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Abstract

Background: Next generation sequencing instruments are providing new opportunities for comprehensive
analyses of cancer genomes. The increasing availability of tumor data allows to research the complexity of cancer
disease with machine learning methods. The large available repositories of high dimensional tumor samples
characterised with germline and somatic mutation data requires advance computational modelling for data
interpretation. In this work, we propose to analyze this complex data with neural network learning, a methodology
that made impressive advances in image and natural language processing.

Results: Here we present a tumor mutation profile analysis pipeline based on an autoencoder model, which is used to
discover better representations of lower dimensionality from large somatic mutation data of 40 different tumor types
and subtypes. Kernel learning with hierarchical cluster analysis are used to assess the quality of the learned somatic
mutation embedding, on which support vector machine models are used to accurately classify tumor subtypes.

Conclusions: The learned latent space maps the original samples in a much lower dimension while keeping the
biological signals from the original tumor samples. This pipeline and the resulting embedding allows an easier
exploration of the heterogeneity within and across tumor types and to perform an accurate classification of tumor
samples in the pan-cancer somatic mutation landscape.
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Background
Recent years have been characterized by the availability
of data repositories providing access to large-scale col-
laborative cancer projects [1, 2]. These databases contain
data from thousands of tumor samples from patients all
over the world labeled by tumor type, subtype and other
clinical factors such as age and prognosis. The available
tumor data includes different layers of biological sig-
nals acquired by state-of-the-art omics technologies (e.g.,
genomics, transcriptomics, proteomics, metabolomics,
etc). The information includes somatic mutations, copy
number somaticmutations, gene expression, DNAmethy-
lation among other data types. Each layer represents the
signature of the tumor represented by different macro-
molecules. Another characteristic is that each omic layer
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is characterized by tens of thousands of features like gene
mutations [3] or gene expression. From a mathematical
point of view tumors can be represented as vectors in a
high dimensional space. This can be a problem in learn-
ing tasks known as the curse of dimensionality. This work
focuses on the understanding of the available genomics
data containing the somatic point mutations identified
in each tumor sample. The availability of a large quan-
tity of samples from the main tumor types and subtypes
invites the study of current relations between different
tumors and the development of learning algorithms that
reduce the complexity of the initial high dimensional
environment. The tumor samples are labeled by medi-
cal doctors and pathologists based on the tumor primary
site and histology. The exploration of tumor mutational
profiles can reveal communities of tumors and hidden
relations between tumor types and subtypes [4]. This work
aims to address the complexity of the pan-cancer somatic
mutational data and learn a lower dimension of tumor
representations based on the tumor mutational profiles.
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At the same time of the significant growth in cancer
biological data, the machine learning and deep learn-
ing communities have been developing learning methods
such as Artificial Neural Networks with impressive results
on image, signal and natural language processing [5]. One
type of neural network model is the Auto-encoder (AE)
[6]. AE are embeddings built to find reduced and sim-
pler representations of complex data using un-supervised
feedforward networks, therefore a non-linear reduction
of dimensionality. Different types of Autoencoders have
been proposed to generate a reduced latent space with
a representative distribution of the original data using
different regularization processes like Sparse [7] or con-
tractive autoencoders [8].
The objective of this work is to learn a latent space of

reduced dimensionality with autoencoders using muta-
tional data from 14 types of tumors available from the
International Cancer Genome Consortium (ICGC) [1]
repository. This will allow understanding the similarities
between tumors of different types and an improved clas-
sification performance of subtypes based on their muta-
tional profile and their corresponding projection in a low
dimensional latent space. The Kernel Target Alignment
(KTA) score [9] and hierarchical clustering are proposed
to measure the quality of the latent space. KTA is com-
puted to measure the similarity between two kernel
functions, one learned from the samples projected in the
latent space and the second from an ideal target kernel.
Kernel functions also lead to the measurement of similar-
ities between training and test samples of the same class
once the autoencoder model is trained and observe if the
latent space maps similarly independent samples.

Related work
Autoencoders have been used on a wide range of appli-
cations in cancer informatics. One application is its use
on a single cancer type, such as liver cancer, while com-
bining multi-omics data [10] to learn a latent space
and identify new cancer subtypes. A similar case has
been proposed for breast cancer to discover subtypes
using transcriptomics data [11]. A newer version of
AE, the Variational Auto-encoder, has been used to
learn a latent space to improve the classification of
known subtypes of lung cancer using DNA methyla-
tion data [12]. Moreover, instead of learning a latent
space from a single type of cancer, a pan-cancer study
based on transcriptomics data from The Cancer Genome
Atlas (TCGA) [2] using Variational Auto-encoders evi-
denced a big potential for the use of autoencoders
to learn reduced latent space while keeping biological
insights [13]. Another work with gene expression data
from TCGA applied standard autoencoders and Gene
Supersets, which are a priori defined gene sets that retain
biological signals in the latent space [14]. On the other

hand, a network and graph theory analysis has been done
for pan-cancer mutational data to detect communities
of tumors [15] and find hidden relations between them
using the co-occurrence of mutations as connections.
A recent work maps mutated genes instead of the tumor
samples to a lower dimension using deep learning tech-
niques to learn a distributed representation [16]. By
reviewing the bibliography, it is clear that data from dif-
ferent omics layers require models to simplify the origi-
nal context and reflect emerging patterns. Autoencoders
have shown great adaptability to biological data and are
extremely useful for reducing dimensionality.
Our work proposes to learn a latent space from somatic

mutations of large pan-cancer data using Autoencoders.
This embedding is based in a model that projects tumor
somatic mutation profiles in a low dimensional latent
space where biological signals like tumor subtype per-
sist and facilitates the comparison of tumor samples. For
instance, this latent space can be used to explore muta-
tional profiles when the primary tumor is unknown and
there is no information on the tumor type, or to bet-
ter classify tumor subtypes. From our best knowledge up
to now, there are no attempts of reproducing a latent
space using autoencoders from tumor somatic mutation
data. Another important contribution of our work is an
accurate tumor classification approach based on one-class
Support Vector Machines (SVM) for each of the 40 tumor
subtypes.

Results
In this work a neural network maps tumors character-
ized bymutational profiles from a high dimensional space,
built from somatic mutated genes, to a low dimensional
space using an Autoencoder as a nonlinear function. The
mutational input data, which is highly sparse is considered
as multi-modal since it is divided between deleterious and
non-deleterious based on the variant type (see Fig. 1). The
input tumor mutational profiles are transformed into a
latent space as dense vectors.
By training a regularized autoencoder the tumors

characterized with 12424 mutated gene as features are
mapped to a final latent space of 50 dimensions. Thus, a
global compression ratio of 248 is obtained. The learned
latent space not only preserves the structural relation-
ship between tumor subtypes but also improves the
separability of classes making much easier the identi-
fication of a specific tumor phenotype. The resulting
Autoencoder architecture has a multi-modal approach
with one Encoder-Decoder function for deleterious and
non-deleterious input mutations respectively. This allows
weighting both types of input vectors (see “Methods”
section). Then both models are merged at their respective
latent layer level into a single global latent layer known
as Latent Space. For regularization Batch Normalization
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Fig. 1Model architecture. Scheme of the multi-modal autoencoder architecture for both deleterious and non-deleterious mutational profiles. Input
and output dimension have 12424 genes. The encoder and decoder functions contain one hidden layer each of 400 activation functions (neurons).
The latent layer of each autoencoder has 50 activation functions. Highlighted in red is the latent space Ltot which contains signal from both types of
mutational profiles

is implemented after the Encoding hidden layer. Also, L2
norm is imposed to all the encoding weights to regular-
ize their activity and penalize large weights. The learning
rate and the L2 norm have been tuned by 5-fold cross val-
idation using the validation loss computed as binary cross
entropy. In the resulting latent space 40 one-class SVM
models are trained, one for each tumor subtype. Then
all the models are evaluated with independent tumor
samples from Test set showing promising classification
results. Figure 2 shows a scatter plot of a t-distributed
stochastic neighbor embedding (t-SNE) as a projection

of the resulting latent space after model training and
evaluation [17].

Quality assessment of latent space
The validation of the latent space must consider a
set of quality assessments. In this work three different
approaches are proposed. The first one is the recon-
struction error of the autoencoder. Figure 3 shows the
convergence of both the Training and Validation loss up
to 45 epochs after 5 fold cross validation. This conver-
gence means that the reconstruction quality stabilize. It

Fig. 2 t-SNE scatter plot. Scatter plot of the projection of the latent space using t-SNE dimensions showing by different colors the 14 tumor types by
primary site
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Fig. 3 Validation loss. Autoencoder training and validation loss during training epochs after cross validation

serves as a way to measure how information is preserved
from the input to the latent space until the output of
the autoencoder. If the autoencoder loss is small means
the reconstruction x̂ is similar to the input x then the
compressed latent vector preserves the salient features of
the input space.
A second approach to assess the quality of the latent

space is via Kernel Target Alignment. The KTA measures
the kernel performance in finding high similarity between
tumors of the same type, and low similarity between
tumors of different types. The higher the KTA, the better
the similarity between tumors of the same type. Given a
gaussian kernel built in the latent spaceKl, a second kernel
in the original input space Kin, and the tumor type labels
Yty, the resulting alignment KTAl obtained in the latent
space outperforms the KTAin obtained from the initial
input space. The obtained results show that the autoen-
coder keeps the original input properties in the latent
space while cleaning the noise, making a better space for
pattern recognition tasks.
Finally, the latent space is evaluated by cluster analysis.

By performing hierarchical clustering in the input and
in latent space separately, is possible to asses the quality
of the resulting clusters by measuring how well tumors
of the same type are clustered together. This is done by
computing the mutual information score MI. This score
consider the probability of a set of samples belonging
to a class to be clustered together given a number of k
clusters. As expected, theMI scores are better in the latent
space when compared to the original input space. Figure 4
shows the results of KTA evaluation for different values of
sigma parameter and the MI scores for different number
of clusters. In order to evaluate different architectures of
the autoencoder, other dimensions L of the latent space
were evaluated, L = 100 and L = 200. As the assessment

for different values of L leads to similar results, the L = 50
is used in the final architecture since it has associated less
model parameters or weights to fit during training and
means a simpler model.

Tumor sub-type classification
One-class SVMs is used to test if the low dimensional
latent space learned captures mutational signals from the
original input space and improves the tumor sub-types
classification. A one-class SVM classifier is built for each
of the 40 tumor subtypes. Every one-class classifier is
trained with the samples corresponding to its subtype
label and validated with the rest of the training samples.
Finally, the one-class model is tested with an indepen-
dent test set of samples preserved for autoencoder eval-
uation. The area under the ROC curve (AUC-ROC) is
computed using the test samples to assess how well the
classifier detects the True Positive samples, which in this
case means tumors of the same subtype, therefore a cor-
rect classification. The same classification approach is also
applied on the input space in both deleterious and non
deleterious mutational data as a method to benchmark the
obtained results. Table 1 shows the classification perfor-
mance measured by the area under the ROC curve for
each class on the latent space and the two input spaces
Xde and Xnd. Results equal to 0.5 indicates that the classi-
fier can not find any difference between one subtype and
the rest of the samples. On the other hand, results close
to 1 correspond to classifiers that separates well the cor-
responding subtype class from the rest of the samples.
The classification performance presents an improvement
in the latent space in 35 out of 40 tumor subtypes (high-
lighted in the Table 1). In all these cases the area under
the curve is higher in the classifier trained on the latent
space than the ones trained on the input space with
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Fig. 4 Latent Space evaluation. Left: Kernel target alignment score for different values of sigma parameter. Right: Mutual Information score for
different number of clusters

deleterious and non-deleterious mutational profiles. The
tumor subtypes LAML-KR, KIRC-US, KIRP-US, LUSC-
US, ESAD-UK, LIRI-JP and PRAD-CA show promising
results with AUC-ROC close to 1 while the performance
on the input space is close to 0.5.

Discussion
Simple Somatic mutation data can be used to train an
Autoencoder and build a latent space of lower dimen-
sionality that keeps the biological signals of tumors. This
study carries out a pan-cancer mapping by an Autoen-
coder trained with 8946 tumor samples from 40 tumor
subtypes and evaluated with 2236 independent samples.
The deleterious and non-deleterious variants in tumor
mutational profiles are merged by a multi-modal autoen-
coder architecture allowing the weighting of each variant
type differently. Althoughmost pipelines for identification
of disease-causing mutations filter out non-deleterious
variants at the earliest stages, there is growing evidence
that this type of variants affect protein splicing, expression
and ultimately function, and some of these contribute to
disease. This is not the case for tumor mutational pro-
file exploration and classification, where non-deleterious
variants showed to be very informative [4]. In this work
deleterious and non-deleterious variant profiles equally
contribute to the final latent space, with a mixture weight
of α = 0.5. It has been shown that Kernel Target
Alignment and hierarchical clustering analysis exhibits an
improvement on the latent space over these two input
spaces regarding the capacity to group samples in clus-
ters. Finally, a classification task using one-class approach
is implemented in the latent space for each tumor sub-
type. The evaluation of the classifiers using independent

samples for each class shows improvements in the vast
majority of the tumor subtypes.

Conclusions
This work presents a tumor mutation profile analysis
pipeline which is from our best knowledge, the first
attempt to learn a low dimensional latent space using
autoencoders frommutational profiles of large pan-cancer
tumor data. The latent space evidences biological signals
in 50 dimensions after reducing the input dimensionmore
than 200 times for 40 tumor subtypes. The use of ker-
nel learning for latent space validation and assessment
of the resulting cluster structures proved to be a useful
approach. The use of a multi-modal approach to differ-
entiate deleterious and non-deleterious variants let the
autoencoder to learn a more realistic representation of
the tumor somatic profiles. Classification at a tumor sub-
type level in the learned representation shows a clear
improvement in comparison to the original input space.
The quality of learned embedding has been assessed by
different methods and proved to be a powerful tool for
analysis of the pan-cancer mutational landscape.
This work is a first milestone and lay the foundations

for future work on the learned somatic mutation autoen-
coder embedding to serve as a reference for biomarker
discovery using feature selection techniques based on ker-
nel learning and neural networks. If enough clinical data is
available, the identified biomarkers with a further explo-
ration of the latent space for cancer subtypes stratification
could inform of patient expected prognosis and what are
the most beneficial treatments. Future work should also
consider further model validation and the inclusion of
multi-omic input layers.
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Table 1 Classification results for 40 cancer subtypes

Primary site Project name Test samples AUC latent AUC De. AUC Nd.

Head and neck ORCA-IN 36 0.75 0.50 0.55

Brain LGG-US 56 0.81 0.62 0.80

Blood CLLE-ES 102 0.83 0.84 0.76

Head and neck THCA-SA 28 0.82 0.66 0.81

Liver LINC-JP 79 0.54 0.50 0.50

Lung LUSC-KR 34 0.77 0.57 0.50

Skin GACA-CN 24 0.79 0.50 0.50

Stomach LICA-FR 49 0.67 0.50 0.51

Blood ESCA-CN 65 0.77 0.5 0.61

Lung EOPC-DE 40 0.81 0.74 0.55

Colorectal COCA-CN 63 0.60 0.50 0.51

Skin SKCM-US 67 0.84 0.50 0.50

Liver LICA-CN 79 0.61 0.50 0.50

Blood ALL-US 15 0.83 0.91 0.94

Skin SKCA-BR 20 0.84 0.50 0.50

Brain GBM-US 55 0.87 0.50 0.66

Nervous system NBL-US 18 0.96 0.95 0.96

Blood LAML-KR 41 0.97 0.73 0.64

Prostate PRAD-UK 28 0.65 0.5 0.50

Prostate PRAD-US 51 0.83 0.58 0.74

Blood MALY-DE 49 0.82 0.50 0.50

Kidney KIRC-US 82 0.90 0.50 0.58

Brain PBCA-DE 90 0.79 0.77 0.59

Kidney RECA-EU 49 0.84 0.5 0.5

Blood AML-US 18 0.94 0.96 0.96

Breast BRCA-UK 28 0.59 0.50 0.50

Kidney KIRP-US 33 0.90 0.50 0.57

Prostate PRAD-CA 58 0.88 0.71 0.50

Stomach STAD-US 58 0.84 0.50 0.50

Stomach GACA-JP 115 0.80 0.50 0.50

Liver LIRI-JP 32 0.88 0.50 0.75

Breast BRCA-US 189 0.75 0.60 0.50

Lung LUSC-US 39 0.91 0.50 0.50

Esophagous ESAD-UK 61 0.90 0.50 0.50

Colorectal COAD-US 51 0.83 0.50 0.50

Breast BRCA-FR 15 0.82 0.50 0.56

Pancreas PACA-AU 73 0.72 0.60 0.50

Pancreas PACA-CA 54 0.87 0.50 0.89

Head & Neck THCA-US 76 0.85 0.85 0.50

Breast BRCA-EU 114 0.79 0.56 0.50

The number of the test samples for the corresponding class is detailed. Area under the Roc curve is detailed for classifiers on Latent Space, Deleterious and Non-Deleterious
input data. Tumor subtypes where the classification performance is improved in the latent space are highlighted in bold
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Methods
Pan-cancer somatic mutation data
Data has been downloaded from the International Cancer
Genome Consortium [1]. Only Simple Somatic Mutation
(SSM) data of the Release 27 has been considered for this
work. Tumor data is labeled by type and subtype. There
are 14 tumor types composed by 40 subtypes. There are
a total of 11183 samples from whole exome sequecing
and each one is characterized by more than 20.000 pro-
tein coding genes annotated with Variant Effect Predictor
tool [18].
The pre-processing step consists of first counting sep-

arately the number of deleterious and non-deleterious
somatic mutations per patient protein coding gene
according to Cosmic notation [19]. Deleterious mutations
are Inframe, Frameshift,Missense, Start Lost, StopGained
and Stop Lost and the Non-deleterious are Synonimous,
Splice, UTR 5 prime and UTR 3 prime. This results in
two data matrices Xmn for each mutation type where m is
the number of samples and n the number of genes or fea-
tures. The value of each position Xij corresponds to the
number of somatic mutations a sample i has in gene j.
Then each gene is zero-one normalized. It is important to
remark the high sparsity of the data matrix and the curse
of dimensionality. Initially the sample to feature ratio is
0.55. From this initial context only the features with non-
zero values in at least 50 samples are retained and the rest
that are only present in less than 50 samples are discarded.
This decreases the feature set to a total of 12.424 genes
and the resulting sample-to-feature ratio is 1.1 now. The
data matrix is partitioned in train and test sets where train
samples represent the 80% of the total data set. Within
train set data where split in 5 folds to perform 5 training
and validation iterations to tune the hyper-parameters of
the model like learning rate, hidden layer size, regulariza-
tion parameters, the number of training epochs and the
mixture weight parameter.

Autoencoders
Autoencoders are feedforward networks that learn two
functions simultaneously: an encoder and decoder. The
encoder maps the original input domain X to a new
domain named latent space Z of dimension L. The
decoder then maps from Z to the original input space X .
The mapping from X to Z is created by a neural network
with one or multiple hidden layers [20]. The output of
the decoder is also a reconstruction feedforward network.
Since we aim to have a lower dimensionality at the latent
space Z , the autoencoder is forced to build an encoder
function that captures all the salient features from the
training data as much as possible [21]. The encoder and
decoder functions are defined as z = f (x) and x̃ = g (z)
respectively where z are the samples at the learned latent
space and x̃ are the reconstructed samples on X . With

the previous definition, the autoencoder loss function to
minimize is formalized as

E
(
x, x̃

) = E
(
x, g

(
f (x)

))

where E penalizes g
(
f (x)

)
to be different to x. In this

work the measure of this loss function is the cross entropy
score. Then the encoder F and decoder G functions can
be defined as [22]

z = F (x,WF) = σ (WFx + bF)

x̃ = G (z,WG) = σ (WGz + bG)

where F (·,WF) andG (·,WG) correspond to the encoding
and decoding functions respectively and σ (·) is an acti-
vation function. The original input sample is x ∈ X , x̃ ∈
X is the reconstructed samples and z the corresponding
latent ones which dimension is lower than x. The tensors
W and b corresponds to the trained weights and biases
of the encoder and decoder networks. These parameters
are learned by backpropagation in order to minimize the
loss function by the optimizer. This work uses Adaptive
Moment Estimation (Adam) [23] optimizer to learn the
weights of the network that minimizes the loss function.
Adam is a novel first-order stochastic optimization tech-
nique. It computes an adaptive learning rate depending on
the gradient mean.
Training an autoencoder to solely make x̃ a copy of x

does not ensure the learned latent space z is representa-
tive of the input x. Without any constrain or penalization
term, the encoder and decoder functions can result into
a function that only copies the input in an output, but
that is not useful to learn a latent space. For that reason
different regularization strategies are evaluated which are
L2 norm and Batch Normalization. L2 norm consists in a
constraint term added to the loss function E where β is
the regularization parameter.

E′ (x, g
(
f (x)

)
,β

(
f (x)

)) = E
(
x, g

(
f (x)

))+β
∑

i
|wi|22

The regularization term penalizes the functions f and
g to have large weights leading to a simpler model and
reducing overfitting [24]. To improve even more the gen-
eralization capacity the other regularization policy is used
during the encoding process just after the first hidden
layer of the encoding function. Batch Normalization [25]
consists in auto-scaling the activation units to zero mean
and unit variance at each mini-batch iteration.
Since the input data is characterized by two mutational

data types and is represented in two matrices Xde and Xnd
corresponding to deleterious and non-deleterious muta-
tions respectively, the Autoencoder model must have two
inputs and two outputs. Then, a multi-modal approach
is proposed on the autoencoder architecture [26, 27]. A
multi-modal autoencoder consists of two input networks
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and two output networks, each one with one Encoder and
Decoder function. The network layers Lde and Lnd cor-
respond to the latent representation of each model and
are merged into one Ltot after the encoding function. This
latent representation, which includes the signals of the
two models, it is decomposed in two decoding functions.
Figure 1 shows the proposed architecture. Since twomod-
els are participating in the construction of the final latent
space, the final loss function is determined as follows

Etot = αEde + (1 − α)End

where α is a mixture weight parameter that represents
the contribution of each model in the final latent rep-
resentation, Ede is the loss of the deleterious model
and End is the non-deleterious. This approach allows to
implement a weighting system on the input data and
gives relative importance to deleterious and non delete-
rious mutational data. The best value of the α mixture
weight parameter was found by a grid search of values
α =[ 0.1, 0.3, 0.5, 0.7, 0.9], using Mutual Information (MI)
from clustering results to evaluate the performance. Dur-
ing the cross validation task for each weight configuration
a latent space is obtained, and based on the 14 tumor type
classes a hierarchical clustering model with 14 clusters is
implemented. For each clustering result the mutual infor-
mation is calculated between the obtained cluster labels
and the ground truth tumor labels. The final α parameter
corresponds to the highest MI score obtained after cross
validation which is α = 0.5 (Additional file 1: Figure S1).
For the experiments, the architecture used consists in

one hidden layer of 400 neurons (activation units) in both
the encoding and decoding functions, named as hle and
hld respectively. The latent space is obtained from the
latent layer z with dimensionality L and represents an
information bottleneck with the lowest dimension within
the network. Different dimensions of latent space are eval-
uated to observe how the structure of the tumor data
changes and is retained for each latent dimensionality.
The pipeline’s objective is to reveal biological structures of
the input data while reducing the dimensionality as much
as possible. Figure 1 shows the proposed multi-modal
architecture of the auto-encoder trained with both dele-
terious and non deleterious somatic mutational data from
tumors.
During training the L2 norm and learning rate have

been selected by 5-fold cross-validation on the train
set using L2 =[0.00005, 0.00002, 0.00001] and Lr =
[0.005, 0.0025, 0.001]. The final values are L2 = 0.00002
and Lr = 0.001. The number of epochs and the learn-
ing rate have been determined by an early stopping policy
when the validation loss changes to lower than a certain
threshold between each epoch.

Kernel learning
In this work Kernel Learning is used to measure the struc-
ture of the learned latent space by the autoencoder and
as the function used for the support vector classification
step. Kernel functions can be thought as similarity func-
tions between vectors. These functions indicate the dot
product between those vectors mapped in a high dimen-
sional Hilbert feature space. A Kernel is a function k :
X × X �→ R where X ⊆ Rn is an n-dimensional space X .
The function k is symmetric and describes implicitly the
mapping φ fromX to a Reproducing Kernel Hilbert Space
H by an inner product [28] K

(
xi, xj

) = 〈
φ(xi),φ(xj)

〉
H.

The mapping from X to a feature space H is done by the
function φ : X �→ φ (X) ∈ H.
In this work, a good kernel finds high similarity between

tumors of the same type and low similarity between
tumors of different types. The kernel used is the Gaussian
Kernel where the σ parameter functions as an exponential
scaling factor.

k(xi, xj) = exp
(

−
∥
∥xi − xj

∥
∥2

2σ 2

)

; σ > 0 (1)

The Gaussian kernel is one of the most common kernel
functions. The parameter σ controls the size of the neigh-
borhood of any xi such that k(xi, x) is significantly larger
than zero. The bigger the σ parameter, the more constant
the function and thus the lower its ability to learn non-
trivial patterns. On the other hand, low values of σ allow
the kernel to fit complex patterns and be more sensitive to
details [29].
Once the kernel is defined, it can be compared with

other kernels via the Kernel Alignment [9]. Given two
valid kernels K1 and K2 over a set of samples M, the
alignment A between both kernels is defined as

A (K1,K2) = 〈K1,K2〉F√〈K1,K1〉F 〈K2,K2〉F
(2)

and means the similarity between the two kernels using
the same sample setM where 〈·, ·〉F is the Frobenius inner
product between both kernel matrices. In other words,
it can be thought as how similar both kernels map the
samples. Considering the set S of labeled samples such
that S = {

(x1, y1) ..., (xm, ym)
}
where xi ∈ Rn and yi ∈

{−1,+1}, when K2 = yyT represents an ideal Kernel
matrix or target Kyy with each position Kij = 1 if yi = yj
and Kij = −1 if yi 	= yj. The alignment of a kernel K and
the target Kyy is known as the Kernel Target Alignment.
The higher the KTA score, the bigger the inter-class dis-
tance, therefore the classes are more separated between
each other and thus, well mapped to their correspond-
ing target label. The σ parameter of the Gaussian Kernel
has been tuned to maximize the corresponding KTA. In
this work KTA is used to assess the quality of the latent
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space by using the tumor type labels and to evaluate the
improvement of it in comparison with the original input
space. It is expected to observe a higher KTA in the latent
space and a lower one in the input high dimensional space.
Once the autoencoder is trained and the latent dimen-

sions are finally defined, Kernel Alignment and support
vector classification are used for latent space evaluation. It
is important to remark that since there are 40 tumor sub-
types, a one vs all approach using a binary classification
is not the best option since classes are highly unbalanced.
For this reason classification is done by the one class ν-
SVMmodel [30]. It is used to classify each tumor sub-type
against the rest of the tumor samples and is commonly
used to define a decision boundary of only one class versus
the rest of the sample set. This approach is applied to each
tumor subtype and serves as a way to perform multi-class
classification, where a one-class model is used instead of
using a binary classifier. Its objective function is

min
w,ξ ,ρ

1
2

‖w‖2 + 1
nν

n∑

i=1
ξi − ρ

s.t.(w · φ(xi)) ≥ ρ − ξi, ξi ≥ 0

The hyperparameter ν ∈ (0, 1) functions as a lower
bound on the number of samples characterized as support
vectors and an upper one for the miss-classified samples
that lie on the wrong side of the hyperplane. A set of slack
variables ξ = (ξ1, ..., ξm) are introduced to allow the pos-
sibility of miss classifications when a sample fall on the
wrong side of the margin. Then the decision function is
defined as follows

f (x) = sgn((w · φ(xi)) − ρ)

Note that a Kernel function can shape the decision func-
tion by the participation of the φ(·). The f (x) function will
be positive for most of the samples in the training set in
a small region which are going to be samples of the same
tumor subtype, and -1 elsewhere. The closer ν parameter
to 0 the penalization of miss-classified samples increases.
If the training samples are separable from the origin, then
the ν-SVMmodel will find a unique hyperplane that sepa-
rates all the samples from the origin, and the distance from
it to the origin is the maximal.
Once the classifiers are trained on the latent space these

are evaluated with independent test samples. Classifica-
tion performance is reported on Table 1.

Cluster analysis
Latent space quality assessment is done also by cluster
analysis as a complement of the KTA. Once the autoen-
coder network is trained, tumors are mapped from the
original high dimensional space to a latent space Z with
lower dimensionality. Given a latent space of dimension

L and the original input space Xde and Xnd, Hierarchical
Clustering with a k number of clusters is applied sepa-
rately to samples in Z on one side and to Xde and Xnd on
the other. Clusters labels ci are assigned to each sample i
belonging to cluster c. Then by considering the real tumor
types labels Yty as the ground truth, a mutual informa-
tion score [31] is computed for each value of k to evaluate
the quality of the obtained clusters in both cases. Every
time the clustering algorithm is executed a set of k clus-
ter labels 	 = {λ1, ..., λk} and a set of ground truth labels
Y = {

y1, ..., yj
}
are defined. Then the mutual information

score is defined as follows

MI(	,C) =
∑

k

∑

j
P

(
λk ∩ yj

)
log

P
(
λk ∩ yj

)

P(λk)P(yj)

where P(λk) is the probability of a sample to be located in
cluster λk , P(yj) the probability to belong to class yj and
P(λk ∩ yj) the one to be at the intersection of both. The
possible results of the score are MI ∈ (0, 1). The higher
the MI score the better the quality of the obtained cluster
result. In this work, the MI score is computed for different
values of clusters k in both the obtained latent space Z
and the original input space Xin. If the quality of clusters
is better in the latent space than the input space then MIz
will be higher than MIde and MInd. A higher value of MI
can be interpreted as samples of the same tumor type tend
to be grouped together in the same cluster.

Computational tools
Data preprocessing, clustering analysis and kernel learn-
ing have been implemented with Python 3.6 and Scikit
Learn [32]. The autoencoder model has been built with
Keras an Tensorflow backend. Training has been per-
formed with a GPU N-Vidia GTX 1060 4GB.
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