ(Fµν)a
bψν

(
c̄acb+

1

2
δab

)
+iϑ(c̄acb−n)+iϕ

(
ψ̄ ·ψ−s

)]
.

(1.3)

Here n ≡ % − N2

2 and s ≡ r − D
2 are the Chern-Simons levels that are all that is needed

to distinguish the different sectors, V [A]a
b is a potential representing the orbital coupling

of the vector field and (F [A]µν)a
b a potential for the spin coupling, both of whose forms

we shall give below. The auxiliary fields remove the need to path order the exponential in

Γ[A]%,r, as we shall explain in section 3.

To illustrate our method we expand the effective action to quadratic order in the vector

field, which is sufficient to determine the β-function of the theory. Since the divergences of

the non-planar diagrams are interpreted as IR divergences, they do not affect the behaviour

of the β-function, which is solely determined by UV-divergent planar diagrams; for this

reason we disregard non-planar contributions and content ourselves with the computation

of planar ones. The divergent contribution to the change in the bare action from the sum

of planar contributions from the gauge sector and the ghost sector (in D = 4, with 1
2g2

denoting the bare coupling and with Λ, m UV- and IR-cut-offs) is

δS = − 1

2g2

∫
R4

dx
11N

48π2
g2 log

(
Λ2

m2

){
Aaµ(x)

(
−δµν ∂2 + ∂µ∂ν

)
Aaν(x)

}
, (1.4)

from which follows the β-function from the running of the coupling constant:

β(g) = − 11N

48π2
g3. (1.5)

This is in agreement with previous calculations [28, 29] and verifies our worldline approach

yields the correct result. However we argue that the unification of both sectors into a

single worldline theory that enables an efficient determination of the Feynman diagrams

contributing at each order is a notable step in the development of this approach to QFT.
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We organise the manuscript as follows. In section 2 we use the background field

method to extract from the YM action the quadratic operators for the YM fields and for

the Faddeev-Popov ghosts following from a gauge fixing. The functional integrals over

the quantum fields yield the one-loop effective action, which we represent in terms of a

heat-trace and thus in terms of a phase-space worldline path integral. In section 3 we

introduce some auxiliary worldline fields which are helpful in the perturbative expansion of

the effective action: their quantisation reproduces the desired representation of the gauge

group and of the Lorentz group, and avoids the needs for a path ordering prescription. In

the remaining parts of the manuscript we use the phase-space particle model to compute

one- and two-point functions and evaluate the one-loop β-function of the theory. We

end this paper with conclusions and an outlook in section 6. In appendix A we collect

some useful group identities involving the structure constants and appendix B contains the

derivation of the worldline Green functions for gauge and ghost fields and some of their

expectation values for completeness.

2 Yang-Mills on non-commutative space-time

Here we define the Moyal space-time and the U?(N) YM theory that we study on this

space. We will consequently calculate its one-loop effective action using the background

field method.

2.1 Moyal space-time

In a D-dimensional Euclidean Moyal space time, the usual space-time coordinates, xµ, are

replaced by operators, x̂µ, for which the fundamental commutator is introduced,

[x̂µ, x̂ν ] = iθµν , (2.1)

where the constant, real, skew-symmetric matrix θµν represents the non-commutativity

parameters [1, 2]. This relation presents itself in various areas of quantum mechanics and

string theory [4, 6].

There is a well-known correspondence between the non-commuting operators, x̂µ, and

an algebra of functions on RD under a non-commuting product exhibited by the Weyl

symbol

Ô [f ] =

∫
RD

dx f(x)∆̂ (x) ;

∆̂(x) =

∫
RD

dk

(2π)D
eik·x̂e−ik·x. (2.2)

This map can be used to define the Moyal ?-product [30, 31] from the product of two Weyl

operators evaluated in position space

Ô [f ] Ô [g] = Ô [f ? g] ;

f(x) ? g(x) = f(x) exp

(
i

2

←
∂µ θ

µν
→
∂ν

)
g(x). (2.3)
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This product is just a deformation of the familiar algebra of functions [32] on Rn (for

discussion of non-commutative space described in polar coordinates see [33–35]) and makes

use of a common notation where derivatives act in the direction of their overhead arrows.

In Fourier space the Moyal product of a number of functions of the operators x̂i reads1

F(φ1 ? φ2 ? . . .)(p) =

∫ ∏
i

dp̄i δ̄
(∑

i pi − p
)
φ̃1(p1) φ̃2(p2) . . . e−i

∑
i<j pi·θ·pj . (2.4)

This allows us to define a field theory action for pure Yang-Mills theory on Moyal space-time

based upon ordinary fields but with a deformed product.

Non-commutativity in momentum space is encompassed in the twisting factor

e−i
∑
i<j pi·θ·pj . This non-polynomial combination of incoming momenta at the vertex is

responsible for the non-locality of the interaction. Notice also that the twisting factor is

absent in the Moyal product of only two fields; for this reason, non-commutativity has no

effect on quadratic expressions so it does not affect propagators but rather only interac-

tion terms. This property also implies that the Moyal product is invariant under cyclic

permutation of the fields, which considerably reduces the number of interaction terms in

the construction of non-commutative generalisations of commutative theories.

2.2 Yang-Mills theory

To define our theory we introduce a one-form, Aµ = AaµT
a, valued in the fundamental

representation of the Lie algebra u(N) with generators {Ta}, and its field strength tensor

Fµν = i [Dµ, Dν ]? = ∂µAν − ∂νAµ − i [Aµ, Aν ]? , (2.5)

where Dµ = ∂µ− iAµ is the covariant derivative and ? indicates that the Moyal product is

to be used for multiplication. Using2

T aT b =
1

2
(ifabc + dabc)T c , (2.8)

the components of the field-strength tensor read

F aµν = ∂µA
a
ν − ∂νAaµ −

i

2
dabc [Abµ, A

c
ν ]? +

1

2
fabc {Abµ, Acν}? . (2.9)

This field strength tensor transforms covariantly under the gauge field transformation

Aµ(x)→ U ? Aµ ? U
−1 + i U ? ∂µU

−1 , (2.10)

1In this notation F(φ) = φ̃, δ̄ = (2π)Dδ and dp̄ = dp/(2π)D.
2From here one can read off the defining (anti-)commutators of the Lie algebra

[T a, T b] = ifabcT c , a = 0, . . . , N2 − 1 (2.6)

{T a, T b} = dabcT c (2.7)

where the structure constants fabc are completely anti-symmetric whilst the dabc are fully symmetric. The

“time-like” component is the U(1) generator T 0 = 1√
2N

1, and we have fab0 = 0 and dab0 = δab
√

2/N .

– 5 –
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where

U = e
iα(x)
? = 1 + iα(x)− 1

2
α(x) ? α(x) + . . . (2.11)

and α(x) = αa(x)T a is Lie-algebra valued.

An action that is invariant under the symmetry transformation (2.10) is

S[A] =
1

2g2

∫
RD

dx tr (Fµν ? Fµν) (2.12)

where g2 is the bare coupling constant, and the trace is computed in the fundamental repre-

sentation of the gauge group. Note that the field strength tensor given in (2.5) means that

the anti-commutator of the gauge group algebra enters the action alongside the commutator

familiar in commutative space. This means that we require the Lie algebra of the genera-

tors in the chosen representation to close under anti-commutation, which is not the case for

SU(N); the simplest extension compatible with this requirement is the U(N) group which

we study for the remainder of this article. For a similar analysis of the Super-Yang-Mills

theory in non-commutative space we refer to the analysis of [36].

2.3 Effective action

Since this quantity will occupy our calculations in the following, we briefly recap the defi-

nition and determination of the effective action in QFT. For a general quantum field Φ(x)

described by a classical action S[Φ], the effective action Γeff [Φ] is defined as

e−Γeff [Φ̄] =

∫
DΦ e−S[Φ̄+Φ]+

∫
J̄(x)Φ(x) , (2.13)

where J̄(x) is the source that generates the arbitrary background field Φ̄, that is,

J̄(x) = δΦ̄Γeff . Expanding the previous expression around the background field Φ̄ and

recalling that Φ̄ is the expectation value in the presence of the source J̄ , one obtains, to

leading order in quantum corrections,

e−Γeff [Φ̄] = e−S[Φ̄]

∫
DΦ e−

1
2

∫
Φ δ2

Φ̄
S Φ + ... . (2.14)

Therefore, the effective action can be written as

Γeff [Φ̄] = S[Φ̄] + Γ[Φ̄] +O(~2) , (2.15)

where the one-loop corrections, Γ[Φ̄], to the effective action are given by

Γ[Φ̄] = ±1

2
log Det

{
δ2S[Φ̄]

δΦ̄(x)δΦ̄(x′)

}
. (2.16)

The field Φ is used to collectively denote a set of fields (real, complex conjugates etc.),

eventually comprising Grassmann components. The upper sign in (2.16) corresponds to

the contribution of each bosonic field in Φ; the lower, to each Grassmann component.

Next, we shall calculate the one-loop corrections to the effective action Γ[A] for the

non-commutative Yang-Mills field by using the background field method, expressing the

resulting functional determinants in terms of heat-traces and passing to the first-quantised

(worldline) representation of such heat-traces.

– 6 –
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2.4 Background field method quantisation

The background field method (BFM) is a technique for calculations in quantum field theory

based upon expanding fields about a fixed, arbitrary background that is used for quantising

gauge field theories whithout losing explicit gauge invariance. Besides the advantage of

maintaining explicit gauge invariance it greatly simplifies some computations. The BFM

was introduced by DeWitt in 1967 [37] — see [38, 39] for historical and technical reviews.

The main idea behind the BFM is to decompose a gauge field into a background field, Āµ(x),

and a quantum field, aµ(x), which becomes the variable of integration in the functional

integral. A gauge is fixed for the quantum field, yet despite this choice gauge invariance

with respect to the background field is explicitly maintained. This method is quite general,

yet of all quantum gauge choices the Feynman gauge plays a special role in the worldline

formalism we shall employ below, allowing unification of the spin 1 loop with spin 0 and

1/2 cases in the first quantised description [15, 16, 21] by decoupling external ghosts. This

was essential for recent form factor decompositions of the off-shell gluon vertices which led

to very compact results in comparison to the conventional methods based on the Ward

identity analysis (see [40–43] for the three- and four-gluon amplitudes).

With this method the computation of the one-loop effective action (2.16) proceeds by

expanding the gauge field about an arbitrary background so that Aµ(x) = Āµ(x) + aµ(x).

With this shift the field strength tensor (2.5) is decomposed as

Fµν = F̄µν + [D̄µ, aν ]? − [D̄ν , aµ]? − i[aµ, aν ]? (2.17)

where F̄µν is the field strength tensor and D̄µ the covariant derivative computed from the

background Āµ. With this shift the action becomes a functional of both Āµ and aµ. As

shown in (2.16), for the one-loop corrections to the effective action it is sufficient to study

the piece quadratic in aµ which takes the following form3

S(2)
gauge[Ā, a] =

1

g2

∫
RD

dx tr
(
−aµ[D̄ν , [D̄ν , aµ]]− [D̄µ, aµ]2 + 2i aµ[F̄µν , aν ]

)
, (2.18)

where multiplication is with the Moyal product throughout. The action S
(2)
gauge[Ā, a] has

invariance under the following (independent) transformations

δαĀµ = 0 , δαaµ = [Dµ, α] = [D̄µ, α]− i[aµ, α] (2.19)

δ̄αĀµ = [D̄µ, α] , δ̄αaµ = −i[aµ, α] (2.20)

i.e. respectively quantum gauge invariance and background gauge invariance. We take

advantage of this to fix the quantum gauge invariance (retaining gauge invariance with

respect to the background field) by choosing the (Feynman-’t Hooft) gauge [D̄µ, aµ] = 0,

and we obtain the Faddeev-Popov determinant Det([−D̄, [D, ·]])?. Then, disregarding the

linear term in aµ, the appropriate contribution of the Faddeev-Popov ghosts to the total

action at quadratic order reads,

S
(2)
ghost[Ā, λ̄, λ] = −λ̄[D̄µ, [D̄µ, λ]] (2.21)

3Note that after cyclicity under
∫
dx tr . . ., the commutator [Dµ, ·] is anti-Hermitian.
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where λ̄(x) and λ(x) are one-component Grassmann fields valued in the fundamental rep-

resentation of u(N). Hence, (2.18) is modified to the following compact form (where again

all multiplication of fields is carried out with the Moyal ?-product)

S(2)[Ā,a, λ̄,λ] =
1

g2

∫
RD
dx tr

(
−aµ[D̄ν , [D̄ν ,aµ]]+2iaµ[F̄µν ,aν ]−λ̄D̄µ, [D̄µ,λ]]

)
. (2.22)

As indicated by (2.16), functional integration over the quantum fields gives the one-loop

effective action in terms of the determinants of the operators acting upon aµ and λ (we

omit now the bars in the background field Āµ and in the covariant derivative thereof)

Γ[A] =
1

2
log Det

{
δ2Sgauge

}
− log Det

{
δ2Sghost

}
, (2.23)

where

δ2Sghost =
δ2S(2)

δλ δλ̄
= −1gauge ⊗ [Dµ, [Dµ, ·]] , (2.24)

δ2Sgauge =
δ2S(2)

δaµδaν
= (−δµν [Dσ, [Dσ, ·]] + 2i [Fµν , ·])⊗ 1ghost . (2.25)

In both operators, the first factor acts on the space RD×L2(RD) of gauge fluctuations and

the second, on C× L2(RD), the space of ghost configurations. The fields Aµ(x), Fµν(x) in

these operators take values in u(N).

Using an integral representation of the determinants the effective action can be related

to heat-traces after introducing IR (m) and UV (Λ) regulators to prevent the integral to

diverge at small and large values of the Schwinger proper time T [44]

Γ[A] = −1

2

∫ ∞
Λ2

dT

T
e−Tm

2
(

Tr e−Tδ
2Sgauge − 2Tr e−Tδ

2Sghost

)
. (2.26)

In the next subsection we present a worldline determination of the heat-traces and test our

construction by computing the one-loop β-function. For the sake of such test we find it

convenient to use a hard cut-off UV regularisation (Λ). However, one may as well use other

UV regularisation schemes such as Dimensional Regularisation, which fits quite nicely in

the worldline approach — it dimensionally extends the Gamma functions that we shall see

will appear from the Schwinger proper time integrals.

2.5 Heat-trace representation in the worldline formalism

We wish to give a first quantised representation of the heat-traces. We do this for the

ghost sector in detail, since the steps are the same for the gauge fields (see the result (2.45)

for this sector). The heat-trace for the ghost contribution to the action, which appears

inside (2.26),

Tr e−Tδ
2Sghost =

∫
RD

dx tr 〈x|e−Tδ2Sghost |x〉 (2.27)

is given by a transition amplitude 〈x|e−Tδ2Sghost |x〉 which can be computed in terms of a

phase-space {x(t), p(t)} path integral of a particle on the circle [10, 12] with Hamiltonian

– 8 –
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δ2Sghost. The symbol tr in (2.27) denotes the trace over the color indices in δ2Sghost. The

free kinetic operator of this particle has a zero mode on the circle which must be factored

out. Different ways of factoring it out correspond to different particle propagators (Green

functions), which however are known to lead to the same effective action in flat phase-space

path integrals — see [12] for a detailed discussion of this issue for the worldline models used

for non-commutative QFT’s.4 In the present work we adopt so-called string-inspired Green

function, which corresponds to the zero mode being the center of mass of the path, x0. We

thus shift the worldline trajectories as x(t)→ x0+x(t), where now the quantum fluctuation

satisfies
∫ T

0 dt x(t) = 0. With this bag of tricks we can rewrite the ghost contribution to

the effective action as

Tr e−Tδ
2Sghost = tr

∫
RD

dx0

∫
PBC

Dx(t)Dp(t) P e−
∫ T
0 dt{−ip(t)ẋ(t)+HW

ghost(x(t),p(t))} (2.28)

where PBC stands for the periodic boundary conditions for the trajectory x(t), whereas

no restrictions are imposed on p(t). HW
ghost is a u?(N)-valued function of the phase-space

trajectories which thus requires the introduction of the path-ordering operator P. This

function HW
ghost is obtained after replacing x → x(t) and ∂ → ip(t) in the Weyl-ordered

expression of the Hamiltonian δ2Sghost (Weyl ordering is needed by the mid-point prescrip-

tion of the particle path integral [47]). However, upon a formal Taylor expansion, one can

easily show that the operator e−Tδ
2Sghost is a combination of the following mixed products

(for some fields φ, ψ)

φ(x+ iθ∂) · ψ(x− iθ∂) ,

∂ · φ(x+ iθ∂) + φ(x+ iθ∂) · ∂ ,
∂ · ψ(x− iθ∂) + ψ(x− iθ∂) · ∂ ,

all of which are already Weyl-ordered. The terms x+iθ∂ and x−iθ∂ respectively correspond

to left- and right-Moyal multiplications, i.e.

(φ ? ψ)(x) = φ(x+ iθ∂)ψ(x) = ψ(x− iθ∂)φ(x) . (2.29)

Thus, the full operator is Weyl-ordered, and no counterterms are needed in order to write

it as a symmetrised expression of coordinates and momenta.

To write down the function HW
ghost let us analyse the covariant derivative on the

ghost field,

[Dµ, λ
aT a] =

(
∂µλ

a +
1

2
fabc {Abµ, λc} −

i

2
dabc [Abµ, λ

c]

)
T a , (2.30)

or, equivalently, as it acts on the adjoint fields λa,

Dadj
µ λa =

(
δab ∂µ −

1

2
fabc [Acµ(x− θp) +Acµ(x+ θp)] +

− i

2
dabc [Acµ(x− θp)−Acµ(x+ θp)]

)
λb . (2.31)

4In curved spaces, i.e. when the path integrals are represented by non-linear sigma models, this is a

non-trivial issue that was discussed in [45, 46].
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The classical Hamiltonian counterpart of the operator −(Dadj)2 then reads(
HW

ghost

)ab
=

{
δad pµ +

1

2
(i fadc − dadc)Acµ(x− θp) +

1

2
(i fadc + dadc)Acµ(x+ θp)

}
×
{
δdb pµ +

1

2
(i fdbe − ddbe)Aµe(x− θp) +

1

2
(i fdbe + ddbe)Aµe(x+ θp)

}
.

(2.32)

With these results and redefining x(t)→
√
Tx(t) and p(t)→ p(t)/

√
T for power counting

convenience, with rescaled worldline time t ∈ [0, 1], the ghost contribution to the effective

action can finally be written as

Γghost[A] = −1

2

∫ ∞
0

dT

T
tr

∫
RD

dx0

∫
Dx(t)Dp(t) P e−

∫ 1
0 dt {−ipẋ+p2+T V (x,p)} , (2.33)

where P represents the path-ordering, the trace is with respect to the color indices, and

the potential V (x, p) is the matrix obtained from the interacting part of the classical

Hamiltonian (2.32) with the scaled variables xµ = xµ0 +
√
Txµ(t) and pµ = pµ(t)/

√
T . For

simplicity, we have momentarily omitted the UV- and IR-regulators.

The u?(N)-valued potential V can be split into the following five parts

V = V+ + V− + V++ + V−− + VM (2.34)

where the subscripts indicate the number of left- and right-acting gauge fields A, whereas

the fifth term is a mixed contribution which, as explained above, is linked to non-planar

diagrams. Explicitly,

V ab
+ = T−

1
2 (i fabc + dabc)Acµ(x+(t)) pµ(t) (2.35)

V ab
− = T−

1
2 (i fabc − dabc)Acµ(x−(t)) pµ(t) (2.36)

V ab
++ =

1

4
(i fadc + dadc)Acµ(x+(t))(i fdbe + ddbe)Aµe(x+(t)) (2.37)

V ab
−− =

1

4
(i fadc − dadc)Acµ(x−(t))(i fdbe − ddbe)Aµe(x−(t)) (2.38)

V ab
M =

1

4
(i fadc − dadc)Acµ(x−(t))(i fdbe + ddbe)Aµe(x+(t))

+
1

4
(i fadc + dadc)Acµ(x+(t))(i fdbe − ddbe)Aµe(x−(t)) , (2.39)

where we have introduced the notation xµ±(t) = xµ0 +
√
Txµ(t)± θµνpν(t)/

√
T .

The one-loop effective action can thus be used as a generating functional of effective

vertices. In order to do that, one treats the potential as a perturbation of the free phase-

space action, normalised as∫
Dx(t)Dp(t) e−

∫ 1
0 dt {−ip(t)ẋ(t)+p2(t)} =

1

(4πT )
D
2

(2.40)

so that

Γghost[A] = −1

2

1

(4π)
D
2

∫ ∞
0

dT

T 1+D
2

tr

∫
RD

dx P
〈

e−T
∫ 1
0 dt V (x(t),p(t))

〉
. (2.41)
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The mean value is computed perturbatively by means of the following correlators (otherwise

called worldline Green functions) derived in appendix B:

〈pµ(t)pν(t′)〉 =
1

2
δµν , (2.42)

〈xµ(t)xν(t′)〉 = 2 δµν G(t− t′) , (2.43)

〈pµ(t)xν(t′)〉 = i δµν Ġ(t− t′) , (2.44)

where G(t) = −1
2

(
|t| − t2

)
.

As regards the gauge contribution to the one-loop effective action, we may similarly

write

Γgauge[A] = −1

2

1

(4π)
D
2

∫ ∞
0

dT

T 1+D
2

tr

∫
RD

dx P
〈

e−T
∫ 1
0 dt {V(x(t),p(t))−2iF(x(t),p(t))}

〉
,

(2.45)

where the interactions include now an extra matrix structure due to Lorentz indices, so

the trace refers to color as well as to space-time indices,

Vabµν = δµν V
ab(x(t), p(t)) , (2.46)

Fabµν =
1

2

[
(ifabc − dabc)F cµν(x− θp) + (ifabc + dabc)F cµν(x+ θp)

]
. (2.47)

Note that the potential V is diagonal in the Lorentz indices and is essentially given by the

same potential V as for the ghost’s contribution. On the other hand, the extra interaction

term F is a non-trivial Lorentz matrix that is due to the field strength term in (2.25). Before

leaving this section, it is worth comparing these Hamiltonians to the results of [12]. Due to

the non-standard normalisation of the Lie algebra generator in the Abelian case it is nec-

essary to use fijk = 0 and d000 = 2 to reproduce the worldline action used in the U(1) case.

The gauge and ghost contributions to the one- and two-point functions will be discussed

in section 5, where we will show that tadpole diagrams vanish and that the propagator

contains, as expected, a logarithmically-divergent transverse contribution. Before doing

that, in the next section we introduce a set of auxiliary fields for the worldline path integral,

which will allow us to compactly write both ghost and Yang-Mills contributions to the

full effective action as special cases of a single master formula and will help simplify the

expansion of the effective action to second order in the gauge field.

3 Auxiliary worldline fields

Having arrived at a path integral representation of the one-loop effective action (2.33), (2.45)

in phase-space, it is now possible to begin calculating the correlation functions. It is worth

reiterating that in principle this can be achieved by making a straightforward expansion of

the path ordered exponential of the action, followed by computation of the path integral

over the worldline coordinates x(t) and p(t).
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However, the worldline path integral as it stands is not yet optimal, since the potential

entering into the action is matrix valued with respect to the gauge group indices and Lorentz

indices and consequently requires the path ordering prescription for the exponentiated line

integral. However, as has now been applied in a number of cases [22–24, 27, 48, 49], building

upon worldline representations of higher spin fields [50–61] and differential forms [62, 63],

such an awkward approach can be avoided by the introduction of auxiliary worldline fields.

These additional fields play the rôle of filling out the Hilbert spaces associated to extra

degrees of freedom which in our case will represent gauge group information (termed “colour

fields”) and space-time forms (to be referred to as “spin fields” for reasons soon to become

apparent). As such, we now introduce two independent sets of auxiliary worldline fields.

3.1 Auxiliary colour fields

The first, worldline colour fields, are exactly analagous to those used in [23, 24, 48, 49] and

will absorb the gauge group indices, so we define a set of N2 complex Grassmann variables,5

which following [22, 27] we denote by {c̄a}N2

a=1 and {ca}N
2

a=1 that transform in the adjoint

representation of u(N). Choosing canonical Poisson brackets in Minkowski space

{c̄a, cb} = −iδab (3.1)

facilitates the construction of a classical representation of the Lie algebra: define

Sa ≡ c̄r(T a)rscs and note

{Sa, Sb}PB = fabcSc. (3.2)

Upon quantisation — where c̄a and ca are replaced by operators acting, for example, on a

coherent state basis with anti-commutation relations {ˆ̄ca, ĉb} = δab — we then find

[Ŝa, Ŝb] = ifabcŜc. (3.3)

The Minkowski space action compatible with these brackets is

S[c̄, c] = i

∫ 1

0
c̄aċa dτ. (3.4)

We observe that the Green function of these worldline fields, derived from the first order ki-

netic term, is essentially the step function. This is sufficient to generate a path ordering pre-

scription, so that it need no longer be imposed by hand, whilst the anti-periodic boundary

conditions implement the trace over colour indices. Moreover, given (3.3), the colour fields

can be used to absorb the gauge group indices of the matrix valued potential in the action.

This leads to a modification of the worldline action which on the unit circle becomes

(the Lorentz space identity matrix has been suppressed to avoid cluttering)

S[p, x, c̄, c, a] =

∫ 1

0
dt

[
− ip · ẋ+ p2 + c̄aċa + TVa

b

(
c̄acb +

1

2
δab

)
− 2iT (Fµν)a

b

(
c̄acb +

1

2
δab

)
+ ia(t) (c̄aca − n)

]
, (3.5)

5We could equally use bosonic fields with minimal changes to the steps that follow [23].
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where (Fµν)ab is given in (2.47). Note that we have Weyl ordered the terms involving the

colour fields (which produces the factors 1
2δ
b
a) which is part of the path integral regularisa-

tion; such factors were absent in previous applications of worldline colour fields based on

SU(N) or SO(N) symmetry groups due to tracelessness of the matrices that appeared in

the action.

In the action (3.5) we have also gauged the U(1) phase symmetry by introducing a

(worldline) gauge field a(t). We will immediately fix this gauge symmetry by choosing

a(t) = ϑ, a constant modulus distinguishing gauge inequivalent configurations. Examina-

tion of large gauge transformations shows that ϑ ∈ [0, 2π] that must be integrated over

with convenient normalisation of the measure dϑ
2π . The constant n ≡ %− N2

2 projects onto

an irreducible representation of the colour Hilbert space (% = 1 will project onto the adjoint

representation). To see this, note that the auxiliary fields ca correspond to a set of N2

fermionic oscillators that generate a 2N
2
-dimensional Hilbert space

HC =
N2⊕
p=0

H% , dim(H%) = tr (1%) =

(
N2

%

)
(3.6)

where H% denotes the subspace with c-occupation number %: in a coherent state basis

we realise the anti-commutation relations by the identification ˆ̄ca → c̄a, ĉa = ∂
∂c̄a for

Grassmann variables c̄a and then an arbitrary state in such a Hilbert space is represented

by a wavefunction with completely anti-symmetric components ϕa1...ap(x),

φ(x, c̄) =ϕ(x)+ϕa1(x)c̄a1 +· · ·+ϕa1...ap(x)c̄a1 · · · c̄ap+. . .ϕa1...aN2 (x)c̄a1 · · · c̄aN2 . (3.7)

The number operator is given by N̂ = ˆ̄caĉa = c̄a ∂
∂c̄a which allows projection operators to

be written

P% =

∫ 2π

0

dϑ

2π
eiϑ(%−N̂) =⇒ trH

(
P%
)

= tr (1%) . (3.8)

This selects from (3.7) the wavefunction transforming in the representation with % anti-

symmetric indices. The path integral representation of this projector is implemented

in (3.5) where it arises from the gauge fixing of the local U(1) symmetry gauged by the

worldline fields a(τ) discussed above. This provides∫
Dp

∮
Dx

∮
D [c̄, c]

∫ 2π

0

dϑ

2π
trP exp (−S[p, x, c̄, c, ϑ]) (3.9)

with anti-periodic boundary conditions on the Grassmann colour fields and periodic bound-

ary conditions on the particle trajectories. Note, however, that we still require a path

ordering prescription for the Lorentz indices that appear inside the worldline action. We

discuss how this can be circumvented in a similar way to the gauge group indices in the

following section.

3.2 Auxiliary spin fields

It would be advantageous to remove the path ordering associated with the Lorentz ma-

trix structure of the worldline action by also absorbing their indices by the introduction
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of auxiliary fields. A preliminary version of this approach was presented in early work

calculating the one-loop effective action in commutative space [21, 64] building upon the

original proposal of [15], that was sufficient to generalise the well-known “cycle replacement

rules” relating amplitudes in scalar and spinor quantum electrodynamics to the case of a

spin-one particle in a virtual loop — for a concise description of this approach see [16, 65].

However, in the above-mentioned works the projection onto the correct subspace of the

enlarged Hilbert space required to include the spin degrees of freedom was less elegant (in-

volving the introduction of an additional mass-term and parity operator) than the updated

technique we will use here. This projection is essentially the same as that used to pick out

a wavefunction transforming in an irreducible representation of the gauge group presented

in the previous section.

Recall that the worldline path integrals reproduce the functional determinants of the

differential operators given in equations (2.24) and (2.25), which can be re-written as

(−1[Dσ, [Dσ, ·]] + 2iζ [F, ·])? (3.10)

with ζ = 1 for the gauge degrees of freedom (where 1 is the space-time identity) and ζ = 0

for the ghosts (where 1 = 1), and where F represents the field strength. Following the

treatment of the above section, we introduce additional Grassmann operators with space-

time indices, ˆ̄ψµ and ψ̂µ with anti-commutator { ˆ̄ψµ, ψ̂ν} = δµν . These operators generate

a 2D-dimensional Hilbert space spanned by wavefunctions with an expansion in terms of

Lie-algebra valued r-forms, φµ1...µr for r ∈ {0, . . . , D},

Φ(x, ψ̄) =φ(x)+φµ1(x)ψ̄µ1 +· · ·+φµ1...µr(x)ψ̄µ1 · · · ψ̄µr+. . .φµ1...µD(x)ψ̄µ1 · · · ψ̄µD , (3.11)

each of which gives a subspace of dimension

D
r

. The projection operator that selects the

component with r anti-symmetric indices is built from the number operator L̂ = ˆ̄ψµψ̂µ as

Pr =

∫ 2π

0

dϕ

2π
eiϕ(r−L̂) =⇒ trH

(
Pr
)

= tr (1r) . (3.12)

With these operators we define a Hamiltonian

Ĥ := −1[Dσ, [Dσ, ·]] + 2i ˆ̄ψµ[Fµν , ·]ψ̂ν , (3.13)

which acts on the graded wave function (3.11). It acts as (2.24) (ζ = 0) on the subspace of

zero-forms, where ghost fields live, and as (2.25) (ζ = 1) on the space of one-forms, where

gauge fields live. In a coherent state basis we can identify ˆ̄ψ → ψ̄ and ψ̂ → ∂
∂ψ̄

, so that

Ĥφµ(x)ψ̄µ = (−δµν [Dσ, [Dσ, φν(x)]] + 2i[Fµν , φν(x)]) ψ̄µ (3.14)

Ĥφ(x) = −[Dσ, [Dσ, φ(x)]] . (3.15)

The projection operators can be implemented at the level of the path integral in order

to select the appropriate subspace for the gauge and ghost degrees of freedom. We intro-

duce Grassmann functions ψ̄µ(τ) and ψµ(τ) in the coherent state basis with kinetic term
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∫ 1
0 dτ ψ̄

µψ̇µ which yields a Poisson bracket compatible with the quantum anti-commutation

relations.6 The Green function of these fields is again sufficient to generate the path order-

ing and anti-periodic boundary conditions produce the trace over Lorentz indices. More-

over, the anti-symmetry of the field strength indices automatically yields Weyl ordering.

In the path integral described below, the projection (3.12) can be realized in the same way

as for the colour degrees of freedom, i.e. by introducing a U(1) gauge field φ(t) which in

turn can be gauge-fixed to the angle variable ϕ.

Grassmann fields as well as bosonic gauge fields are routinely applied in worldline

representations of fields of arbitrary spin [50–56, 66]. In such cases the resulting free particle

action usually enjoys a worldline supersymmetry between the bosonic coordinates xµ and

the fermionic fields ψµ — that can be extended to incorporate the colour fields — which

has profound consequences [16, 27]; although in general this supersymmetry can survive

the transition to non-commutative space, it turns out not to apply in the current case

(see (3.16) below) where the supersymmetry algebra does not close once a coupling of the

point particle to the gauge field is included (as would also be the case in commutative space).

3.3 The worldline representation of the effective action

Putting together the ingredients introduced in the previous subsections we arrive at the

final version of the worldline action to be used in our non-commutative setup, i.e.

S%,r[p,x, ψ̄,ψ, c̄, c,ϕ,ϑ] =

∫ 1

0
dt

[
−ip·ẋ+p2+c̄aċa+ψ̄ ·ψ̇+TVa

b

(
c̄acb+

1

2
δab

)
−2iT ψ̄µ(Fµν)a

bψν
(
c̄acb+

1

2
δab

)
+iϑ(c̄acb−n)+iϕ

(
ψ̄ ·ψ−s

)]
,

(3.16)

where the Chern-Simons charge s ≡ r − D
2 fixes the degree of the form making up the

wavefunction Φ(x, ψ̄). The factor −D
2 appears due to Weyl-ordering the number operator:

as mentioned above, for the gauge sector we set r = 1 and for the ghosts we fix r = 0.

Finally ϕ is the U(1) modulus left over after gauge fixing that is to be integrated over; it

is to φ(t) as ϑ is to a(t).

Hence, denoting by Γ[A]%,r the complete path integral including auxiliary fields that

project onto the representation of U(N) with % fully anti-symmetric indices and the Lorentz

sector of the Hilbert space associated to r-forms,

Γ[A]%,r :=−1

2

∫ ∞
0

dT

(4π)
D
2 T 1+D

2

∫
Dp

∮
Dx

∮
D [ψ̄,ψ]

∮
D [c̄, c]

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π

×exp
(
−S%,r[p,x, ψ̄,ψ, c̄, c,ϕ,ϑ]

)
, (3.17)

then the one-loop effective action has path integral representation

Γ[A] = Γ[A]1,1 − 2Γ[A]1,0. (3.18)

6This can furnish us with a classical representation of the Lorentz algebra: given generators (Mµν)αβ
with Lorentz indices α, β we may defineMµν := ψ̄α(Mµν)αβψ

β and note their Poisson bracket is given by

{Mµν ,Mρσ}PB = i (gµρMνσ − gνρMµσ − gµσMνρ + gνσMµρ).
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In the path integrals, all Grassmann variables have anti-periodic boundary conditions, the

bosonic embedding coordinates have periodic boundary conditions and the momenta are

unrestrained. Note that at last we have arrived at a path integral representation which

contains a pure exponential function, since the auxiliary fields produce the required path

ordering. This represents a major advantage of the auxiliary field formulation. Equa-

tion (3.18) will form the basis of our calculation of the β-function by expanding the two

contributions to quadratic order in the gauge field.

There is one final modification to the path integrals defined above. It is convenient to

absorb the ϑ- and ϕ-dependence of the worldline action by redefining the worldline fields

according to(
c̄a(t)

ψ̄µ(t)

)
→

(
c̄a(t)

ψ̄µ(t)

)(
e−iϑt 0

0 e−iϕt

)
;

(
ca(t)

ψµ(t)

)
→

(
eiϑt 0

0 eiϕt

)(
ca(t)

ψµ(t)

)
(3.19)

which turns the original anti-periodic boundary conditions on the Grassmann fields ψ̄µ, ψµ

and c̄a, ca into twisted boundary conditions (TBC)

ca(1) = −eiϑca(0) , c̄a(1) = −e−iϑc̄a(0)

ψµ(1) = −eiϕψµ(0) , ψ̄µ(1) = −e−iϕψ̄µ(0) .
(3.20)

Putting this all together we get an equivalent representation of (3.17)

Γ[A]%,r = −1

2

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

+1

∫
dDx

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(
%−N

2

2

)
eiϕ
(
r−D

2

)
×
∫

Dp

∫
PBC

Dx

∫
TBC

D [ψ̄, ψ]

∫
TBC

D [c̄, c] e−S[p,x,c̄,c,ψ̄,ψ], (3.21)

where the gauge fixed action with shifted worldline auxiliary fields is simplified to

S[p, x, c̄, c, ψ̄, ψ] =

∫ 1

0
dt

[
− ip · ẋ+ p2 + c̄aċa + ψ̄ · ψ̇ + TVa

b

(
c̄acb +

1

2
δab

)
− 2iT ψ̄µ(Fµν)a

bψν
(
c̄acb +

1

2
δab

)]
. (3.22)

The action (3.22) and path integral (3.21) represent one of the main results of this paper

— a first quantised representation of the effective action where all degrees of freedom are

treated equally and the gauge and ghost sectors are unified without the need for a manual

path ordering. In the next section we compute the path integral over the auxiliary fields,

expanding the effective action up to quadratic order in the gauge field.

4 Planar divergences of the effective action

The planar divergences that contribute to the β-function arise from terms involving prod-

ucts of gauge fields — or the field strength tensor — evaluated at either (x + θ · p) or

(x−θ ·p). Here we begin the calculation of the β-function based on the two point function,

at quadratic order in the gauge field, so we expand the effective action (3.21) to second
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order for p = 1 and r = 0, 1 and discount products of fields with respective arguments

(x ± θ · p) and (x ∓ θ · p). In this section we carry out this expansion and compute the

path integrals over the auxiliary worldline fields, leaving the eventual computation of the

remaining path integral over phase-space and the proper time integral for section 5.

Referring back to (2.41) and (2.45), and implementing the auxiliary fields as described

above, we can write the more general path integral as an expectation value (with 〈1〉 = 1):

Γ[A]%,r = −1

2

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

+1

∫
dDx

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(
%−N

2

2

)
eiϕ
(
r−D

2

)
×
(

2 cos
ϑ

2

)N2 (
2 cos

ϕ

2

)D 〈
e−T

∫ 1
0 dτ [(Va

b−2iψ̄µ(Fµν)abψν)(c̄acb+ 1
2
δba)]
〉

(4.1)

where the trigonometric expressions arise due to the normalisation of the free path-integrals

over the auxiliary fields ∫
TBC

D [ψ̄, ψ] e−
∫ 1
0 dt ψ̄

µψ̇µ =
(

2 cos
ϕ

2

)D
, (4.2)∫

TBC
D [c̄, c] e−

∫ 1
0 c̄aċadt =

(
2 cos

ϑ

2

)N2

. (4.3)

Above, along with the Green’s functions defined in (2.42)–(2.44), we make use of the Green

functions associated to the auxiliary fields that are read off from their kinetic actions. With

the employed twisted boundary conditions, these are:〈
ψµ(t)ψ̄ν(s)

〉
c

= δνµ∆(t− s;ϕ) , (4.4)〈
ca(t) c̄

b(s)
〉

= δab∆(t− s, ϑ) , (4.5)

where

∆(t− s;ω) :=
1

2 cos ω2

[
ei
ω
2 Θ(t− s)− e−i

ω
2 Θ(s− t)

]
. (4.6)

Note that in the limit ω → 0 we recover ∆(t − s; 0) = 1
2σ(t − s) that is appropriate for a

kinetic term first order in derivatives with anti-periodic boundary conditions. We provide

some further discussion of these worldline Green functions in the appendix B. Below we

consider the expansion of this expectation value up to quadratic order in the gauge field and

will evaluate (4.1) for % = 1 and r = 1, 0 for the gauge and ghost contribution respectively.

However, we can calculate these two contributions simultaneously by keeping r arbitrary

until the end of the calculation, that represents a significant advantage granted by the

auxiliary worldline field approach.

4.1 Single vertex insertion

We first demonstrate that there are no planar contributions that are linear in the gauge

field. We expand the exponential of (4.1) to first order, which introduces an insertion of

single vertices built from V and F . Firstly note that the first-order contribution from the
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F -term involves
〈
ψ̄µ(t)ψν(t)

〉
Fµν which is proportional to δµνFµν(x + θ · p) = 0 due to

tracelessness of the field strength tensor. In fact to build anything non-zero from this part

of the action we need to go to at least quadratic order in F .

On the other hand the V -part of the action contributes at O(A) and O(A2). The two

(left and right) linear contributions in A are distinguished by ± and read

1

2

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D+1
2

∫
dDx (ifabc ± dabc)

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

)
×
(

2 cos
ϑ

2

)N2 (
2 cos

ϕ

2

)D ∫ 1

0
dt
〈
Acµ(x) pµ

〉〈
c̄a(t)cb(t) +

1

2
δab

〉
,

(4.7)

where since the operatorial dependence of the potential is shifted away by the integral over

the zero mode we are free to evaluate it at the point x: this property obviously holds at

any order in p.

With
〈
c̄a(t)cb(t) + 1

2δ
b
a

〉
= δba

(
− i

2 tan ϑ
2 + 1

2

)
we immediately remove the contributions

from the anti-symmetric structure constants (the remaining contribution would therefore

vanish in a commutative SU(N) theory). Furthermore, the integrals over the moduli read∫ 2π

0

dϕ

2π

(
2 cos

ϕ

2

)D
eiϕ
(
r−D

2

)
=

(
D

r

)
; 0 6 r 6 D, (4.8)

∫ 2π

0

dϑ

2π

(
2 cos

ϑ

2

)N2 (
i

2
tan

ϑ

2

)n
e
iϑ
(

1−N
2

2

)

=
1

2n

∮
dz

2πi

(
1 +

1

z

)N2−n(
1− 1

z

)n
=
N2 − 2n

2n
; 0 6 n 6 N2

(4.9)

so that the full integral over ϑ is equal 1, and (4.7) thus becomes

1

2

(
D

r

)∫ ∞
Λ−2

dTe−m
2T

(4π)
D
2 T

D+1
2

(±)daac

∫
dDx

∫ 1

0
dt
〈
Acµ(x)pµ(t)

〉
. (4.10)

We set r = 0 for the ghost sector and r = 1 for the gauge sector; the latter contribution

generates an additional factor of D that is implementing the trace over Lorentz indices

(recall that the trace is generated by integrating over the auxiliary variables ψ̄, ψ, which

by this stage has become an integration over the modulus ϕ).

4.1.1 Terms quadratic in A

At first order in expansion of the exponential there are also four terms quadratic in the

gauge potential, two planar terms (++ and −−) and two non planar ones (+− and −+).

The two planar contributions read

1

8

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

∫
dDx

(
facdfbce + dacddbce ± i(facddbce − fbcddace)

)
×
∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

) (
2 cos

ϑ

2

)N2 (
2 cos

ϕ

2

)D
×
∫ 1

0
dt
〈
Adµ(x)Aeµ(x)

〉〈
c̄a(t)cb(t) +

1

2
δba

〉
, (4.11)
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where once again the operatorial part of the argument of the gauge fields gets shifted away.

The expectation value of the auxiliary fields yields a result proportional to δab which makes

the latter two terms involving the structure constants vanish by symmetry: the two planar

contributions are thus equal. Subsequently, integrating over the auxiliary fields using (4.9)

provides

1

8

(
D

r

)∫ ∞
Λ−2

dTe−m
2T

(4π)
D
2 T

D
2

(facdface + dacddace)

∫
dDx

∫ 1

0
dt
〈
Adµ(x)Aeµ(x)

〉
, (4.12)

where we will again need either r = 0 (r = 1) for the ghost (gauge) contribution.

4.2 Double vertex insertion

At second order in the expansion of the exponential we find terms quadratic, cubic and

quartic in the field; for the β-function it suffices to determine the quadratic pieces. To begin

with, we get our first contribution from the field strength tensor involving the auxiliary

spin fields. The planar terms are:

1

4

∫ ∞
Λ−2

dTe−m
2T

(4π)
D
2 T

D−2
2

∫
dDx (±dabc + ifabc) (±drst + ifrst)

×
∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

) (
2 cos

ϑ

2

)N2 (
2 cos

ϕ

2

)D
×
∫ 1

0
dt

∫ 1

0
dt′
〈
F cµν(x±)F tαβ(x′±)

〉 〈
ψ̄µ(t)ψν(t)ψ̄α(t′)ψβ(t′)

〉
×
〈(

c̄a(t)cb(t) +
1

2
δab

)(
c̄r(t′)cs(t

′) +
1

2
δrs

)〉
, (4.13)

where x′± := x±(t′). Now we need not contract ψ̄ and ψ at equal times due to tracelessness

of the field strength tensors (which is why this term does not give anything at first order).

This leaves us with the surviving contraction
〈
ψ̄µ(t)ψν(t)ψ̄α(t′)ψβ(t′)

〉
= −δµβδαν∆(t −

t′;ϕ)∆(t′ − t;ϕ) = δµβδαν
(
2 cos ϕ2

)−2
. The Kronecker δ’s contract the indices on the field

strength tensors to form tr
[
F c(x±) · F t(x′±)

]
. Turning to the colour fields we need〈(

c̄a(t)cb(t) +
1

2
δab

)(
c̄r(t′)cs(t

′) +
1

2
δrs

)〉
= δab δ

r
s

[
∆(0;ϑ)− 1

2

]2

− δas δrb∆(t− t′;ϑ)∆(t′ − t;ϑ)

= δab δ
r
s

(
i

2
tan

ϑ

2
− 1

2

)2

+ δas δ
r
b

(
2 cos

ϑ

2

)−2

. (4.14)

Putting this together we get a contribution

1

4

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D−2
2

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

) (
2 cos

ϑ

2

)N2 (
2 cos

ϕ

2

)D−2

×
∫
dDx

[
daacdrrt

(
i

2
tan

ϑ

2
− 1

2

)2

+ (dabcdabt + fabcfabt)

(
2 cos

ϑ

2

)−2
]

×
∫ 1

0
dt

∫ 1

0
dt′
〈
tr
(
F c(x±) · F t(x′±)

)〉
. (4.15)
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To complete the integrals over the modular parameters we need (4.9) with the additional

identity∫ 2π

0

dϕ

2π
eiϕ(r−D2 )

(
2 cos

ϕ

2

)D−2n
=

∮
dω

2πi
ωr−(n+1)

(
1 +

1

ω

)D−2n

=

(
D − 2n

r − n

)
; D − 2n > 0, r − n > 0. (4.16)

Armed with these results we first note that∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

) (
2 cos

ϑ

2

)N2 (
i

2
tan

ϑ

2
− 1

2

)2

=
N2 − 4

4
− N2 − 2

2
+
N2

4

= 0 (4.17)

which kills the first contribution in (4.15). The other contribution requires

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

)(
2cos

ϑ

2

)N2−2(
2cos

ϕ

2

)D−2
=

(
D−2

r−1

)

=

{
1 gauge

0 ghost

(4.18)

so that we finally produce a gauge contribution

1

4

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D−2
2

(dabcdabt+fabcfabt)

∫
dDx

∫ 1

0
dt

∫ 1

0
dt′
〈
tr
(
F c(x±)·Ft(x′±)

)〉
. (4.19)

Note there is no contribution from the ghost sector with r = 0, where no pole appears

in (4.16). This is in agreement with the fact that the field strength tensor does not enter

the ghost action (see (2.24), for example) — the auxiliary colour fields correctly project

this contribution out of the effective action when r = 0 and count it for the gauge field

when r = 1.

Proceeding with further contributions in the expansion of (4.1) at second order, first

note that there can be no cross-term mixing between the F -term and the V-term at this or-

der because self-contractions between the ψ̄ and ψ produce traces of F . Therefore, we con-

sider two insertions of the V-term that yield terms quadratic, cubic and quartic in the gauge

potential. We are concerned only with the quadratic contributions which take the form

− 1

4

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

) (
2 cos

ϑ

2

)N2 (
2 cos

ϕ

2

)D
×
∫
dDx (ifabc ± dabc) (ifrst ± drst)

∫ 1

0
dt

∫ 1

0
dt′

×
〈
Acµ(x±)Atν(x′±)pµ(t)pν(t′)

〉〈(
c̄a(t)cb(t) +

1

2
δab

)(
c̄r(t′)cs(t

′) +
1

2
δrs

)〉
. (4.20)
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For the contractions of the colour fields we re-use (4.14) and recall that its first term in-

tegrates to zero. So we are left with the second contribution which after some shifts of

indices becomes

1

4

∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

∫ 2π

0

dϕ

2π

∫ 2π

0

dϑ

2π
eiϑ
(

1−N
2

2

)
eiϕ
(
r−D

2

) (
2 cos

ϑ

2

)N2−2 (
2 cos

ϕ

2

)D
×
∫
dDx (ifabc ± dabc) (ifabt ∓ dabt)

∫ 1

0
dt

∫ 1

0
dt′
〈
Acµ(x±)Atν(x′±)pµ(t)pν(t′)

〉
. (4.21)

Integrating over the Lorentz fields gives a factor

(
D

r

)
whilst integrating over the colour

fields multiplies this by unity. This leaves

−1

4

(
D

r

)∫ ∞
Λ−2

dT e−m
2T

(4π)
D
2 T

D
2

∫
dDx (fabcfabt + dabcdabt)

×
∫ 1

0
dt

∫ 1

0
dt′
〈
Ac+µ (t)At+ν (t′)pµ(t)pν(t′)

〉
(4.22)

where again the cross terms fbacdabd vanish by symmetry.

In total, then, we have found that the planar (left and right) terms in the expansion

of the effective action up to quadratic order in the gauge field that contribute to the UV

divergences of the two-point function are, for r = 0, 1,

Γ[A]±1,r =−1

2

∫ ∞
Λ−2

dT

T

e−m
2T

(4πT )
D
2

∫
dDx

{(
D

r

)[∫ 1

0
dt
(
∓
√
Tdaac

〈
Acµ(x)pµ

〉
−T
a

(facdface+dacddace)
〈
Adµ(x)Aeµ(x)

〉)
+
T

2
(fabcfabt+dabcdabt)

∫ 1

0
dt

∫ 1

0
dt′
〈
Acµ(x±)Atν(x′±)pµpν

〉]

− 1−(−1)r

4
T 2(fabcfabt+dabcdabt)

∫ 1

0
dt

∫ 1

0
dt′
〈
tr
(
F c(x±)·Ft(x′±)

)〉}
. (4.23)

Hence,

Γ[A] =
∑
l=±

(
Γ[A]l1,1 − 2Γ[A]l1,0

)
(4.24)

is the final expression for the (planar part of the) one-loop effective action limited to

quadratic order in the gauge field. Whilst this result could have been arrive at from

expanding (2.33) and (2.45), the unification of the two sectors and the efficient generation

of the path ordering would become ever more advantageous for higher order calculations.
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5 Parameter integrals and the β-function

In this section we complete the calculation of (4.24) by evaluating the functional integra-

tions in the phase-space variable and the Schwinger proper time integral.

5.1 One-point function

As mentioned above, below (4.7), for a single insertion the argument of the gauge field can

be shifted. Hence the left and right part of the one-point function reported in (4.10) are

opposite to each other and their sum vanishes. In fact, since 〈Aµ(x)pµ〉 = Aµ(x) 〈pµ〉 = 0

those contributions independently vanish. Although the vanishing of the one-point function

would seem to suggest that the vacuum is stable and ripe to be expanded around, we recall

from the Abelian, U(1), case that non-planar diagrams spoil this due to IR divergences

at quadratic order in A. Indeed, as investigated non-perturbatively in [67], negative IR

divergences cause a severe complication for the ground state (the authors report that it

could be avoided in a certain double scaling limit). We shall not investigate further the

stability of the vacuum here, instead continuing with our determination of the one-loop β-

function. In the following we turn then to consider the planar, UV divergences at quadratic

order in the gauge field.

5.2 Two-point function

Let us consider the contributions to (4.24) coming from the first quadratic pieces in (4.23).

Since these come from single vertex insertions, the integral over x ∈ RD eliminates the

operatorial dependence in the fields, and again the left and right parts are equal. Summing

the two sectors according to (4.24) yields an over factor of (D − 2). Hence,

Γ[A] ⊃ D − 2

4

1

(4π)
D
2

(fabcfabd + dabcdabd)

∫ ∞
0

dT

T
D
2

∫
RD

dx0 A
c
µ(x0)Adµ(x0) (5.1)

which, using the group identities reported in appendix A, reduces to

N (D − 2)

2(4π)
D
2

mD−2 Γ

(
1− D

2
,
m2

Λ2

)∫
RD

dx Aaµ(x)Aaµ(x) . (5.2)

Above we have restored the IR- and UV-regulators m and Λ, respectively. Thus the

Schwinger integral is seen to produce a Gamma function. The previous contribution would

give a mass to the gauge fields which, because of gauge invariance, is expected to cancel.

Next, let us consider the right-right Moyal contribution of the second quadratic term

from (4.23). This contributes to (4.24) as

− D − 2

4(4π)
D
2

(fabcfabt + dabcdabt)×

×
∫ ∞

0

dT

T
D
2

∫
RD

dx

∫ 1

0
dt dt′

〈
Acµ(x+(t)) pµ(t)Atν(x+(t′)) pν(t′)

〉
= −N(D − 2)

2(4π)
D
2

∫ ∞
0

dT

T
D
2

∫
dk̄ Ãaµ(k) Ãaν(−k)×

×
∫ 1

0
dtdt′

〈
pµ(t) pν(t′) e

i
√
T k [x(t)−x(t′)]− i√

T
θk [p(t)−p(t′)]

〉
. (5.3)
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If we expand the exponential to order O(T ) in order to determine the UV-divergent part

we obtain

− N(D − 2)

2(4π)
D
2

∫ ∞
0

dT

T
D
2

∫
dk̄ Ãaµ Ã

a∗
ν ×

×
∫ 1

0
dtdt′

[
1

2
δµν + T δµν k

2G(t− t′) + T kµkν Ġ
2(t− t′)

]
. (5.4)

Since the contribution of the left-left part is identical we get (applying Ġ(t)2 = 1
4 + 2G(t)

and
∫ 1

0 dt dt
′G(t− t′) = − 1

12)

Γ[A]⊃−N(D−2)

2(4π)
D
2

∫
dk̄ Ãaµ(k)Ãa∗ν ×

×
[
mD−2 Γ

(
1−D

2
,
m2

Λ2

)
δµν−

1

6
mD−4 Γ

(
2−D

2
,
m2

Λ2

) (
δµνk

2−kµkν
)]
. (5.5)

We have used expression (2.42), (2.43) and (2.44) in the computation of the expectation

values. In particular, since the mean value 〈p(t)p(t′)〉 does not depend on t, t′, then any

expectation value involving the combination p(t)− p(t′) vanishes (see also appendix B for

an explicit calculation). Expression (5.5) shows a mass term which exactly cancels (5.2).

Moreover, there is a logarithmically divergent term that corresponds to a transversal prop-

agator.

Finally, we consider the last right-right Moyal quadratic contribution from (4.23),

1

4(4π)
D
2

(fabcfabt + dabcdabt)

∫ ∞
0

dT

T
D
2
−1

∫
dx0

∫ 1

0
dtdt′

〈
F cµν(x+(t))F tνµ(x+(t′))

〉
= − N

2(4π)
D
2

∫ ∞
0

dT

T
D
2
−1

∫ 1

0
dtdt′

∫
dk̄ F̃ aµν F̃

a∗
µν

〈
e
i
√
T k [x(t)−x(t′)]− i√

T
θk [p(t)−p(t′)]

〉
, (5.6)

which, expanding the exponential to order O(T 0), provides divergent contribution

− N

2(4π)
D
2

mD−4 Γ

(
2− D

2
,
m2

Λ2

)∫
dx F aµν(x)F aµν(x) . (5.7)

Thus, once again adding the other Moyal polarisation, results in the effective action

quadratic contribution

Γ[A] ⊃ − 4N

2(4π)
D
2

mD−4 Γ

(
2− D

2
,
m2

Λ2

)∫
dk̄ Ãcµ Ã

c∗
ν (δµν k

2 − kµkν) . (5.8)

5.3 The β-function

We have now all the ingredients to obtain the β-function for U?(N) in D = 4. As is well

known the β-function plays a central role in renormalisation of a quantum field theory and

contains the information about the dependence of the couplings on momentum scale. In the

particular case of the pure Yang-Mills theory on non-commutative space we are studying
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here we take into account the divergent one-loop contributions (5.2), (5.5) and (5.8) to

obtain for the quadratic effective action,

Γ
(2)
eff =

∫
R4

dk̄ Ãaµ Ã
a∗
µ

(
δµν k

2 − kµkν
) { 1

2g2
− 1

32π2

(
−N

3
+ 4N

)
Γ

(
0,
m2

Λ2

)}
=

1

2g2

{
1− 11

48π2
g2N log

(
Λ2

m2

)}∫
R4

dx Aaµ
(
−δµν ∂2 + ∂µ∂ν

)
Aaν . (5.9)

The one-loop contribution to the β-function is determined from the running of the cou-

pling constant, g, with energy-momentum scale that is implied by (5.9). Interpreting the

coefficient — which we note is independent of the non-commutativity parameter θ — to

the space-time integral as defining the coupling at momentum scale Λ we get

β(g)
∣∣
U?(N)

:= Λ ∂Λg = − 11N

48π2
g3 , (5.10)

that is in accordance with [28] (see also [68]). For the particular U?(1) case, the non-

standard normalisation of the generator requires g →
√

2g, which gives

β(g)
∣∣
U(1)?

= − 11N

24π2
g3 , (5.11)

first computed in [28] and [29].

6 Discussion

We have proposed a new worldline approach to the effective actions of the U(N) non-

commutative gauge theories. As for their Abelian counterparts, these theories are linked

to phase-space worldline path integrals. The main new ingredients we present here are

sets of auxiliary fields that allow a suitable treatment of color degrees of freedom and

the non-trivial Lorentz structure without the need to introduce a path ordering, that also

retains manifest gauge-invariance throughout calculations. Moreover, such auxiliary fields

allow the unification of the computation of the gauge part and ghost part of the effective

action in a single worldline model, distinguished only by the choice of integer occupation

numbers corresponding to the different sectors. This has obvious advantages since, as we

have illustrated here, one may calculate path integrals for the two sectors simultaneously,

whilst working in phase-space avoids many of the familiar ordering ambiguities of operators

in non-commutative space.

In this paper we have focussed on calculating the β-function, which requires expansion

of our path integrals to quadratic order, finding agreement with existing literature. However

our path integral is general, in that higher order contributions could be determined with

the same method (for example, the β-function of U(1) theory on non-commutative space

time was computed from the two point function in [12] where it was then verified by

examination of the three and four point functions). The only difference would be that

expectation values of products of a greater number of auxiliary fields would appear, but

the path ordered trace would still be produced by their contractions. We also wish to

highlight that the path integral (4.1) can be immediately adapted to calculate one-loop
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gluon scattering amplitudes by specialising the gauge potential to a sum over plane waves;

this ongoing work is a further application of our approach.

Note that although the divergences relevant for the determination of the β-function

required examination only of the planar contributions (involving products of the gauge

field evaluated at x+ only or at x− only), our worldline scheme a priori includes also the

contributions of non-planar Feynman diagrams. These can be included in the perturbative

expansion of the worldline action (and come with the familiar twisting term in the ex-

ponent); however, the perturbative computation in this non-planar sector would manifest

the presence of vacuum tachyonic instabilities,7 for which non-perturbative techniques are

required (see, e.g. [67]) for a reliable description. The extension to irreducible representa-

tions of U(N) with mixed symmetry is also immediate with the same technique as reported

in [23, 24]. Given the recent analysis of [69] it would be worth investigating the worldline

representation of the propagator (requiring open worldlines) of both matter fields and pho-

tons or gluons using the phase space techniques we have presented here, or to include an

additional external field that is well known to be accessible using first quantised techniques.

As is well-known, renormalisation of field theories on Moyal spacetime could be spoiled

by UV/IR mixing. Two-loop calculations on the noncommutative torus show that compact-

ness could tame IR singularities [70] (see [71] for a study at one-loop order). In the super-

symmetric case, the renormalisability (finiteness) of N = 1, 2 (N = 4) Super-Yang-Mills is

retained in non-commutative space [36] in the fundamental representation of U(N), where

UV- and IR-divergences cancel. On the other hand a successful mechanism discovered by

Grosse and Wulkenhaar [72] has lead to the formulation of renormalisable field theories on

Moyal spacetime through the introduction of an appropriate (harmonic oscillator) back-

ground. A similar mechanism on a scalar field under a magnetic background provides an

exactly solvable but translation invariant model [73, 74]. Although the Grosse-Wulkenhaar

(GW) term is difficult to implement in gauge theories, a very interesting candidate for a

renormalisable NC gauge theory, known as induced gauge theory [75, 76], introduces the

GW term through covariant coordinates [77] so that gauge invariance is preserved. Also,

an appealing extension of this model — and with a trivial vacuum — has been formulated

in terms of a more general class of covariant coordinates and an appropriate gradation of

Moyal algebra [78]. We expect our results can help in the involved perturbative study of

these and similar models (see e.g. [79]).

We believe that this worldline theory could also be useful for future work incorpo-

rating gravitational interactions (as have previously been studied using first quantised

techniques [80, 81]) or to study higher loop-order corrections to the β-function using ex-

isting worldline methods proven to have certain advantages over the standard formalism.

In particular, since our worldline theory is valid for off-shell amplitudes, it can be used

to form higher order diagrams by “sewing” pairs of gauge particles (or by incorporating

virtual gluons into a modification of the worldline Green functions [82]). Moreover, an ob-

vious extension to this work (or even the U?(1) version) would be to include matter fields

7For a perturbative computation of this IR divergence in the worldline approach see [12] where the IR

divergence showed up in the non-planar contribution to the photon self-energy.
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coupled to the Yang-Mills fields and to study the modifications to the one-loop effective

action due to such interactions in the spirit of Euler-Heisenberg effective actions. One more

natural direction of this series of work would be the study of Schwinger electron-positron

pair production by a constant external electric field in non-commutative QED which has

been studied in [83] or the anomalous dipole moments in a magnetic field examined in the

Abelian case in [84]; for a review on strong field and non-commutative QED see [85].
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A Some group identities

It is useful to note the following identities involving the structure constants for different

choices of Lie group. For U?(N) on non-commutative space we find

fabcfabd + dabcdabd = diag (2N, 2N, 2N, 2N, . . . , 2N) = 2Nδcd. (A.1)

In a commutative space the equivalent results for U(N) and SU(N) do not involve the

symmetric structure constants, so we find (the indices range over integers {0, 1, . . . , N} for

U(N) and over {1, 2, . . . N} for SU(N))

fabcfabd =

{
diag (N,N, . . . , N) SU(N)

diag (0, N,N, . . . , N ) U(N)
(A.2)

Finally, although SU?(N) is not a consistent Yang-Mills theory, it is still possible to com-

pute the symmetric structure constants for this group and for comparison we record the

result (indices range over integers {1, 2, . . . , N})

fabcfabd + dabcdabd = diag

(
2(N2 − 2)

N
,

2(N2 − 2)

N
, . . . ,

2(N2 − 2)

N

)
. (A.3)

It is useful to note that for the unitary group the sum decomposes (the first part represents

the commutative result) as:

fabcfabd = diag (0, N,N, . . . , N ) (A.4)

dabcdabd = diag (2N,N,N, . . . N) . (A.5)

We also have (dcab + ifcab)(ddba + ifdba) = fabcfabd + dabcdabd due to cancellation of the

cross terms.
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B Worldline Green functions

We derive the worldline Green functions associated to the phase-space degrees of freedom

x and p by considering the generating functional of

Z[k,j] :=
〈
ei
∫ 1
0 dt{k(t)p(t)+j(t)x(t)}

〉
=

∫
Dx(t)Dp(t) e−

∫ 1
0 dt{p2−ipẋ} ei

∫ 1
0 dt{kp+jx}∫

Dx(t)Dp(t) e−
∫ 1
0 dt{p2−ipẋ}

, (B.1)

with periodic boundary conditions on the particle trajectories x(t) and without restric-

tion on their momenta, p(t); however, since these conditions involve a zero mode, we will

integrate over the subspace of trajectories which are orthogonal to this zero mode.

Let us first write expression (B.1) as

〈
ei
∫ 1
0 dt{k(t)p(t)+j(t)x(t)}

〉
=

∫
DZ(t) e−

1
2

∫ 1
0 dtZ(t)T DZ(t) ei

∫ 1
0 dtZ(t)T J(t)∫

DZ(t) e−
∫ 1
0 dtZ(t)T DZ(t)

, (B.2)

where Z(t) denote trajectories in phase-space and J(t) the corresponding external sources,

Z(t) =

(
p(t)

x(t)

)
, J(t) =

(
k(t)

j(t)

)
. (B.3)

We have also defined the matricial operator

D =

(
2 −i∂t

i∂t 0

)
. (B.4)

For periodic boundary conditions D is symmetric but has a zero mode

Z0(t) =

(
0

1

)
(B.5)

and is therefore not invertible. However, expanding about the loop center of mass,

x(t)→ x0 + q(t), the deviation q(t) must be periodic and integrate to zero (string inspired

boundary conditions, q(t) = q(0) and
∫ 1

0 dt x(t) = 0). Then the inverse in this subspace

orthogonal to Z0(t) is given by

D−1 =

(
1
2 − i

2ε(t− t
′) + i(t− t′)

i
2ε(t− t

′)− i(t− t′) −|t− t′|+ (t− t′)2 + 1
6

)
. (B.6)

We can now complete the square in expression (B.2) and express the expectation value in

terms of the inverse operator D−1. The result reads〈
ei
∫ 1
0 dt{k(t)p(t)+j(t)x(t)}

〉
= e−

1
2

∫ 1
0 dt J(t)T D−1 J(t)

= exp

(
−
∫ ∫

dtdt′
{

1

4
k(t)k(t′) + g(t, t′)j(t)j(t′) +

i

2
h(t, t′)k(t)j(t′)

})
, (B.7)
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with

g(t, t′) := −1

2
|t− t′|+ 1

2
(t− t′)2 +

1

12
, (B.8)

h(t, t′) := 2∂tg(t, t′) = −ε(t− t′) + 2(t− t′) . (B.9)

When employing the worldline formalism to compute one-loop gluon amplitudes, the source

reads jµ(t) ∼
∑

i k
µ
i δ(t−ti), where ki are the gluon momenta. Since the latter is coupled to

xµ0 +qµ(t), the integral over the zero mode x0 enforces the overall momentum conservation,

and in turn the current j(t) satisfies ∫ 1

0
dt j(t) = 0 . (B.10)

Since under condition (B.10) terms in g(t, t′) which depend only on t or on t′ (but not on

both), as well as terms in h(t, t′) which do not depend on t′, are irrelevant in (B.7), we can

instead use the simplified Green functions:

G(t− t′) := −1

2
|t− t′|+ 1

2
(t− t′)2 , (B.11)

H(t− t′) := 2Ġ(t− t′) = −ε(t− t′) + 2(t− t′) , (B.12)

that are homogeneous string-inspired Green functions. From here, it is easy to derive the

Wick contractions by functional differentiation with respect to the sources at fixed times:

〈pµ(t)pν(t′)〉 =
1

2
δµν ,

〈xµ(t)xν(t′)〉 = 2 δµν G(t− t′) ,
〈pµ(t)xν(t′)〉 = i δµν Ġ(t− t′) ,

(B.13)

as reported in the main text. Moreover, the correlator (B.7) becomes〈
ei
∫ 1
0 dt{k(t)p(t)+j(t)x(t)}

〉
= exp

(
−
∫ ∫

dtdt′
{

1

4
k(t)k(t′) +G(t− t′)j(t)j(t′) + iĠ(t− t′)k(t)j(t′)

})
. (B.14)

Insertions of x and p can now be generated by derivation with respect to j and k.

As far as the auxiliary field are concerned, the same process can be used to derive the

two-point functions. However it is easy to check that the Green function of ∂t consistent

with boundary conditions (3.20) is

∆(t− s;ϕ) =
1

2 cos ϕ2

[
ei
ϕ
2 Θ(t− s)− e−i

ϕ
2 Θ(s− t)

]
which satisfies the following properties

∆(0;ϕ) =
i

2
tan

ϕ

2

∆(x;ϕ)∆(−x;ϕ) = − 1(
2 cos ϕ2

)2 (B.15)
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that are employed several times in the manuscript. The generating functional of the fields

c̄ and c is 〈
e−
∫
dt {l̄aca+c̄ala}

〉
= exp

(∫ ∫
dtds l̄a(t)∆(t− s;ϕ)la(s)

)
(B.16)

from which insertions of c̄ and c can be produced by differentiating with respect to (Grass-

mann) sources l and l̄. Here we have used that ∆(t− s;ϕ)? = ∆(s− t;−ϕ) = −∆(t− s;ϕ).

To terminate this section let us compute the correlator

Cµν(t1, t2) :=
〈
pµ(t1)pν(t2)e

i
√
T k [x(t1)−x(t2)]− i√

T
θk [p(t1)−p(t2)]

〉
, (B.17)

that appears in the evaluation of the quadratic part of the effective action (cf. (5.3)).

Firstly, notice that 〈
pµ(ti)(pα(t1)− pβ(t2))

〉
= 0 (B.18)

as the p correlator is t-independent. Thus,

Cµν(t1, t2) :=

{
1

2
δµν − Tkαkβ

〈
pµ(t1)(xα(t1)− xα(t2))

〉〈
pν(t2)(xβ(t1)− xβ(t2))

〉}
×
〈
e
i
√
T k [x(t1)−x(t2)]− i√

T
θk [p(t1)−p(t2)]

〉
=

{
1

2
δµν + Tk2Ġ2(t1 − t2)

}〈
e
i
√
T k [x(t1)−x(t2)]− i√

T
θk [p(t1)−p(t2)]

〉
(B.19)

where, in the last equality we have used the correlators (B.13). The leftover expression can

be easily obtained by plugging into the generic formula (B.14) the suitable currents

jµ(t) =
√
Tkµ

(
δ(t− t1)− δ(t− t2)

)
kµ(t) = − 1√

T
(θk)µ

(
δ(t− t1)− δ(t− t2)

)
,

(B.20)

which finally yield

Cµν(t1, t2) =

{
1

2
δµν + Tk2Ġ2(t1 − t2)

}
e2Tk2G(t1−t2) . (B.21)

Note in particular, that the θ-dependent part of the correlator identically vanishes, thus

this two-point function provides a fully planar contribution. On the other hand, a mixed

correlator
〈
Aµ(x+)pµ(t)Aν(x′−)pν(t′)

〉
would have a θ-dependent (twist) part in the expo-

nential, since the delta functions in the current kµ(t) of (B.20) would appear with a relative

positive sign, and would thus contribute to the non-planar part of the effective action.
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