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Abstract: This paper proposes a model of the dynamics of credit contagion through non-performing
loans on financial networks. Credit risk contagion is modeled in the context of the classical SIS
(Susceptibles-Infected-Susceptibles) epidemic processes on networks but with a fundamental novelty.
In fact, we assume the presence of two different classes of infected agents, and then we differentiate the
dynamics of assets subject to idiosyncratic risk from those affected by systemic risk by adopting a SIIS
(Susceptible-Infected1-Infected2-Susceptible) model. In the recent literature in this field, the effect of
systemic credit risk on the performance of the financial network is a hot topic. We perform numerical
simulations intended to explore the roles played by two different network structures on the long-term
behavior of assets affected by systemic risk in order to analyze the effect of the topology of the
underlying network structure on the spreading of systemic risk on the structure. Random graphs,
i.e., the Erdös–Rényi model, are considered “benchmark” network structures while core-periphery
structures are often indicated in the literature as idealized structures, although they are able to capture
interesting, specific features of real-world financial networks. Moreover, as a matter of comparison,
we also perform numerical experiments on small-world networks.

Keywords: credit risk; random networks; core-periphery networks; complex systems; epidemic modeling

1. Introduction

Network modeling in social and economic processes, either analytical- or simulation-based, has
demonstrated its importance in scientific literature produced in the last two decades (see [1,2] for
a general review of related theory, methods, and applications), and the analysis of the emergence
of complex and heterogeneous connectivity patterns in many sociotechnical systems has been a hot
topic in recent years (see [3] and references therein). Moreover, in the context of complex networks,
the study of processes of epidemic spreading plays a crucial role (see [3] for an interesting review of
the literature).

Recently, different macroprudential policies involving the analysis and control of credit risk have
been based on network models [4,5], and the main point is, basically, the assessment of financial risk
by focusing on key structural vulnerabilities that may expose the system to significant stress. Indeed,
modeling the credit risk on networks defined by economic interactions in a coherent yet applicable
manner is an important yet challenging problem. In fact, as usual, in many real-world problems,
it is a typical multi-scale problem, ranging from the level of the credit portfolio of a single financial
institution to a complex network of interacting clusters. Techniques coming from network theory have
been applied in recent years to model the financial systemic risk correlated with the phenomenon of
contagion. These techniques have shown interesting potential in assessing key features of dynamics,
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basically with the aim of assessing whether the application of complex system methods may allow the
anticipation, avoidance, or mitigation of the spreading of systemic credit risk.

In this paper, we propose a model in which each financial institution representing a node
of a financial network is modeled as a portfolio of risky assets. The impact of the structure and
diversification of financial institutions’ portfolios is very well known. Indeed, a shock is more likely
to lead to failure of the institution if its asset concentration is high. One of the main focuses of our
work is based on the simple observation that the susceptibility of the system to shocks is likely to be
affected more when the asset and liability portfolios of the other institutes in the complex network of
interactions are more alike. The main goals introduced here are to explore resilience of the structure
to systemic risk and to fully understand the functioning of the banking system as a balance between
competitiveness and stability [6–8]. Both analyses aim to exploit the role of potential regulations
in reducing systemic risks, remembering that competition in banking is important, because any
misbehavior has implications on economic growth. In the scientific literature in this field, authors are
concerned with the effect of complexity plus homogeneity, which often does not allow stability; on the
contrary, it may lead to fragility. Moreover, connectivity may enhance risk dispersion. To address
this issue, we exploit numerical simulations to explore the role of connectivity. Basically, numerical
simulations are designed to compare the spread of contagion of non-performing loans on a random
network characterized by different levels of connection probability, i.e., a level of connectivity ranging
from low to high and on core-periphery networks with different ratios between the core and periphery
nodes. The core-periphery network structure is chosen because of its representativeness of most real
financial networks (see [9,10] for some recent contributions to the scientific literature).

As stated in a recent paper [11], the use of random graphs is motivated by the unobservable
nature of real-world financial networks. Since the underlying financial network cannot be observed
exactly, a probabilistic framework is needed.

The network approach enables one to use the self-organizing, adaptive nature of such systems.
We attempt to analyze the extent of the underlying network structure on the level of systemic risk.

The paper is organized as follows. In Section 2 we introduce credit risk by discussing the
probability density function of credit losses. Moreover, we discuss the Vasicek model which provides
the basis of the fundamental regulatory laws [12]. In Section 3, we model an interbank network affected
by systemic and idiosyncratic risks, where the initial condition for each node, i.e., for each bank in
the network, depends on each individual asset structure. We explore the contagion dynamics over
different networks’ architectures with the main goal being to understand the impact of the network
structure on the systematic part and on the idiosyncratic part of the risk in the Vasicek loan portfolio
value model. Linkages among financial institutions represent, in the context of our model, credit swaps.
The spreading of risk in the network is modeled in the framework of epidemic processes in complex
networks [3] with the novelty, with respect to other models in the related literature, of having split
credits between a group subject to systemic risk and another subject to idiosyncratic risk, following the
Vasicek model. Section 4 is devoted to some numerical experiments aimed at analyzing the dynamics
of systemic risk on different topological structures of networks. Finally, a short section of concluding
remarks closes the paper.

2. Credit Risk

Credit risk is considered a fundamental variable due to the fact that it is more directly related to
financial stability than other variables. In the following text, we introduce the Vasicek model, which
is the most widely used model to calculate default probabilities in portfolio credit risk, as it tries to
detect unobservable credit risk factors that capture contagion effects between different financial sectors.
Part of the market’s purchase price to borrow money from a creditor is due to the possibility that the
contracted payment will not be made; this eventuality is the credit risk. The part of the price depending
on the credit risk is called the credit spread. Credit risk models usually depend both on the general
economy conditions and on those specific to the firm, determined as the output of the credit spread.
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Under Basel II [12], a more granular approach to risk weighting for banks to evaluate the minimum
capital needed to support a bank’s risk taking activity was introduced. In the framework of the Internal
Ratings-Based (IRB) approach, banks compute the capital requirements using a formula based on the
Vasicek model of portfolio credit risk. Basel III [13] did not alter the way that risk-weighted assets
are measured.

2.1. Probability Density Function of Credit Losses

Mechanisms for allocating economic capital against credit risk, i.e., estimating the economic
capital needed to support the credit risk activities, typically assume that the shape of the probability
density function can be approximated by a distribution parametrized by the mean and standard
deviation of the portfolio losses.

Figure 1 shows the Expected Loss (EL), which is the amount of credit loss that the bank expects on
its credit portfolio in a given time horizon, i.e., the normal cost of businesses covered by provisioning
and pricing policies, and the Unexpected Loss (UL), which is the portfolio risk. The standard deviation
shows the average deviation of the expected losses. The likelihood that losses exceed the sum of
EL and UL, i.e., the likelihood that the bank cannot meet its credit obligations by profits and capital,
is given by the shaded area on the right-hand side of the curve, and it is usually indicated as the
“stress loss”. The Value-at-Risk (VaR) is obtained as 100% minus the likelihood of the occurrence of
stress loss at this confidence level. If the capital is determined in accordance with the gap between the
EL and VaR, and if EL is covered by provisions or revenue, the likelihood that the bank will be solvent
over an horizon of one-year is given by the confidence level.

 

 

 

 

 

 

 

 
Figure 1. Frequency of loss as a function of potential credit losses.

The main concerns of regulators is the tail of the loss distribution which is strictly related to the
value that the banks would set as a boundary for unexpected and stress loss. The total UL is not
computed by aggregating individual ULs but depends on loss correlations between all loans belonging
to the portfolio. The UL, or the portfolio’s standard deviation of credit losses, can be viewed as the
sum of the contributions given by each of the individual credit facilities:

UL =
N

∑
i=1

σiρi (1)

where σi is the standard deviation of the credit losses for the ith facility, and ρi represents the correlation
between credit losses on the ith facility and those on the overall portfolio. The value ρi is a parameter
that represents the ith facility’s correlation/diversification effects with other instruments in the credit
portfolio of the bank. Higher correlations among credit instruments, i.e., higher ρi, give a higher
standard deviation of credit losses for the whole portfolio [12]. Basel II specifies the asset correlation for
different asset classes by estimating asset correlations by a positive function of firm size and a negative
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function of firm default probability after adjustment for the obligor type over a time horizon of one year.
It has been shown that differences in calculating the risk weights are mainly due to differences in IRB
formulation models rather than differences in the risk of the portfolios being assessed. A reliable way of
estimating risk is based on the calculation of joint loss distribution using the Vasicek model [14]. In the
IRB framework of Basel II, the default probability (PD) per rating grade is the averaged percentage of
obligors that will default over a one-year period. In the following text, we introduce the Vasicek model.

2.2. Systemic and Idiosyncratic Risk in the Vasicek Loan Portfolio Value Model

Regulations state that each financial institution needs to evaluate the probability distribution of
the portfolio loss to estimate the necessary capital to support a portfolio of debt security. The equity
capital allocated to the portfolio should assume the same percentile value of the distribution of the
portfolio loss, corresponding to the probability stated by the rating level. The credit quality of the
bank is related to the probability that the portfolio loss exceeds the equity capital. To determine
the probability distribution of portfolio losses, one has to assume a model. In the following text,
we introduce the Vasicek model [15], which allows, under certain assumptions, the distribution of the
portfolio loss to be derived. The derived distribution converges to an analytical form as the portfolio
size increases.

The Vasicek model is based on the assumption that the asset value of a given obligor is obtained
by combining the effects of a systemic factor and an idiosyncratic one. Liabilities are modeled by
adopting the hypothesis of a geometric Brownian motion driven by two continuous factors. The value
Ai of the i-th borrower’s assets is described by a stochastic differential equation (defining a standard
geometric Brownian motion) and is determined by an aggregated level factor affecting all the i-th
borrower’s assets and n statistically independent idiosyncratic factors:

dAi = µi Aidt + σi AidXi (2)

where µi is the drift rate, σi the volatility of the value, and xi can be either the Wiener process or a
Brownian motion, i.e., a continuous time random walk where the variation over any given time period
has a normal distribution with zero mean and variance equal to the period length. Changes in separate
time periods are also independent. It is worth noting that Equation (2) can be used to simulate the
future prices of an asset, where µi is the mean of the asset return and σi its standard deviation. At time
T, one has the following asset value:

logAi(T) = logAi(0) + µiT −
1
2

σ2
i T + σi

√
TXi (3)

with Xi ∼ N(0, 1).
It is straightforward to write Equation (3) as

Ai(T) = Ai(0)e(µi− 1
2 σ2

i )T+σi
√

TXi . (4)

The default of the i-th loan occurs if Ai(T) < Bi, with Bi being a fixed value. One can evaluate the
probability of such an event as

P[Xi < ci] = N(ci) = p∗ (5)

where ci is easily derived by Equation (4) when one sets the default threshold as Bi, i.e., ci =
logBi−logAi−µiT+ 1

2 σ2
i T

σi
√

T
; N is the cumulative normal distribution function. Then, a single obligor default

happens if the value of a normal random variable goes below ci.
The correlation among defaults is introduced by assuming correlation in the Ai processes and

then in the terminal values Ai(T). In detail, Xis in (4) is assumed to be pair-wise correlated according
to the factor ρ. The main assumption of the model is that because each random variable Xi is normal
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and equi-correlated, it can be computed as the sum of two other random variables such that one is
common across firms and the other is idiosyncratic.

Xi = z
√

ρ + εi
√

1− ρ (6)

with z ∼ N(0, 1) (standard normal distribution) and the same εi ∼ N(0, 1). Then, it is straightforward
to get

P[Xi < ci] = N

(
N−1(p∗)− z

√
ρ√

1− ρ

)
.

The proportion of loans in a portfolio that suffers default is given by the following cumulative
distribution function:

Pr[p(z) ≤ x] = P[z ≥ p−1(x)] = N(−p−1(x)) = N

(√
1− ρN−1(x)− N−1(p)

√
ρ

)
,

and this depends on p and ρ for each portfolio.
Then, we observe that in the context of the Vasicek model, a simple threshold condition determines

whether the obligor defaults or not. This is interpreted in the context of a trigger mechanism, which is
useful for modeling credit risk. The cumulative distribution function of the proportion of losses that
suffers default is defined by two parameters, i.e., the default probability p and the asset correlation ρ.
In Figure 2, we show different unconditional cumulative default probabilities obtained for p = 0.02
and different values of ρ.
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Figure 2. Unconditional cumulative probabilities of default for a default probability of p = 0.02 and
different values of asset correlation ρ.

2.3. Dynamics of Credit Risk Contagion

Contagion, or “frailty”, is represented by unobservable explanatory variables that are correlated
across firms and represent non-performing loans. There are many open questions in the scientific
literature on credit risk contagion. A very important one investigates why corporations fail to fulfill all
obligations at the same time, giving different explanations. Firms may present common or correlated
risks factors, whose interactions cause correlated changes in the probability of default. Secondly,
a default may be contagious, so that one event in a corporation may cause the failure of another
one [16]: Models should account for the degree of time clustering in defaults that are observed in the
data. In [16], the authors found evidence from time data of default clustering beyond that predicted
by the standard doubly stochastic model of default for US corporations over the period from 1979 to
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2004. It is evident that if defaults are highly clustered, more than that depicted by standard models,
banks need to consider greater capital to survive default losses (especially when high confidence
levels, such as 99.9%, are required). Collin-Dufresne et al. [17] suggests, based on experimental
findings that default induces increases in the conditional default probabilities of other firms, while
Kusuoka [18] puts it in relation to the default risk premia of other firms. “For example, the collapses of
Enron and WorldCom could have caused a sudden reduction in the perceived precision of accounting
leverage measures of other firms. Indeed, in [19] empirical evidence is found that all other things
equal, a reduction in the measured precision of accounting variables is associated with a widening of
credit spread. Lang and Stulz (1992) [20] explored evidence of default contagion in equity prices.”

3. Credit Risk Contagion on Networks

Linkages among financial institutions appear to greatly influence the dynamics of the spreading
of credit risk; moreover, interconnectedness seems to crucially affect stability. The theory of networks
seems to be the more appropriate language to characterize linkages and their related dynamics.
Financial networks [21] help to understand how externalities move along financially related structures
and may build up to systemic risk, especially when incomplete information and incomplete risk
markets have to be considered [22].

Originally, the connection topology has been assumed to be regular or completely random ([23]).
Many real-world networks, however, can be considered to be living in between these two extremes.
Small-world networks are regular networks “rewired” to introduce increasing amounts of disorder.
These networks can be highly clustered, like regular lattices, with small characteristic path lengths,
like random graphs [24]. Another important branch of this field regards the optimization of connectivity
of financial systems [25]. We do not address this issue in the present paper, but we plan to address this
issue within the context of the proposed model in our future research.

A network of N nodes and L links is fully characterized by its binary or weighted adjacency
matrix A = [aij], 1 ≤ i, j ≤ N. The binary matrix is such that the entry aij is simply 1 or 0 depending
on whether the ith and jth nodes are connected or not. For a weighted matrix, each entry wij is equal
to the weight of the link between i and j. In the case of a directed graph, the links are oriented from
node i to node j, so that wij 6= wji. For undirected graphs, the adjacency matrix is symmetric.

In our model, each node is a financial institution represented by a portfolio of risky assets, and the
linkages among nodes are due to financial relations by means of credit swaps between the two linked
institutions. We model the network as an undirected binary graph to focus on the basic influence of
the architecture of the network on the contagion dynamics.

Real-world networks are usually very different from regular lattices. They are mostly
heterogeneous and exhibit dynamic self-organization phenomena, typical of complex systems.
The patterns defined by the connectivity properties of real-world networks strongly affect the evolution
of epidemic, reactive-diffusive processes of contagion. The statistical distributions related to the
features of real-world networks are often heavy-tailed, and this property is very important with respect
to risk.

We define the risk of a financial institution by applying the Vasicek model and introducing a
random variable for the i-th bank as

yi = −Φ−1(pi) + z
√

ρi + εi
√

1− ρi (7)

with Φ(·) cdf being a standard normal random variable. z is the systemic risk factor, and εi are the
idiosyncratic ones; they are both standard normal random variables. Finally, ρi is the risk correlation
between two different banks, and pi is the probability of failure of the i-th bank [8]. Failure happens
when yi < 0. One can easily derive (see [8])

Pr(yi < 0) = pi. (8)
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From Equation (7), it is clear that for ρi = 0, there is no systemic risk and failures are statistically
independent. On the contrary, when ρi = 1, we only have systemic risk, and failures are perfectly
correlated. In choosing ρi one can follow Basel II [12] by setting

ρi = 0.12
1− e−50PDi

1− e−50P + 0.24
(

1− 1− e−50PDi

1− e−50

)
∼ 0.12

(
1 + e−50PDi

)
(9)

with PDi being the probability of default of firm i over one year, ignoring credit contagion effects.
Quantities pi are predicted from tables provided by rating agencies.

3.1. Spreading of Systemic Risk Using the SIIS (Susceptible-Infected1-Infected2-Susceptible) Model

The epidemic modeling metaphor has been widely used to describe a large range of different
phenomena which can be conceptually thought of as contagion processes [26]. That is why epidemic
models are widely diffused and represent a cornerstone that crosses different disciplines. Moreover,
their efficiency has been improved in recent years due to the integration of large-scale datasets.
Epidemic models are constructed to describe the evolution of the contagion process within a population.
In our paper, the population is structured into a network architecture, inserting into the wide stream of
scientific literature unfolding dynamical processes in complex networks [3].

The assessment of credit risk in large banks has changed consistently in the last few years. It used
to be common to manage the origination process (evaluation of whether a new business should be
accepted or rejected) , but now it can be managed by using credit derivatives and securitization with
loans and bonds as collateral assets (CLOs, collateralized loan obligations; CBOs collateralized bond
obligations; CDOs collateralized debt obligations).

This phenomenon, while it may limit the idiosyncratic risk, can be a source of systemic risk; in our
model, it is represented by assuming the possibility of a transition from assets infected by idiosyncratic
risk to those infected by systemic risk.

The agents of our model are risky assets belonging, for each node, to a bank’s portfolio.
Contagion occurs through infection by non-performing loans.

We approach the mathematical representation of credit risk spreading in an interbank network
by adopting the simplest definition of epidemic dynamics, which considers the population as fixed,
ignoring migration both among the nodes and among birth or death processes. Compartmentalization
is a derivation of the simplest two-state susceptible-infected-susceptible (SIS) model, a cornerstone
in epidemic spreading modelization and, on the other hand, a widely used modeling scheme for
knowledge and information diffusion within social systems. It is worth mentioning here that the
heterogeneity of agents is an important issue in this research field, one addressed by the authors
in [27]. Very interesting multi-scale approaches have also proposed by different papers by S. Havlin
(see, for instance [28]). However, it is not the scope of the present paper to include this effect in the
model, as we mostly intend to focus on the effect of the network structure on the epidemic spreading
of non-performing loans.

The classical approach divides the population into two classes: susceptibles (who can contract the
disease) and infectious (who have contracted the infection and can be contagious). Then, one has to
define the process governing the transition of agents from one class to another in order to describe
the dynamic evolution of the process of contagion within the population. The classical SIS does not
assume the possibility of becoming immune, thus undergoing a cycle of S→ I → S.

In our model, we extend the classical approach by dividing the population for each node into
three classes: susceptibles S, i.e., those that may be infected by credit risk, infectious1 (default fraction
due to systemic risk) I1, and infectious2 (default fraction due to idiosyncratic risk) I2. Idiosyncratic risk
can be considered to be endemic to a particular asset, depending, for instance, on fluctuations in the
stock market or in the interest rates, and then it can be mitigated by diversification. Figure 3 illustrates
the transfer diagram for the SIIS model [29] adopted here.
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Susceptible (S) 

 

Infected by systemic risk 𝐼1 

 

Infected by idiosyncratic risk 𝐼2 

Figure 3. Transfer diagram for the SIIS (Susceptible-Infected1-Infected2-Susceptible) model. Boxes
represent compartments, and arrows represent the transition from one compartment to another.

Both infected assets may recover to the susceptible state.
We define the process governing the transition of credits from one class to another when the

population is structured into a network with the following system of ODEs (Ordinary Differential
Equations): 

Ṡi(t) = −Si(t)ρi I2i(t)− Si(t)∑N
j=1 aij I1j + ψ(I1i(t) + I2i(t))

İ1i(t) = Si(t)∑N
j=1 aij I1j(t)− ψI1i(t) + rI1i(t)I2i(t)

İ2i(t) = Si(t)ρi I2i(t)− ψI2i(t)− rI1i(t)I2i(t)

(10)

where Si(t), I1i(t), and I2i(t) represent the populations of each compartment within node i at time
t, ψ is the recovery rate, and r is the contagion rate. The adjacency matrix A = [aij], 1 ≤ i, j ≤ N
characterizes interrelations among the N institutions, and its form determines the structure of the
financial network.

4. Numerical Experiments

In this section, we perform some numerical experiments with the aim of analyzing the dynamics
of systemic risk on different topological structures of networks. We adopt the epidemic model splitting
agents affected by idiosyncratic risk from those affected by systemic risk, as previously introduced.
We aim to compare the effect of credit risk contagion on two different network structures: the basic
model for random graphs, i.e., the Erdös–Rényi for different significant connection probabilities,
the core-periphery network for different levels of balance between core nodes and periphery nodes [11],
and the small-world networks (Watts–Strogatz networks) for increasing rewiring probability values.
In our numerical experiments, we consider a network with 100 nodes in all simulations (it is worth
noting that the number of nodes does not influence the results), each of them characterized by a given
portfolio with random numbers of assets and correlations. Then, we evaluate the 5% VaR (Value at
Risk) of the assets as infectious. The time evolution of the epidemic process is then determined by the
system of Equation (10), and during the time evolution, we analyze the mean value of assets subject to
systemic risk when different topological structures of the underlying network are assumed. We use the
fixed recovery rate (ψ = 2) and contagion rate (r = 0.1) to emphasize the effect of the network structure
on the dynamics. We use an exponential distribution to characterize the initial distribution of assets
affected by systemic risk on each node, and we evaluate the credit risk at the 5% level by calculating the
related percentile. Given this setting, we run three different simulations of the dynamics of contagion
on the random network structure on the core-periphery structure and on the small-world network,
in each case assuming the model of contagion (10). The basic parameters of the model of epidemic
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spreading, i.e., the recovery rate and the contagion rate, are the same for all network structures for the
sake of a better comparison.

Each simulation adopts different connection probabilities for the Erdös–Rényi network,
which represent typical threshold values. The first value (p = 0.01) is related to the appearance
of the first linkages, the second (p ∼ 0.02) is the value related to the existence of a giant component,
and the third one (p = 0.4) provides a connected network, with a few nodes representing exceptions.
For each simulation, we evaluate the dynamics of the mean value of assets subject to systemic risk
on the network whose graphical representation is provided on the right-hand side of each figure
(codes available upon request to the authors). In Figure 4, we use a realization of an Erdös–Rényi
random graph with a connection probability of p = 0.01 (represented on the left) to simulate the SIIS
model given by Equation (10). In the right part of the figure, we report the time evolution of the mean
of the subset of the population infected by systemic risk (non-performing loans). After a transient,
a steady-state value of about 1.8% is attained for the whole population. The value appears quite
low in accordance with the low level of network connectivity. In Figure 5, an analogous simulation
on a core-periphery network is performed. We use five core nodes over the total number of nodes
corresponding to a low connectivity level as well. Although the steady-state value is higher, a similar
transient with respect to the low-connectivity random network is observed. To end this first part of the
simulations, i.e., with low connectivity, we run the model on a small-world network by increasing the
rewiring probability to beta = 0.1 (ring network); results are shown in Figure 6. In this case, both the
rate of increase and the mean values of the non-performing loans are much higher than in the previous
network structures. Simulations with higher connectivity values are reported in Figures 7 and 8 for the
random and core-periphery networks, respectively. It is interesting to observe that in this case, similar
transients can be observed, even with different steady-state values. Also, the increased connectivity
leads to closer steady-state values in the two network representations. In Figure 9, we run the model
on a small-world network with a slightly higher rewiring probability of beta = 0.1. Also, in this case,
both the rate of increase and the mean values of non-performing loans are much higher than in the
previous network structures.

Figure 4. Low level of connectivity:Erdös–Rényi graph with 100 nodes and a connection probability of
p = 0.01 (left). Time evolution of the mean value of non-performing loans on the graph (right).

Finally, in Figures 10–12, networks with high connectivity are simulated. Again, the duration
of the transient phase is quite similar in the two representations, and the steady-state values are
closer. In the small-world network with a rewiring probability of β = 0.2, the steady-state value of
non-performing loans is similar to the previous simulations, but the rate of increase is even higher.
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Figure 5. Core-periphery graph with five core nodes and 95 periphery nodes (left). Time evolution of
the mean value of non-performing loans on the graph (right).

Figure 6. Small-world (Watts-Strogatz) network with 100 nodes and a rewiring probability of β = 0
(ring) (left). Time evolution of the mean value of non-performing loans on the graph (right).
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Figure 7. Medium level of connectivity:Erdös–Rényi graph with 100 nodes and a connection probability
of p ∼ 0.02 (left). Time evolution of the mean value of non-performing loans on the graph (right).

Figure 8. Core-periphery graph with 10 core nodes and 90 periphery nodes (left). Time evolution of
the mean value of non-performing loans on the graph (right).
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Figure 9. Small-world (Watts-Strogatz) network with 100 nodes and a rewiring probability of β = 0.1
(left). Time evolution of the mean value of non-performing loans on the graph (right).

Figure 10. High level of connectivity: Erdös–Rényi graph with 100 nodes and a connection probability
of p = 0.04 (left). Time evolution of the mean value of non-performing loans on the graph (right).
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Figure 11. Core-periphery graph with 20 core nodes and 80 periphery nodes (left). Time evolution of
the mean value of non-performing loans on the graph (right).

Figure 12. Small-world (Watts–Strogatz) network with 100 nodes and a rewiring probability of β = 0.2
(left). Time evolution of the mean value of non-performing loans on the graph (right).

In summary, from the point of view of the epidemic spreading of systemic risk, the random graph,
usually considered to be a “benchmark ”network topology structure, can be considered to be being
almost equivalent to the core-periphery topological structure, in the case in which the probability of
linkages in the random network is related to the ratio between the core and the peripheral nodes.
Specifically, by increasing the probability of linkages in the random network, the effects on the
long-term solutions are analogous, both in terms of the time interval needed for stabilization and
in terms of the average long-term value for the systemic risk-infected assets based on the results
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obtained by increasing the number of core nodes in the core-periphery structure. The small-world
network has a quite different behavior characterized by a higher positive rate of infectious spreading
by non-performing loans in the structure.

5. Conclusions and Research Perspectives

When assessing the risk of credit portfolios as well as investment portfolios, banks should look
not only at the risk of individual exposures but also at possible exposure correlations. There have
been different attempts to measure risk at the level of the banking system [30]. Our paper enters
this stream of research by adopting a model of risk contagion which distinguishes between systemic
and idiosyncratic risk. Usually, the probability of systemic risk is thought of in terms of the fraction
of financial institutions whose portfolios are affected by systemic risk. We numerically explored
the long-term solutions of a model of epidemic credit risk spreading on networks for two different
topological structures with different levels of connectivity. Our numerical results show that connectivity
increases the spreading of assets infected by systemic risk in the network, in the case of random graphs.
In the case of a core-periphery structure, the spreading is controlled by diminishing the number of core
institutions. The numerical experiments show that the spread of credit risk is analogous in network
structures of the Erdös–Renyi random type and core-periphery type when the probability of linkages
in the first type is compared to the ratio of core nodes and periphery nodes. It is worth noting that
the quality and specific category of credit risk should be defined; we did not address this issue in the
present paper, as our model focuses on the network properties. Our research plans are to extend the
model by providing specifications regarding the risk categories. Of course, specifying risk implies
the use of directed networks, i.e., one can use the same network structure but with unilateral links
with the direction determined by the quality of the risk. Moreover, heterogeneity in size (see the
seminal review [31,32], not only in centrality, might be worth analyzing using a future extension of the
proposed model.

One research perspective would be to analyze the propagation of asymmetric information,
i.e., the consequences of information imperfections propagating through the structure, and how
this propagation may affect the network’s performance in terms of resilience. Resilience is defined in
many different ways; one definition is the ability of structures, which have been impacted by external
shocks, to recover and adapt to new conditions. In any case, thinking about resilience requires the
assessment of potential future threats at the scale of systems, rather than at the scale of individual
components. As proposed by Helbing [33], a useful approach for influencing complex systems, is to
support the self-organization and self-control of the system, rather than adopting controlling actions in
the conventional way. This approach would lead to a more flexible and adaptive system that is more
able to cope with challenges coming from external perturbations. One may benefit from some basic
characteristics of complex systems which through self-organization, can be adapted to the environment
and are often robust and resource-efficient. For instance, decentralized coordination strategies, which
have already been successfully applied in traffic control, may be more efficient than centralized ones.
There is also the possibility of decompartmentalization of a network into weakly coupled, or even
uncoupled, sub-networks. Data could be retrieved from the literature. For instance, an interesting
source is provided in [34], where authors construct a matrix of interbank loans for Switzerland based
on known marginal loan distributions. Simulated experiments, analyses of real-world financial data,
and theoretical insights may improve regulations, increasing financial stability.
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