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Abstract
Feshbachmolecules forming a Bose–Einstein condensate (BEC) behave as non-ideal bosonic particles
due to their underlying fermionic structure.We study the observable consequences of the fermion
exchange interactions in the interference ofmolecular BECs for entangled-enhanced precision
measurements. Ourmany-body treatment of themolecular condensate is based on an ansatz of
composite two-fermion bosonswhich accounts for all possible fermion exchange correlations present
in the system. The Pauli principle acts prohibitively on the particle fluctuations during the interference
process leading to a loss of precision in phase estimations. However, wefind that, in the regimewhere
molecular dissociations do not jeopardize the interference dynamics,measurements of the phase can
still be performedwith a precision beyond the classical limit comparable to atomic interferometers.
We also show that the effects of Pauli principle increases with the noise of the particle detectors such
thatmolecular interferometers would requiremore efficient detectors.

1. Introduction

Modern interferometers exploiting particle entanglement are among themost precisemeasurement devices
used so far. They provide a remarkable tool for high precisionmetrology that have been successfully used, e.g. to
detect gravitational waves [1, 2]. Small changes of the quantity to bemeasured due to the external conditions are
mapped to changes of the relative phase of the interference between two photonic or atomicmodes. The
sensitivity with respect to these changes increases withN, the total number of particle involved in the
interference.

For interferometers with uncorrelated particles sources, theminimumphase uncertainty is limited by the
shot noise, a trace of the particle nature of quantumwaves.However, the shot noise limit (also called standard
quantum limit), for which themaximal phase precision scales as N1snqD µ , can be overcome by using
entangled particle resources, such as spin squeezed states [3]. The ultimateHeisenberg limit, where the phase
uncertainty scales linearly with the number of particles N1HqD µ , can be achieved in the limit of infinite
squeezing, where the squeezed states become identical to twin Fock states [4].

Twin Fock states, i.e. states with two orthogonalmodes populated by the same number of particles, have
been producedwith both, photons [4, 5] and ultracold bosonic atoms [6–8]. However, entangled-enhanced
precisionmeasurements of the resulting interference phase have been performed only in the case of ultracold
bosonic atoms [6, 8]. This ismainly because current twin photon beams experiments havemuch higher particle
losses than experiments with twinmatter waves.

Another interesting source of coherent wavematter, not exploited yet for quantummetrology, are utracold
interacting Fermi gases in themolecular Bose–Einstein condensate (mBEC) regime [9, 10], since its lifetime in
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experiments ismuch longer than atomic BECs [11, 12]. Interacting bosonic and fermionic atoms behaves
extremely different at low temperatures [13], because the Pauli exclusion principle between identical fermions
does not allowmultiple occupations of the single-particle states of the system.However, in unpolarized two-
component ultracold Fermi gases, the Pauli exclusion principle can be circumvented by tunning the interaction
between different fermion species. Increasing the (attractive) interaction, fermions bind together forming
diatomicmolecules, which in the limit ofmaximum interaction/binding become perfect bosonicmolecules
[14]. In this strong binding limit all fermion-pairs condense to the samemolecular ground state forming a
perfectmBEC,whereas weakly bondedmolecules leads to quantumdepletion of the condensate [15, 16].

ThemBECs are composed byN identical pairs of distinguishable fermionic atomsA andB. The quantum
depletion of the condensate is a consequence of the fermion exchange interactions between identical
(indistinguishable) fermionic atomsA orB [17]. It can be easily confused in the experiments with particle loss
effects when only the condensate component ismeasuredwithout taking into account the total number of
particles of the system [18].Moreover, it is not knownhow these exchange interactions between identical
fermions affect the system’s ability to performmetrology beyond the standard quantum limit.

Here, we show the effects of quantumdepletion on the phase estimation of two interferingmBECs, essential
for future high precision experiments usingmBECs.We consider initially prepared twin Fock states in two
orthogonalmolecularmodes, and a interferometric dynamics which is determined by a single parameter,
namely, the interference phase θ. The initial twin Fock state ofmBECs is obtained by using an ansatz of
composite bosons [19] applied to the 6Li Feshbach resonance [17].

We found that condensate depletion reduces the odd/even discrete structure of the typical U-shaped particle
distribution that arise whenmeasuring the different numbers of particles populating bothmodes. Such an odd/
evenfluctuation reduction is very similar to that caused by particle losses [5, 6, 8]. Condensate depletion also
renders the standard deviation of the interferingmBECs to be smaller, as comparedwith the one given by the
ideal BECs interference of bosonic atoms. The phase uncertainty increases with respect to the ideal bosonic case,
with the consequent loss of precision in phase estimations. However, we show that the increase in phase
uncertainty is not so significant such that entanglement-enhanced precisionmeasurements are also feasible with
mBECs. This is because theU-shape of the particle distribution, indicatingmany-particle entanglement [5, 6], is
preserved for small values of the interference phase θ= 1.We also analyze the phase uncertainty considering a
Gaussian noise in the particle detectors, and showhow the effects of quantumdepletion increase with the
detection noise. Therefore,molecular interferometers would requiremore efficient detectors to reach sub-shot
noise precisionmeasurements.

The article is organized as follows.We introduce the coboson ansatz and its application to two-component
Fermi gases in section 2.We thoroughly discuss in section 3 the interference dynamics that we consider for
ultracold interacting Fermi gases trapped in a doublewell potential. In section 4we show the population
imbalance and the standard deviation of two interferingmBECs for different values of the interaction parameter
and analyze the effects of the condensate depletion. In section 5we calculate the phase estimation uncertainty
which is inferred from the sensitivity of the state to small rotations around Jẑ axis given by a spin representation

J J JJ , ,x y z=ˆ ( ˆ ˆ ˆ ) compatible with interference dynamics. Finally, in section 6we provide a discussion of the results
and summarize our conclusions.

2. Coboson ansatz for interacting Fermi gases

Feshbach resonance provides away to tune the scattering length a characterizing interaction between different
fermion species,A andB, of a two-component ultracold Fermi gas [13]. This allowed the experimental
realization of the BEC–BCS (Bardeen–Cooper–Schrieffer) crossover with ultracold atomic gases [20]. In the
molecular BEC regime, the ground state at zero temperature can be described by pair correlated states, also
called coboson (composite bosons) states [17, 21, 22]. The cobosons ansatz is given by the successive application
of a complex creation operator ĉ† on the vacuum

N
c

N
0 , 1

N

Nc
ñ = ñ∣ (ˆ )

!
∣ ( )

†

whereχN is the normalization factor [23]. The operator ĉ† creates a two-fermion composite particle as a

function of the elementary fermionic creation operators ajˆ† and b c f a b a b, , , , ,j 1 1 2 2= ¼ˆ ˆ ( ˆ ˆ ˆ ˆ )
† † † † † †

.
Particularly, we use a novel approach tofind the function f starting from scratch in the ladder of Fock states

[17]. It considers that the operator ĉ† acting on the vacuum creates a pair of fermions in the ground state of an
harmonically trapped Feshbachmolecule, c 0 g.s.yñ = ñˆ ∣ ∣† . This approach uses jointlyfirst and second
quantization formalisms of quantummechanics in an original way. The ground state g.s.y ñ∣ of a 6Limolecule is
computed analytically using a two-statemodel in continuous variables (first quantization) [13]. Then, we
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calculate the Schmidt decomposition of the state, i.e.

a b , 2
j

S

j j jg.s.
1

åy lñ = ñ ñ
=

∣ ∣ ∣ ( )

where ajñ∣ and bjñ∣ are the single-fermion states of the system associated to each fermion species. The two
different species can be identified as two different hyperfine or spin states of the constituent fermionic atoms of a
molecule. Considerations of the indistinguishability between the two fermion are also included in this
formalism, since the spin component of the two fermion statewould be the antisymmetric singlet
a b r r 2j j j a j b a b a bf fñ ñ = ñ ñ - ñ ñ

 ∣ ∣ ( ) ( )(∣ ∣ ∣ ∣ ) . The Schmidt coefficient distribution , , , S1 2l l lL = ¼( ) is
computed numerically and depends on the ratio between the size of the trap L and the scattering length a,Λ=Λ
(L/a). It fulfills 1j

S
j1lå »= , being S≈106 the Schmidt rank.

With the state (2) at hand, the cobosons creation operator (second quantization formalism) is naturally

defined as c a bj
S

j j j1 lº å =ˆ ˆ ˆ† † †
[24]. The elementary fermion operators ajˆ† (bĵ

†
) creates a fermionA (B) in the

single-fermion state ajñ∣ ( bjñ∣ ). Since a b 0j j
2 2= =( ˆ ) ( ˆ )† †

because of Pauli principle,
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whereσ( j1,K, jN) indicates that the indices j1, j2,K, jNmust take distinct values in the sumover all the indices
appearing in above equation (3), and 0 vac vacj

S
a b1 j j

ñ º ñ Ä ñ=∣ ⨂ ∣ ∣ is the vacuum.Note that the restriction
j j, , N1s ¼( ) guarantees the Pauli exclusion principle, i.e. there are not two labels with the same value. Using the

Schmidt base given by equation (2), theN-coboson normalization factorχN is given by the elementary
symmetric polynomial [25]
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j j j S
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1 N
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Ensembles with large number of ultracold interacting fermions exhibit an universal behavior with the
interaction parameter kFa. The Fermiwave number of a non-interacting gas is k n6F

2 1 3p= ( ) , with n=N/V
being the atom-pair density andV=4πL3 /3 the volume of the system. Thus, the ensemble of fermionic atoms
(in the ground state Nñ∣ ) and observables, are controlled by the parameter kFa, which is the ratio between the
characteristic length of the interaction and the density of states.

In this work, we assume an initially prepared entangled twin Fock state ofmBECs

M M
c

M

c
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1 2

1 2
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Yñ = ñ ñ = ñ ñ∣ ∣ ∣ (ˆ )
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(ˆ )
!

∣ ∣ ( )
† †

This state has twomolecularmodes, 1 and 2, equally populated byM=N/2 fermion pairs. The preparation of
Twin Fock states withmolecular wavematter has not been experimentally achieved yet. Progress towards the
manipulation of ultracold interacting Fermi gases opened the possibility to produce coherently, or
independently, twoBECs [18]. But the resulting states are yet characterized by uncorrelated particle fluctuations
between themodes. Nevertheless, equation (5) is the ground state of aHamiltonian describing twoultracold
interacting Fermi gases in two independentmodeswith zero tunneling rate betweenmodes, and onewould
expect that twin Fock states could be generated by some kind of quantumphase transition, as performedwith
bosonic atoms [7].

3. Interference dynamics

The dynamics of two interfering ultracold interacting Fermi gases can be very complicated in general. However,
in the strong-binding regime, ultracold fermionic atoms co-tunnel between two separated traps as pairs [26–28].
Moreover, the coherent splitting of an unpolarizedmBEC (with the same number of atoms of each species) in
the regime k a1 1F ( ) yields two unpolarizedmBECs [18], showing that a bi-fermion approximation also
holds for large ensembles of ultracold fermionic atoms. Fermion-pairs in the BEC regime can be represented,

therefore, by using single-bi-fermion creation operator d a bq j q j q j, , ,=ˆ ˆ ˆ† † †
with q=1, 2 [29–31].

Let consider twinmBECs prepared in two identical trapswhere a fermion-pair in the state i ofmode q is
allowed to co-tunnel to the state j ofmode q3 - with tunneling rateαij. Assuming thatαij is larger than any
other pair energy of the system except themolecular binding energyUmol, the dynamics of the systemwould be
approximately generated by theHamiltonian
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H
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Because of the high degeneracy of the fermionic gas,many off-diagonal terms in the above sums are non-zero,
i.e. 0ija ¹ for degenerated states i and j (states with equal single-fermion energies E Ei

A B
j
A B=( ) ( )).While for

non-degenerated states i and jαij=0, because of energy conservation during the dynamic. The off-diagonal
terms contribute to avoid the Pauli principle, since the larger the degeneracy of the state i the larger the number
of states j towhich pairs can tunnel fulfilling energy conservation. Therefore, these off-diagonal termswould
contribute to increase the phase resolution. In this work, we considerαij=0 i j" ¹ , then our results actually
constitute a lower bound of the phase resolution. An alternative tomake the effects of the quantumdepletion
more visible would be to consider an anisotropic trap as it presents a lower degree of degeneracy.

The diagonal terms,αjj, i.e. the coupling between the jth states of bothmodes can have, in general, different
values depending on the shape of the trapping potentials and the ‘tunnel’ coupling both traps, see figure 1. The
existence of a global phase in the dynamics depends, in fact, on these diagonal terms (i=j) in the sums of
equation (6). From the infinite possible configurations producing a global phase dynamics we consider the
simplest one,αjj=J0∀j. That is, we approximate theHamiltonian (6) by

H
J

d d d d
2

, 7
j

S

j j j j
1

1, 2, 2, 1,å» +
=

ˆ ( ˆ ˆ ˆ ˆ ) ( )
† †

where J Uii
2

mola= is the rescaled tunneling rate. A global phase dependence arise in the state evolution

M M M Me e , 8tH
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S
d d d di

1 2
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i 2
1 2j j j j1, 2, 2, 1,

^ ^ ^ ^ ^ñ ñ » ñ ñq-

=

- +∣ ∣ )∣ ∣ ( )(
† †

/

where the interference phase is given by tJq = , being t the time evolution.
Even though fermions co-tunnel as pairs in the BEC regime through the simple dynamics induced by the

Hamiltonian (7), it is not clear that there is a well defined operator dynamic describing the interference processes
(8). This is because couplings betweenmodes 1 and 2 are neglected by Pauli principle when two fermion-pairs
occupy the same internal state j of themodes. The problemwas solved by using a superposition representation of
the composite boson state in terms of states with a different number of elementary bosons and fermions [32]:
Exploiting its symmetry, the initial state (5) can bewritten as

M M 0 , 9
p

M

p p1 2
0

å w fñ ñ ñ
=

∣ ∣ ∣ ( ) ( )

where the states 0pf ñ∣ ( ) are orthogonal. The state 0pf ñ∣ ( ) represents 2p fermion-pairs that behave as elementary
fermions, holding always coincident events in interferometricmodes q=1 and q=2, and N p2- fermion-
pairs that are distributed as elementary bosons. Their correspondingweights are given by

w
M

p

p
2, ,2 , 1 ,..., 1 . 10p

M p N p

2

2
2

c
= W ¼

-
     

⎛
⎝⎜

⎞
⎠⎟

!
({ }) ( )

whereΩ is a symmetric polynomial inL. The polynomialΩ can be computed for relative largeN50 using the
power sums m j j

m l= å( ) and the recurrence formula [32]

Figure 1. (Left)Representation of an interacting Fermi gas in themolecular BEC regime prepared in a double well potential. Fermion
pairs are allowed to co-tunnel between the traps by deforming the trapping potential (right). A global phase dynamicsmight be
achieved by shaping properly the tunnel which couples thewells (black solid line). Oval dashed lines represent the Pauli principle
between fermions of themolecules and the zigzagged arrows indicate fermion pairs that are allowed to co-tunnel.
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The twin Fock state evolves as
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and the probability tofindm fermion pairs in themode 1 (andN−m inmode 2) at time t is given by

m m p, , 13
p

m N m

p
0

Min ,

 å w=
=

-

( ) ( ) ( )
{ }

with m p t, 0p p
2 f f= á ñ( ) ∣ ( )∣ ( ) ∣ being the probability tofindm fermion pairs in one ofmodes, where p of them

behaves as fermions andm−p as bosons. The probability
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where n n M p1 2= = - are the effective number of bosons in the inputs and m m p1 = - and
m N m p2 = - - the effective number of bosons in the outputs, respectively, can be evaluatedwith the
methods presented in [33–35]. The amplitudes of two interfering Fock states of elementary bosonswas
computed as
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The reflection and transmission coefficients are R cos 22 q= ( ) andT sin 22 q= ( ), respectively.
Since elementary fermions are always equally distributed in bothmodes, only fermion pairs that behave as

bosons contribute to the particle fluctuations. This is reflected in equation (14) by the dependence on θ solely of
the ideal (N p2- )-boson contribution. Reminiscences of the underlying fermionic structure of themolecules
are thus reflected in the interference ofmBECs as a partially fermionic behavior of the collective wave function.
Since partially fermionic behavior translates into particle fluctuation suppressions, we expect less precision in
the interference phase estimation by usingmolecular BECs than atomic BECs.

4. Populations imbalance

By introducing the global fermion spin operator J J JJ , ,x y z=ˆ ( ˆ ˆ ˆ ) [36] theHamiltonian (7) can bewritten in terms

of the Jx̂ spin component

J d d d d
1

2
, 16x

j
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j j j j
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1, 2, 2, 1,å= +
=

ˆ ( ˆ ˆ ˆ ˆ ) ( )
† †

such that H JJx»ˆ ˆ . The population imbalance of the system is given by the Jẑ spin-like component operator

J d d d d
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, 17z
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j j j j
1

1, 1, 2, 2,å= -
=

ˆ ( ˆ ˆ ˆ ˆ ) ( )
† †

which is the fermionic analogous of the usual spin Jẑ component given by the Schwinger representation.

Fluctuations of the difference of the particle number, namely, Jz
2

á ñˆ and J J Jz z z
2 2 4 2 2á D ñ = á ñ - á ñ( ˆ ) ˆ ˆ , are the

experimental observables required for the estimation of the phase and its uncertainty, respectively. The above
defined operators Jx̂ and Jẑ together with

J
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, 18y
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=

ˆ ( ˆ ˆ ˆ ˆ ) ( )
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fulfill the commutation relation J J J, ii j ijk ke=[ ˆ ˆ] ˆ for the Lie SU(2) algebra.
Infigure 2(a), we show the typical standard deviation

J N
J J

N
19z

z z
2 2
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( ˆ )
ˆ ˆ

( )
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of the normalized population imbalance J Nẑ of twounentangled state, namely, the single-mode Fock state
N 01 2ñ ñ∣ ∣ (gray solid), and the state resulting from the coherent splitting of a Fock state Nñ∣ [30, 31] (gray dotted).
For both unentangled states the resulting standard deviation is the same as for unentangled states of elementary
bosons. For initially prepared entangled twin Fock states, the relative particle number uncertainty vanishes
( J J 0zs =( ˆ ) ) such that the relative phase is completely undetermined. A reduction of the phase uncertainty on
the outputmeasurements beyond shot-noise limit is attained at the expense of increasing the uncertainty of the
observables. The extreme case is therefore attainedwith twin Fock states for which the standard deviation
vanishes at 0, , 2 ,q p p= ¼(black dashed line for elementary bosons and solid lines with colors formolecular
BECswith different interaction parameter kFa).

Depletion in the BEC regime, is a consequence of fermion exchange interactions among the constituent of
the identicalmolecules, and it is reflected as a partially fermionic behavior in the interference. Infigure 2(a)we
show the standard deviation of two interferingmBECswithN=32 fermion pairs and interaction parameter

k a1 1, 1.5F =( ) and 4 (red, blue and green solid lines, respectively). For increasing values of the interaction
parameter kFa, the depletion of the condensates increases, and the standard deviation decreases as a consequence
of fermionic fluctuation suppressions. Particularly, the partially fermionic behavior induces suppression of
even/odd fluctuations, see figure 2(b). For k a1 4F =( ) (Green dots) the probability of the different population
imbalancesmatch the ideal bosonic behavior (gray shaded histogram), whereas for k a1 1F =( ) the even/odd
particle fluctuations almost vanishes. Particle losses and/or the absence of single-particle resolution in the
experiments also render even/odd fluctuations vanishes [5, 6]. Nevertheless, theU-shape of the probability
distribution, considered in the literature as an indicator for possible entanglement-enhanced phase resolution
[4–8], is preserved.

5. Phase uncertainty

Interferometers with uncorrelated atoms are fundamentally limited by shot noise. The best possible precision
for uncorrelated resources is given by the classical Cramer–Rao bound of parameter estimation, themaximal
interferometric phase precision for ν independentmeasurements is given by N1SNq nD = . This limit can be
surpass by creating entanglement between the atoms. Twin Fock states aremaximally correlated states in particle
numbers. The redistribution of particle in bothmodes during the interference is strongly affected by the
entanglement, allowing sub-shot-noise sensitivities inmeasurements of the relative phase θ. The ultimate limit
to the phase precision, the so-calledHeisenberg limit, where the sensitivity scales as N1Hq nD = ( ), can be
achieved using twin Fock states.

A typical interference process is given by a rotation of the input state by an angle θ, which represent the
relative phase of the condensates. This rotation angle can bemapped onto the population imbalance by using the
complete set of observables (16)–(18), which can be experimentallymeasured. Since for twin Fock states the

Figure 2. (a) Fluctuations of the normalized population imbalance for an initial twin Fock state ofN=32 fermion pairs with
characteristic interaction parameter k a1 1.0, 1.5F =( ) and 4.0 (blue, red and green solid lines, respectively). Black dashed line
corresponds to the standard deviation J Nzs ( ˆ ) of an ideal bosonic interference of entangled twin Fock states, while gray lines
corresponds to the standard deviation for two initial source of unentangled atoms, namely, the single atomic Fock state (solid) and the
coherent state (the quantum states generated by coherent splitting of a quantummode) (dotted). The standard deviation of a
molecular twin Fock state oscillates as sin q∣ ( )∣where  increases with k a1 F( ). (b)Distribution of the population imbalance Jẑ
(probability distributions of the state over the Jŷ Dicke eigenbases) for three different values of the phase interference θ=0.4, 1 and
π/2 and of the interaction parameter k a1 F( ). These values correspondwith the dots depicted infigure (a). The gray shaded histogram
is the ideal bosonic distribution of the population imbalance.
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relative phase θ is completely undetermined, a rotation of these statesmaps the quantity of interest on the

expectation value of the output fluctuations Jz
2

á ñˆ instead of Jzá ñˆ [37]. The phase estimation uncertainty is
evaluated from the error propagation equation as [38]

J J
, 20z z

J

4 2 2

d

d
z
2

q
n

D =
á ñ - á ñ

q
á ñ

ˆ ˆ
( )

ˆ

where themean value of the of the operator Jz
aˆ is given by

J N m m2 . 21z
m

N

0

åá ñ = -
a a

=

ˆ ( ) ( ) ( )

The phase uncertainty (20) for a twin Fock state beats the standard quantum limit snqD for values of the
relative phase close to θ=0,π, 2π,K, see figure 3(a). In the expandedfigure 3(b), we also show the phase
uncertainty with respect to the shot-noise limitΔθ/Δθsn as a function of θ, and it can be appreciated the
deviation of thismagnitude caused by partially fermionic behavior. From thisfigurewe infer that high
metrological precision is reached, beating the standard quantum limit for all values of k a1 1F >( ) . Slightly
increasing θ, the deviation from the ideal bosonic behavior decreases if the number of particle is large enough,
for instanceN=36, see figure 3(b). This is an important remark, since noise in the experimental particle
detection allows one to reach sub-shot noise resolutions only for relatively small θ>0 [6, 8].

Particle detectors are subject to an intrinsic noise. For atomic BEC interferometers, such a noise ismuch
larger than any other source of precision loss, e.g. sources of error due to statisticalmixtures of the prepared twin
Fock state [6, 8]. Assuming aGaussian detection noiseσdn whenmeasuring the population imbalance Jẑ wehave

J J 22z z
2

gdn
2

dn
2sá ñ = á ñ +ˆ ˆ ( )

Figure 3.Phase uncertaintyΔθwith respect to shot noiseΔθsn of a twin Fock interferometry realizedwithmolecular Bose–Einstein
condensates, as a function of the interference phase θ and forN=4, 12 and 36. The lower figure is an amplification of the upper one
within the phase range [0, 0.7]. The phase uncertainty beats the standard quantum limitsΔθ/Δθsn=1, and decreases with the
interaction parameter k a 1.0, 1.5F

1 =-( ) and 4.0 (blue, red and green solid lines, respectively). Deviation from the ideal bosonic
behavior (black dashed lines) are caused by a reduction of even–odd particle fluctuations (seefigure 2(b)) caused by the Pauli blocking
between fermion pairs.
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and

J J J6 . 23z z z
4

gdn
4

dn
2 2

dn
4s sá ñ = á ñ + á ñ +ˆ ˆ ˆ ( )

The phase uncertainty is now given by

J J
, 24

z z

J
gdn

4
gdn

2
gdn
2

d

d
z
2

q
n

D =
á ñ - á ñ

q
á ñ

ˆ ˆ
( )

ˆ

where J Jd d d dz z
2

gdn
2

q qá ñ = á ñˆ ˆ .
Infigure 4we show the phase uncertaintyΔθgdn with respect to shot-noise in amolecular interferometry, for

different values of the detection noiseσdn and the interaction parameter k a1 F( ). As a general trend, the phase
uncertainty increases with the detection noise. Particularly, theHeisenberg limit can not be achieved for

0dns > , and the precision do not beat the standard quantum limit for very small values of θ. Themaximum

precision (minimumphase uncertainty) is obtained approximately when Jz
2

dn
2sá ñ ~ˆ , as for interferometers of

atomic BECs [6]. The impact of the partially fermionic behavior for small detection noise is also small, while for
larger values of the detection noise, the deviation from ideal bosonic interferences can not be neglected. For
instance, forσdn=1 the relative difference in gain between the atomic and themolecular interferometry at

k a1 1F =( ) and θ=0.055 (minimumphase uncertainty) is G G G 0.065mol. at. at.- »∣ ∣ , while forσdn=2.5
the relative gain difference is 0.31 at θ=0.165. These values are indicatedwith gray arrows infigure 4.

6. Conclusion

In this workwe have shown the impact of the underlying fermionic structure of ultracoldmolecules in the
interference of twomBECs for entanglement enhanced precisionmeasurement.We assume initially prepared
entangled twin Fock state ofmBECs at zero temperature, for which theHeisenberg limit can be achieved, and an
interferometric dynamics characterized by a single global parameter θ. To compute the initial state we use an
ansatz of composite bosonswhich carries with all possible particle exchanges (for the identical fermions) and all
interactions between different fermion species. This allowed us to faithfully describe the effects of fermion
exchanges on the phase uncertainty estimation in high precision experiments usingmBECs.

The deviation from the ideal bosonic behavior in the interference of composite particles is a consequence of
the condensate quantumdepletion, and can be interpreted as a partially fermionic behavior [32]. This partially
fermionic contribution, due to Pauli blockade between identical fermions, reduce the even/odd particle
fluctuations, while theU-shape of the distribution of population imbalance is preserved. As a consequence, the
precision gain decreases and theHeisenberg limit is not achieved for non-negligible values of the depletion
( k a1 1F »( ) ).Moreover, the detection noise enhances the impact of the partially fermionic contributionwhich
significantly affect the precision gain for inefficient detectors. Nevertheless,molecular interferometers with

Figure 4.Phase uncertaintyΔθgdn with respect to shot noiseΔθsn of a twin Fock interferometry ofmolecular Bose–Einstein
condensates withN=36 and aGaussian detection noise ofσdn=0, 1, 2, and 3 fermion pairs. Horizontal lines are the standard
quantum limit,Δθ/Δθsn=1, and theHeisenberg limit, N1 .
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highly efficient detectors would allow highmetrological precision comparable to atomic interferometers. Finite
temperature (T 0¹ ) effects should also be considered for real experiments. Thefinite temperature usually
increases depletion in both fermionic [18] and bosonic [39] gases and it alsowould affect the formation of pairs
making the coboson ansatz less efficient. If the temperature is sufficiently low, quantitatively lower than the
Fermi temperature, our results remain correct, but in general the effect of the temperature would result in a loss
of themetrological precision [40].

Progress on atomic andmolecular BECphysics are gapped by at least 10 years. Since particles of the former
are bosonic atoms and the later fermionic atoms the physics bywhich Bose–Einstein condensation emerge is
quite different. In fact these differences could be advantageous once the BEC stage is attained, sincemolecular
BECs have a lifetime of approximately 20 s,much longer than the lifetime of atomic BEC existing for just one
second [41]. On the other hand, the internal state of bosonic atoms can be tunned relatively easy, which allowed
the preparation of high entangled twin Fock state of BECs [6, 7]. Themore natural way to produce entangled
states in particle number formolecular interferometers is reducing particle fluctuations in a double well
potential, as carried outwith ultracold bosonic atoms almost 10 years ago [42]. Finally, given the general
character of our theory, the proposed interferometric process for entanglement enhancedmetrology can be
extended to interacting fermions in optical lattices [32, 43–45]. In fact, our proposed interference dynamics
could be implemented experimentally by tunning differently the tunneling rate between sites along the x and y
directions of a two-dimensional optical lattice [32, 44].
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