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This article is concerned with the stochastic dynamic analysis of structures constructed with composite
materials. Depending on many aspects (manufacturing process, material uncertainty, boundary condi-
tions, etc.) real composite structures may have deviations with respect to the calculated response (or
deterministic response). These aspects lead to a source of uncertainty in the structural response associ-
ated with constituent proportions, geometric parameters or other unexpected agents. Uncertainties
should be considered in a structural system in order to improve the predictability of a given modeling
scheme. In this study a model of shear deformable composite beams is employed as the mean model.
The probabilistic model is constructed by adopting random variables for the uncertain parameters of
the model. This strategy is called parametric probabilistic approach. The probability density functions
of the random variables are constructed appealing to the Maximum Entropy Principle. The continuous
model is discretised by finite elements and the Monte Carlo method is employed to perform the simula-
tions, thereafter a statistical analysis is performed. Numerical studies are carried out to show the main
advantages of the modeling strategies employed, as well as to quantify the propagation of the uncertainty
in the dynamics of slender composite structures.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials have many advantages with respect to iso-
tropic materials that motivate their use as structural components.
The most well known properties of composite materials are high
strength and stiffness properties together with a low weight, good
corrosion resistance, enhanced fatigue life, low thermal expansion
properties, among others [1]. Other important feature of composite
materials is the very low machining cost for complex structures
[2,3]. As a result of the increasing use of thin-walled composite
beams, the analysis of static and dynamic behavior is a task of
intense research. Since the eighties many research activities are
being devoted toward the development of theoretical and compu-
tational methods for the appropriate analysis of such members.
The first consistent study dealing with the static structural behav-
ior of thin-walled composite-orthotropic members, under various
loading patterns, was due to Bauld and Tseng [4], who developed
in the early eighties, invoking Vlasov hypotheses, a beam theory
to analyze fiber-reinforced members featuring open cross-sections
with symmetric laminates. This theory assumed the cross-sections
to be shear undeformable and was restricted to members formed
by non-general stacking sequences and employed only for static
analysis. Further contributions of many authors [5] until the pres-
ent time, made possible the extension of Vlasov models by consid-
ering shear deformability due to bending and warping effects,
among others, and the resulting models were employed in many
problems.

Thin-walled composite beam-models allowing for some effects
of shear deformability were presented, in the middle eighties in
the work of Bauchau [6]. In this article, the effect of full shear
deformability, specially the warping torsion shear deformability,
was not taken into account or was slightly studied in a few prob-
lems of statics and dynamics. The late eighties and the nineties
brought a considerable amount of new models and uses. Rehfield
and Atilgan [7] studied the non-conventional effects of constitu-
tive elastic couplings (such as bending–bending coupling or bend-
ing-shear coupling) in the mechanics of cantilever box-beams. In
the models developed by Librescu and Song [8] and Song and Lib-
rescu [9], that were largely applied as a basis of a broad research
on composite beams, the bending component of shear flexibility
was considered but the shear deformation due to warping torsion
component was neglected. However in these models new exten-
sions were performed, such as the accounting for the effect of
the shell-thickness in shear and warping deformations. Special
attention deserve the works of Cesnik et al. [10], who performed
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studies on thin-walled composite beams by means of the so-
called Variational Asymptotical Cross Sectional Analysis (VABSA)
Method. In these works there is no mention to buckling problems
and vibrations with states of arbitrary initial stresses. Employing
the Hellinger–Reissner principle, Cortínez and Piovan [11] intro-
duced a theory of thin-walled beams with symmetric balanced
laminates, which considers full shear flexibility, i.e. bending shear
deformation and torsion-warping shear deformation. This model
covers topics of dynamics under states of initial normal stresses,
and also accounts for thickness shear flexibility and warping.
Many of the aforementioned models were employed only for sta-
tic response or for eigenvalue calculation. Piovan and Cortínez
[12,13] extended the previous model by incorporating general
laminates, buckling analysis and other complexities such as
beams with curved axis among others. Especial attention deserves
a group of new interesting models for composite beams that have
been developed recently appealing to unified formulations and
enriched kinematics [14–16,18,17]. Particularly, the works of Car-
rera and Varelo [16] and Giunta et al. [15] are devoted to thin-
walled composite beams accounting for shear flexibility as well
as other types of non-conventional effects. This type of modeling
incorporates an enriched kinematics that consists in the common
degrees of freedom of a beam (centroid displacements and rota-
tions) and higher order terms associated to non-conventional de-
grees of freedom. The shear flexible models of Piovan and
Cortínez [12,13], although with a simpler kinematics than the
previous ones, can also reach a quite good correspondence with
respect to the available experimental data for the mechanics of
beams through the appropriate involvement of the few most rel-
evant kinematic variables [12,29]. This is a crucial aspect for
problems with highly demanding computational cost such as
the structural optimization or the quantification of uncertainty
in dynamics of composite beams, among others.

The uncertainty is an important concern in the behavior of
beams constructed with fiber reinforced composite materials due
to their inherent variability. The first studies about the quantifica-
tion of uncertainty in composite materials are related to the con-
stituent level, fibre/matrix or ply level according to the deep
review of the state of the art carried out by Sriramula and
Chryssantopoulos [19]. The main sources of uncertainty in
Fig. 1. Thin-walled beam w
composite materials are the value of constituent properties at
microscopic level, geometric aspects at mesoscale or macroscopic
level and the manufacturing and machining processes. The manu-
facturing processes of composite structures may affect strongly the
dynamic response. There is a huge amount of research related to
quantifying the propagation of uncertainty in the mechanics of
composite materials at the microscale/macroscale levels [19] or
in the quite sensitive case of failure analysis [20,33] or in dynamics
of composite plates [21], among others.

There are different approaches to evaluate the dynamic re-
sponse of structures subjected to several aspects of uncertainty.
The most common is the consideration of the uncertainty in loads,
or external excitations, as a random processes [22]. The uncer-
tainty involved in the material properties of the composites can
be considered as random fields according to the works of Onkar
et al. [23] and Mehrez et al. [24,25] among others. Other way to
study the dynamic response due to uncertainties in the composite
material is associating random variables to given parameters that
are considered uncertain, which is called parametric probabilistic
approach [26]. The construction or derivation of the probability
density functions of the random variables is a crucial task that
needs some information about the statistics of the parameters
(e.g. expected value or bounds and/or coefficient of variation).
The Maximum Entropy Principle [27] is employed to construct
the stochastic model of the structure. Within this context, the
probability density functions of random variables are deduced in
order to guarantee that they achieve the maximum uncertainty
which is measured in terms of entropy defined according to Shan-
non [28]. This is the approach to be employed in the present article.
The basic elastic properties of a layer and orientation angles of the
laminates are assumed to vary around the expected values (that
shape the deterministic model), then two sets of random variables
(one for material properties and other for orientation angles) are
introduced and their corresponding probability density function
are adopted with the aid of the Maximum Entropy Principle. The
deterministic and probabilistic approaches of the structural model
are formulated in a continuous and discretised by the finite ele-
ment method. The Monte Carlo Method is used to obtain the statis-
tics of the dynamic response associated to a number of
independent simulations.
ith reference systems.
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The article is organized as follows: after the introductory sec-
tion where the state-of-the-art is summarized, the deterministic
continuous model and its finite element discretisation are briefly
described, then the probabilistic model is constructed. The subse-
quent sections contain the computational studies: a validation of
the deterministic beam model with 3D finite element approaches
and the analysis of the uncertainty propagation in the dynamics
of thin-walled composite beams and, finally, concluding remarks
are outlined.

2. Model development

2.1. Brief representation of the composite beam model

In Fig. 1 a basic sketch of the thin-walled beam is shown, where
it is possible to see the reference systems {C:xyz} and {A:xsn}. The
principal reference point C is located at the geometric center of the
cross-section, where the x-axis is parallel to the longitudinal axis of
the beam while y and z are the axes of the cross section, but not
necessarily the principal axes of inertias. The secondary reference
system {A:xsn}, is used to describe shell stresses and strains as
common practice for thin-walled composite beams [1]. The point
A is located in the mid surface of the wall, whereas s-axis and n-
axis are respectively tangent and normal to the mid surface, as it
is possible to see in the detail of Fig. 1, where e is the thickness
of the wall. Depending on the features of the cross-section it is use-
ful to define more than one secondary system as shown in Fig. 2.
The thin-walled beam model is based in the following assumptions
[11,12]:

(1) The cross-section contour is rigid in its own plane.
(2) The radius of curvature at any point of the shell is neglected.

This implies to consider the section shaped in a polygonal
arrangement.

(3) The warping function is normalized with respect to the prin-
cipal reference point C.

(4) A general laminate stacking sequence for composite material
is considered.

(5) The material density is considered constant along the beam
axis but it can vary in the laminate thickness.

(6) The stress components rxx, rxs and rxn and the strains and
curvature components �xx, cxs, cxn, jxx and jxs are the most
representative, whereas remaining components are
assumed negligible.
(a)
Fig. 2. Features of cross-section pr
(7) The model is described in the context of linear elasticity.

2.2. Governing equations and boundary conditions

Following Assumptions (1)–(7) it is possible to derive the dis-
placement field of an arbitrary point P [12,29] of the beam, which
can be presented in the subsequent form:
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where uxc, uyc, uzc are the displacements of the reference center in x-
, y-, and z-directions, respectively. hz and hy are bending rotational
parameters. /x is the twisting angle and hx is a warping-intensity
parameter. The cross-sectional coordinates of the reference system
{C:xyz} can be expressed in terms of the cross-sectional coordinates
of the reference system {A:xsn} and the coordinates of the middle
line of the wall [29,37,38]. Thus, in Eq. (1) the cross-sectional coor-
dinates y(s) and z(s) of a generic point P are related to the ones of
the wall middle line Y(s) and Z(s) by means of Eq. (2). The warping
function normalized with respect to the reference system {C:xyz} is
defined in Eq. (3).

yðsÞ ¼ YðsÞ � n
dZ
ds
; zðsÞ ¼ ZðsÞ þ n

dY
ds
; ð2Þ

xðs;nÞ ¼ xpðsÞ þxsðs;nÞ: ð3Þ

In Eq. (3), xp(s) is the primary or contour warping function, whereas
xs(s,n) is the secondary, or thickness, warping. These entities are gi-
ven by:

xpðsÞ ¼
Z s

0
½rðsÞ þ wðsÞ�ds� DC ; xsðs;nÞ ¼ �nlðsÞ; ð4Þ

where the functions r(s), l(s), w(s) and DC are defined in the follow-
ing form:

rðsÞ ¼ ZðsÞ dY
ds
� YðsÞdZ

ds
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The functions A11 and A66 are normal and tangential elastic
properties of composite laminates [11] which can vary along the
cross-sectional middle line. The function w(s) is connected with
(b)
ofiles (a) open and (b) closed.
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the torsional shear flow and DC is a constant for normalization of
the warping function with respect to the reference system
{C:xyz} [11,29]. S is the domain of the cross-sectional middle line.
In the case of open sections the function w(s) = 0, consequently Eq.
(4) holds for both closed and open sections. The warping function
described in Eq. (3), has an analogous form to the ones defined by
Song and Librescu [9] or Na and Librescu [30] for closed sections.

The displacement–strain relations can be obtained by
substituting Eq. (1) in the well-known expressions of linear strain
components. As it was shown by Piovan [29] or Piovan and
Cortínez [12] the shell strains can be written as:

eEP ¼ Gk
eD; ð6Þ

where

eET
P ¼ f�xx; cxs; cxn;jxx;jxsg;eDT ¼ feD1; eD2; eD3; eD4; eD5; eD6; eD7; eD8g;

ð7Þ

Gk¼

1 Z �Y �xp 0 0 0 0
0 0 0 0 dY=ds dZ=ds rðsÞþwðsÞ �wðsÞ
0 0 0 0 �dZ=ds dY=ds lðsÞ 0
0 �dY=ds dZ=ds �lðsÞ 0 0 0 0
0 0 0 0 0 0 1 �2

2
6666664

3
7777775
:

ð8Þ

In Eq. (7), �xx, cxs and cxn are the strain components and jxx, jxs are
the curvatures of the shell that conforms the wall of the cross-sec-
tion. These strain components are measured according to the wall
reference system {A:xsn}. The entities eDi, i = 1, . . . , 8 may be re-
garded as generalized deformations. In this context eD1 is the axial
deformation, eD2 and eD3 are bending deformations, eD4 is the defor-
mation due to non-uniform warping, eD5 and eD6 are the bending
shear deformations, eD7 is the warping shear deformation and final-
ly eD8 is the pure torsion shear deformation. These generalized
deformations, which are collected in vector eD, are defined in the fol-
lowing form:

eD ¼ GDU
eU; ð9Þ

where GDU is a matrix operator and eU is the vector of kinematic
variables which are defined in following forms, in which @xð}Þ is
the spatial derivative operator.

GDU ¼

@xð}Þ 0 0 0 0 0 0
0 0 0 0 @xð}Þ 0 0
0 0 @xð}Þ 0 0 0 0
0 0 0 0 0 0 @xð}Þ
0 @xð}Þ �1 0 0 0 0
0 0 0 @xð}Þ 1 0 0
0 0 0 0 0 @xð}Þ �1
0 0 0 0 0 @xð}Þ 0

2
66666666666664

3
77777777777775
;

ð10Þ

eUT ¼ fuxc;uyc; hz;uzc; hy;/x; hxg: ð11Þ

The principle of virtual works can be condensed in the following
form:

WT ¼
Z

L
ðdeDT eQ Þdxþ

Z
L

deUT Mm
€eU dx�

Z
L

deUT ePX dx

þ deUT eBX jx¼L
x¼0

¼ 0; ð12Þ

where the force vector eQ is defined as follows:
eQ T ¼ fQ x;My;Mz;B;Q y;Q z; Tw; Tsvg; ð13Þ

whereas for the sake of smooth reading, the matrix of mass coeffi-
cients Mm, the vector of external forces ePX , and the vector of natural
boundaries conditions eBX are detailed in Appendix A.

In Eq. (13) the internal beam forces Qx, My, Mz, and B correspond
to the axial force, the bending moment in y-direction, the bending
moment in z-direction, and the bi-moment, respectively; whereas
the internal forces Qy, Qz, Tw, and Tsv correspond to the shear force
in y-direction, the shear force in z-direction, the twisting moment
due to warping and the twisting moment due to pure torsion,
respectively. These internal forces can be written in terms of the
shell-forces as [12]:

eQ ¼ Z
S

GT
k
eNP ds; ð14Þ

where eNP is the vector of shell stress resultants or shell forces and
moments defined according to [1–3]:

eNT
P ¼

Z e=2

�e=2
frxx;rxs;rxn;nrxx;nrxsgdn: ð15Þ

The differential equations of motion and associated boundary
conditions can be derived by applying the conventional steps of
variational calculus to Eq. (12). The differential equations of mo-
tion can be useful for some numerical methods, e.g. power series
method. While in the present article the finite element method is
employed, the derivation of differential equations is not necessary.
The interested reader may follow, in the works of Piovan and
Cortínez [12] and Piovan [29], the form and features of the
differential equations of the thin-walled composite beam models
applied to several problems of mechanics of beams.

2.3. Constitutive equations

In order to obtain the relationship between generalized beam
forces (or beam stress resultants) and generalized deformations
eDi, one has to select the constitutive laws for a composite shell
[1,3] and employ appropriate constitutive hypotheses [12] of the
shell stress resultants in terms of the shell strains. The shell stress
resultants can be expressed in terms of the generalized deforma-
tions defined in Eq. (9) in the following matrix form:

eNP ¼MC
eEP; ð16Þ

where MC is the matrix of modified shell stiffness, which depends
on the type of constitutive hypotheses involved [12,29] and can
be expressed in the following form:

MC ¼

A11 A16 0 B11 B16

A66 0 B�16 B66

A�55 0 0

sym D11 D16

D66

2
6666664

3
7777775
: ð17Þ

Due to the lack of space the coefficients A11; B11; D11, etc., are
not described in the present article, however the reader can find
them in the works of Piovan and Cortínez [12].

Substituting Eq. (16) into Eq. (14) the beam stress resultants can
be obtained in terms of generalized strains:

eQ ¼Mk
eD; ð18Þ

where

Mk ¼
Z
S

GT
k MCGk ds: ð19Þ
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The matrix Mk of cross-sectional stiffness coefficients, leads to
constitutive elastic coupling or not, depending on the stacking se-
quence of the laminates in a given cross-section. That is, for exam-
ple, if the laminates are specially orthotropic or cross-ply, or
specially symmetric balanced, there is no constitutive elastic cou-
pling [11], however if the laminates are general the beam could
have different types of constitutive elastic couplings such as twist-
ing-bending-extensional coupling, extensional-bending coupling
and bending–bending coupling [7,12,29,38].

2.4. Finite element approach

In order to solve problems of dynamics with several boundary
conditions, quartic order isoparametric finite elements are
employed. These elements have five nodes and seven degrees-of-
freedom per node [12], that is the kinematic variables of Eq. (11).

Applying the conventional discretiztion techniques and varia-
tional procedures [31] in Eq. (12), the following finite element
equation is attained:

KWþM €W ¼ F; ð20Þ

where K and M are the global matrices of elastic stiffness and mass,
respectively; whereas W, €W and F are the global vectors of nodal
displacements, nodal accelerations and nodal forces, respectively.

Eq. (20) can be modified in order to account for ‘‘a posteriori’’
structural proportional Rayleigh damping given by:

CRD ¼ g1Mþ g2K: ð21Þ

The coefficients g1 and g2 in Eq. (21) can be computed using two
given damping coefficients (namely, n1 and n2) for the first and sec-
ond modes, according to the common methodology presented in
the bibliography related to finite element procedures [31,32]. The
matrices M and K are the global mass matrix and the global elastic
stiffness matrix, respectively. This leads to:

KWþ CRD
_WþM €W ¼ F: ð22Þ

The response in the frequency domain of the linear dynamic
system given by Eq. (22) can be written as [32]:

cWðxÞ ¼ ½�x2Mþ ixCRD þ K��1bFðxÞ; ð23Þ

where cW and bF are the Fourier transform of the displacement vec-
tor and force vector, respectively; whereas x is the circular fre-
quency measured in [rad/s].

3. Stochastic model

The Maximum Entropy Principle [27] is employed to construct
the stochastic model with the uncertain parameters. The stochastic
model is constructed selecting two sets of uncertain parameters
and associating random variables to them. One set for the orienta-
tion angles of the fiber reinforcement in the layers of each panel
and other set for basic elastic properties of the material. The con-
struction of the probability density functions of the random vari-
ables is quite sensitive in stochastic analysis and they should be
deduced according to the given information (frequently scarce)
about the uncertain parameters. The Maximum Entropy Principle
offers a consistent strategy, in the authors’ opinion, to select the
probabilistic model despite the lack of experimental data. Thus,
the Maximum Entropy Principle allows to derive the probability
density functions of the random variables guaranteeing
consistence with the available information and the physics of the
problem. In the present problem random variables Vi, i = 1, 2, . . . ,
NP and Vi, i = NP + 1, . . . , NP + 6 are introduced such that they repre-
sent the angles of NP different plies in a cross-sectional laminate
and the basic elastic properties of the material (i.e. elastic moduli:
E11, E22 = E33, G12 = G13 and G23, Poisson coefficients: m12 = m13 and
m23), respectively.

The probability density functions of the random variables can
be obtained by means of the following optimization problem:

pðoptÞ
V ¼ arg maxpV2PSðpV Þ; ð24Þ

where pðoptÞ
V is the optimal probability density function such that

S pðoptÞ
V

� �
P SðpV Þ; 8pV 2 P, and S is the entropy measure, whereas

P is the set of admissible probability density functions satisfying
the known data of the random variables and the physical con-
straints. The measure of the entropy is defined as [28]:

SðpV Þ ¼ �
Z

S

pV lnðpV Þdv ð25Þ

where S is the support of the probability distributions of the ran-
dom variables taken into account in the optimization procedure.

The available information to obtain the probability density
functions of both sets of random variables is related to some infor-
mation extracted from the technical literature, the expected mis-
takes in the construction process and some assumptions. Thus,
the nominal values of the parameters in the deterministic model
are assumed to be the mean of the random variables, consequently
the expected values are EfVig ¼ Vi, i = 1, . . . , NP + 6. The random
variables Vi, i = 1, . . . , NP have bounded supports whose upper
and lower limits are distant Da from the expected value Vi. More-
over, the construction of the laminates should maintain the condi-
tion of symmetry (anti-symmetry) in the corresponding cases.
Random variables Vi, i = NP + 1, . . . , NP + 6 should be strictly positive
and should have bounded supports. According to the compilation
report carried out by Sriramula and Chryssanthopoulos [19] there
is evidence that the support function of elastic properties for car-
bon/epoxy and graphite/epoxy prepegs fall within the bounds de-
fined by a coefficient of variation dVi

2 ½0:04;0:12�, i = NP + 1, . . . ,
NP + 6. The expected value and the coefficient of variation are nec-
essary to calculate the variance of the random variable,
varðViÞ ¼ ðVidVi

Þ2, i = NP + 1, . . . , NP + 6, that has to be kept finite
in order to guarantee the physical consistency of the problem. If
there is no information about the relation or dependency among
random variables, the Maximum Entropy Principle states that the
random variables must be independent. Moreover if the random
variable is bounded, the Maximum Entropy Principle states that
the probability distribution is uniform.

At this point, a few remarks have to be mentioned. As it was
indicated by Sriramula and Chryssanthopoulos [19], many reports
of the technical literature ([34,35] among others) simulated
’empirical’ random variable models on the basis of certain experi-
mental evidence and engineering judgement. However probability
laws such as Normal, Weibull, Gamma or Log Normal distributions
(which are unbounded or bounded on the left) were used in those
papers. Since basic elastic properties must characterize a real
material in service, the occurrence of cases of the random variable
tending to zero or infinity and outside given limits are meaningless
and not consistent with the reality of the material.

Consequently, according to the aforementioned background,
the probability density functions of the random variables Vi can
be written as:

pVi
ðv iÞ ¼ S½LVi

;UVi
�ðv iÞ

1
2Da

; i ¼ 1; . . . ;NP ð26Þ

pVi
ðv iÞ ¼ S½LVi

;UVi
�ðv iÞ

1
2
ffiffiffi
3
p

VidVi

; i ¼ NP þ 1; . . . ;NP þ 6 ð27Þ

where S½LVi
;UVi
�ðv iÞ is the generic support function, whereas LVi

and
UVi

are the lower and upper bounds of the random variable Vi. Da is
a gap measured in angular units (radians or degrees), whereas dVi

is

the coefficient of variation. The Matlab function unifrnd (Vi � Da,



Table 1
Comparison of the first four free vibration frequencies (Hz) of the composite beam
model with the corresponding 3D finite element approach.

Laminate h/L Approach f1 f2 f3 f4

{(0/90)4} 0.0307 3D (Abaqus) 40.01 64.61 239.35 379.17
1D (Present) 39.53 62.27 237.27 368.06
Mode BZZ BYY BZZ BYY

0.1 3D (Abaqus) 390.47 617.54 1389.50 1763.40
1D (Present) 390.45 600.85 1368.63 1812.30
Mode BZZ BYY T BZZ

{(0/30)4} 0.0307 3D (Abaqus) 40.60 65.69 244.00 403.01
1D (Present) 40.94 65.99 253.43 405.10
Mode BZZ BYZ BZZ BYZ

0.1 3D (Abaqus) 420.70 678.90 2077.90 2227.10
1D (Present) 423.08 673.88 2267.07 2465.26
Mode BZY BYZ BZY T

{(0/0)4} 0.0307 3D (Abaqus) 51.82 82.91 298.26 425.09
1D (Present) 52.31 82.02 304.82 418.73
Mode BZZ BYY BZZ T

0.1 3D (Abaqus) 481.09 747.33 1351.20 1921.00
1D (Present) 493.78 747.39 1372.59 2051.12
Mode BZZ BYY T BZZ
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Vi + Da) can be used to generate realizations of the random variables

Vi, i = 1, 2, . . . , NP. The Matlab function unifrnd Vi 1� dVi

ffiffiffi
3
p� �

;
�

Vi 1þ dVi

ffiffiffi
3
p� �
Þ can be used to generate realizations of the random

variables Vi, i = NP + 1, . . . , NP + 6.
Then, using Eqs. (26) and (27) in the construction of the matri-

ces of finite element model given in Eq. (23) the stochastic finite
element model can be written as:

cWðxÞ ¼ ½�x2Mþ ixCRD þK��1bFðxÞ: ð28Þ

Notice that in Eq. (28) the math-blackboard typeface is em-
ployed to indicate stochastic entities, thus K is stochastic because
Eq. (26) in employed in its derivation, and CRD is stochastic through
the stochastic nature of K in Eq. (21), hence cW is stochastic.

The Monte Carlo method is used to simulate the stochastic
dynamics, which implies the calculation of a deterministic system
for each realization of random variables Vi, i = 1, 2, . . . , NP + 6. The
convergence of the stochastic response cW is calculated appealing
to the following function:

convðNMSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NMS

XNMS

j¼1

Z
X
kcWjðxÞ �cWðxÞk2dx

vuut ; ð29Þ

where NMS is the number of Monte Carlo samplings and X is the fre-
quency band of analysis, whereas cW is the response of the stochas-
tic model and cW the response of the mean model or deterministic
model.

4. Computational studies

4.1. Validation of the deterministic beam model

In this section a validation of the deterministic beam model
with higher finite element approaches is performed. Then the
natural frequencies of the beam model are contrasted with the
corresponding results of the commercial programs Abaqus (with
3D anisotropic finite elements). The beam has a closed cross-sec-
tion with the following dimensions: height h = 23.438 mm, width
b = 12.838 mm, thickness e = 0.762 mm as in Fig. 2. The material
properties are: E11 = 134.44 GPa, E22 = E33 = 18.00 GPa, G12 = G13 =
3.60 GPa, G23 = 5.00 GPa, m12 = m13 = 0.26, m23 = 0.30, and the density
q = 1400 kg/m3. The cross-sectional panels have the same lamina-
tion scheme and three typical stacking sequences were selected for
this study, namely {(0/90)}4, {(0/30)}4 and {0/0}4. The beam is
clamped (i.e. all kinematic variables are blocked) in one end and
free in the other. Moreover, models of about 3200 solid 3D ele-
ments were prepared in Abaqus (actually C3D8R elements with
linear interpolation and reduced integration, involving more than
52,000 degrees-of-freedom) in contrast of the 12 elements (that
is, no more than 350 degrees-of-freedom) used to calculate the re-
sponse of the beam model.

The first four natural frequencies calculated with one-dimen-
sional, 1D, and three-dimensional, 3D, approaches are shown in
Table 1. Furthermore in this table the vibratory character of each
frequency is classified by means of the acronyms BYY, BZZ, T or
BYZ; that is bending mode in y-direction, bending mode in z-direc-
tion and twisting mode or coupled bending–bending mode respec-
tively. The use of these acronyms is intended for identifying the
main feature (bending, twisting or coupled behavior) of the modes
of a given beam structure. However the difference among the same
class of acronym (e.g. BYY) employed in a given case is associated
with different number of half-waves along the beam axis. A good
correlation can be appreciated between both approaches and the
percentage differences of 1D results with respect to the 3D ones
are no greater than 9%. The interested reader can follow authors’
references [29,12] for finding more validations and comparisons
of the beam theory employed in the present paper.

4.2. Uncertainty propagation in the dynamic response of thin-walled
composite beams

In this section a study is carried out related to the propagation
of uncertainties, due to material properties and/or constructive as-
pects of composite laminates, in the dynamic response of thin-
walled composite beams. For this study a clamped-free thin-walled
beam (length L = 6.0 m) with the cross-sections as sketched in
Fig. 2 is employed. Note that Fig. 2 has a local reference system
for each cross-sectional segment in order to simplify the stacking
sequence description. Also in Fig. 2 one can see the excitation
due to an impulsive unitary force located at x, y, z = L, b/2, h/2
and oriented with w = 45�. The web height and flange width are
h = 0.6 m, b = 0.3 m, whereas the thickness of all laminates is
e = 0.03 m. Each laminate is composed by eight laminas of equal
thickness. The material of the beams is graphite–epoxy (AS4/
3501-6) whose properties are: E11 = 144 GPa, E22 = E33 = 9.68 GPa,
G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, m12 = m13 = 0.3, m23 = 0.5, and
the density q = 1389 kg/m3. Although the damping coefficients
could be the subject of uncertainty, in this study they are assumed
to be n1 = 0.05 and n2 = 0.05 just for computational purposes. Four
random variables are selected for the orientation angles of the fibre
reinforcement according to the common stacking sequences
employed in the construction of composite structures. These
random variables have the following expected values: EfV1g ¼
0�; EfV2g ¼ 15�; EfV3g ¼ 45� and EfV4g ¼ 90�. On the other hand
the expected values of random variables Vi, i = 5, . . . , 10 correspond
to the nominal values of the elastic properties indicated above.

The stacking sequences to be used in this study are the ones de-
scribed in Table 2. The acronyms CUS and CAS mean ‘‘Circumferen-
tial Uniform Stiffness’’ and ‘‘Circumferential Asymmetric Stiffness’’.
These acronyms were introduced by Rehfield et al. [7] to identify
the type of lamination scheme for a rectangular cross-section.
The CUS laminate involves elastic constitutive coupling between
twisting moments and axial force as well as both shear forces
and both bending moments, whereas the CAS laminate involves
elastic constitutive coupling between bending moments and twist-
ing moments together with coupling of the axial force with both
shear forces [12,29,7]. Although ‘‘I’’ and rectangular cross-sections



Table 2
Lamination schemes for the cross-sections.

Cross-section Laminate name Angle orientation

I Quasi web: {0�,�45�,45�,90�}S

Isotropic flanges: {0�,�45�,45�,90�}S

Angle-ply web: {(a,�a)2}S

flanges: {(a,�a)2}S

CUS (a) web: {(0�,90�)2}S

flanges: {(0�,90�)3,a,a}

h CUS (a) left and right panels: {(a,a)4}
upper and lower panels: {(a,a)4}

CAS (a) upper and right panels: {(a,a)4}
lower and left panels: {(�a,�a)4}
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have evidently different shapes, they can manifest a similar elastic
behavior depending on the type of laminates employed in their
construction. That is, in the case of an ‘‘I’’ cross-section the terms
‘‘CUS’’ or ‘‘CAS’’ are associated with the similar elastic constitutive
coupling observed in ‘‘CUS’’ or ‘‘CAS’’ stacking sequences of the
rectangular cross-section. It should be taken into account that
the quasi-isotropic and angle-ply laminates produce a slight con-
stitutive elastic coupling between normal and shear components
of strains and stresses of the shell, which can eventually couple
internal bending moments and twisting moments [29].

Models of twelve finite elements of five nodes are used for the
deterministic and stochastic calculations. This number of elements
was shown [29] to be enough to guarantee a precision of more than
99% up to the eighth natural frequency. In Tables 3 and 4 it is pos-
sible to see the natural frequencies of the deterministic model with
open and closed cross-sections, respectively. The nominal lami-
nates of Table 2 were employed. Notice that the feature of the
modes is also indicated in Tables 3 and 4 in the same way ex-
plained for Table 1. That is BYY, BZZ and T identify bending mode
in y-direction, bending mode in z-direction and twisting mode,
respectively; whereas BYT (or BZT), BYZ and BZY identify coupled
Table 3
Natural frequencies [Hz] of I-beams with laminates of Table 2.

Mode number {0,�45,45,90}S {(45,�45)2}S

Freq Mode Freq M

1 6.00 BYY 3.14 B
2 14.11 T 12.43 B
3 23.31 BZZ 16.08 T
4 37.29 BYY 19.64 B
5 55.83 T 52.41 T
6 102.95 BYY 54.78 B
7 129.37 BZZ 74.91 B
8 132.49 T 100.13 T

Table 4
Natural frequencies [Hz] of box-beams with laminates of Table 2.

Mode number CAS (15) CAS (45)

Freq Mode Freq M

1 13.57 BYT 6.07 B
2 24.18 BZT 10.52 B
3 70.09 TYZ 36.86 B
4 94.28 TYZ 62.21 B
5 118.62 TZY 92.53 T
6 169.13 TYZ 98.75 B
7 231.64 TZY 120.56 T
8 266.14 TEB 161.77 T
bending-twisting modes and coupled bending-bending modes,
respectively; TYZ and TZY identify twisting dominant-bending
coupling, whereas TEB indicates a twisting-extensional-bending
coupling and TE identify a twisting-extensional coupling. Fig. 3
shows a few examples of the coupled modes of the box-beam with
CAS (45) and CUS (45). The value of the frequency is also incorpo-
rated in the figure just for clarity and comparison purposes.

The stochastic analysis is mainly concerned with the evaluation
of the uncertainty propagation in the frequency response function
of the composite beam subjected to a unit force F used to perturb
the structure. The force is located at the free end of the beam (x = L)
according to Fig. 2 with u = 45�. The response is observed at the
free end, and it is evaluated by means of the following frequency
response function:

HFðxÞ ¼
kbUPðxÞkbFðxÞ : ð30Þ

In Eq. (30), kbUPk is the norm of the Fourier transform of the dis-
placement vector of the point (calculated according to Eq. (1)),
where the force is applied (see Fig. 2) and bF is the Fourier transform
of the force applied at the beam’s end. Moreover, other frequency
response functions may be introduced for particular comparative
purposes, that is:

H1ðxÞ ¼
ûycðxÞbF yðxÞ

; H2ðxÞ ¼
buzcðxÞbF zðxÞ

; H3ðxÞ ¼
b/xðxÞbT xðxÞ

; ð31Þ

where ûyc; ûzc and /̂x are the Fourier transforms of lateral displace-
ment, vertical displacement and twisting angle, respectively,
whereas bF y; bF z and bT x are the Fourier transforms of the compo-
nents of force F and the associated twisting moment. For this prob-
lem, the displacements are calculated at the free end.

The Fig. 4 shows an example of the convergence of the Monte
Carlo simulations by studying the evolution of the function conv
(NMS) with respect to the number of simulations. In this example
Da = 2� is employed in the laminates and the beam has an open
{(15,�15)2}S CUS (15)

ode Freq Mode Freq Mode

YY 8.68 BYY 7.61 BYZ
ZZ 15.15 T 11.82 T

32.37 BZZ 25.07 BZY
YY 52.96 BYT 45.73 BYZ

69.38 T 58.47 T
YT 142.29 BYT 102.59 BZY
ZZ 151.94 BZZ 120.19 BYZ

174.04 T 147.63 T

CUS (15) CUS (45)

ode Freq Mode Freq Mode

YT 12.79 BYZ 6.02 BYZ
ZT 23.92 BZY 10.49 BZY
YT 59.89 TE 36.76 BYZ
ZT 74.14 BYZ 62.29 BZY
YZ 119.46 BZY 75.57 TE
YT 180.86 TE 99.42 BYZ
EB 193.94 BYZ 146.97 TE
YZ 239.72 BZY 156.71 BZY



(a) (b)

(d) (c) 
Fig. 3. Selected modes shapes of the Box-beam (from Table 4). (a) 1St mode type BYT for CAS (45), (b) 5th mode type TYZ for CAS (45), (c) 4th mode type BZY for CUS (45), and
(d) 5th mode type TE for CUS (45).
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Fig. 4. Example of the convergence of a Monte Carlo simulation.
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cross-section with quasi-isotropic laminates. Recall that the excita-
tion force is unitary, i.e. kFk = 1N and u = 45�. As it is possible to see
in Fig. 4, a good convergence is achieved with 500 samplings, and a
reasonable convergence is also achieved with 250 samplings. The
simulation of all stacking sequences and cross-section in present
article gave similar convergence patterns.

Figs. 5–9 illustrate the results of the simulations carried out for
the stacking sequences of the open cross-section in which only the
uncertainty in the laminates is considered. Fig. 5 shows the Fre-
quency Response Functions (FRFs) of the composite beam with
quasi-isotropic laminates and a dispersion parameter of Da = 2�.
In particular, Fig. 5a shows the FRF of the most relevant kinematic
variables (i.e. bending displacements and the twisting parameter)
of the deterministic (or mean) model according to Eq. (31),
whereas Fig. 5b shows the FRF according to Eq. (30) of the mean
model and the mean response of the stochastic model as well as
the 95% confidence interval (CI). Now in Fig. 6 the same informa-
tion is shown but for a stacking sequence of {(45,�45)2}S. Notice
the magnitude of the uncertainty propagation in the case of the
angle-ply stacking sequence in comparison to the case of a
quasi-isotropic stacking sequence for the same value of the disper-
sion, i.e. Da = 2�. Fig. 7 shows the same information of the previous
two figures but for the laminates {(15,�15)2}S and a dispersion
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Fig. 5. FRFs of the beam with quasi-isotropic stacking sequences (Da = 2�). (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point where the load is applied.
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Fig. 6. FRFs of the beam with {(45, �45)2}S stacking sequences (Da = 2�). (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point where the load is applied.
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Fig. 7. FRFs of the beam with {(15, �15)2}S stacking sequences (Da = 5�). (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point, where the load is applied.
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Fig. 8. FRF of the beam with {(45, �45)2}S stacking sequences and Da = 5�.

0 50 100 150
−22

−20

−18

−16

−14

−12

−10

−8

Frequency [Hz]

uyc

uzc

φx

(a)

lo
g 

(|H
j|)

Fig. 9. FRFs of the I-beam with CUS (15) stacking sequence (Da = 5�). (a) Kinematic v
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Fig. 10. Comparisons of FRFs for I-beam with CUS (15) laminate. (a) Ply-an
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parameter Da = 5�. In this type of lamination appears a slight elas-
tic coupling, observable in the FRF of uyc and /x in Fig. 7a, that
influences the increase of uncertainty around those modes as it
is possible to see in Fig. 7b. Fig. 8 shows the FRF HF(x) of the beam
with the angle-ply stacking sequences {(45,�45)2}S for a disper-
sion of Da = 5�. Comparing Figs. 8 and 6b it is possible to see that
the confidence interval for Da = 5� is, as expected, sensibly larger
than the one for Da = 2�, except in the first lateral bending mode
and the first twisting mode (actually third in the sequence), where
the propagation of uncertainty is not high even if the dispersion in
the laminates has been more than doubled.

As a first observation of the previous figures, it may be stated
that the configuration of the laminates in the cross-section and
the angular dispersion in the fiber reinforcement influence a lot
the dispersion of the results. Moreover it seems that the constitu-
tive elastic couplings have an important effect in the propagation
of the uncertainty in the dynamics of thin-walled composite
beams. In order to check this affirmation the following stochastic
study is performed in an I-beam with a CUS stacking sequence.
The fiber reinforcement has a dispersion quantified by Da = 5� in
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Fig. 11. FRFs of the box-beam with CAS (15) ðDa ¼ 2�; dVi

¼ 0:05Þ. (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point where the load is applied (with
complete uncertainty).
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the configuration CUS (15). Fig. 9 shows the dynamic responses of
the I-beam with CUS configuration. In fact, Fig. 9a depicts the FRF
of the kinematic variables uyc, uzc and /x measured at the free end,
whereas Fig. 9b shows the FRF according to Eq. (30) of the mean
model and the mean response of the stochastic model as well as
the 95% confidence interval. It is noticeable from Fig. 9a that modes
1, 3, 4, 6 and 7 have a bending-bending coupled character. On the
other hand modes 2 and 5 have a twisting character. Recall that the
dispersion in the fiber orientation is quantified by Da = 5�, which in
other stacking sequences, produce a huge effect of uncertainty
propagation. However in the case of a CUS lamination (with
a = 15�) it appears that the uncertainty propagation have more
influence in the coupled BZY modes (such as the sixth and third
modes) than in the coupled BYZ modes (such as the first, fourth
and seventh mode) as one can check in the Fig. 9b.

As shown in the previous figures, the uncertainty related exclu-
sively to the geometric parameters (reinforcement angle of the
fibers) can propagate more or less depending on the frequency
order and certain lamination schemes. In fact, the uncertainty in
the frequency response functions of structural systems propagates
more extensively in the higher modes. An aspect that was already
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Fig. 12. Comparisons of the box-beam with CAS (15) ðDa ¼ 2� ; dVi
¼ 0:05
observed in others studies with isotropic Timoshenko beams [36].
Nevertheless, the dynamic response can be altered not only by
uncertainty in geometric (or constructive) aspects but also due to
the uncertainty in the elastic properties.

As mentioned above, in the construction of the stochastic
model, the random variables featuring the elastic properties have
bounds defined by a coefficient of variation dVi

2 ½0:04;0:12�,
i = NP + 1, . . . , NP + 6. Despite the wide variability observed in some
elastic properties (e.g. Poisson coefficients dm12 ¼ 0:12 [19]), in this
paper a coefficient of variation common to all random variables
representing the elastic properties is employed. Specifically, the
coefficient of variation has to be relatively low (e.g. dVi

¼ 0:05) in
order to evaluate its global influence on the propagation of uncer-
tainty related to elastic properties.

Now, Fig. 10 shows the FRFs of the I-beam, with laminate CUS
(15), in the point where the load is applied. The random variables
are defined such that Da = 5� and dVi

¼ 0:05. Three circumstances
are shown in these pictures: the case in which all parameters are
uncertain (complete uncertainty), the case in which only the
ply-angle parameters are uncertain (ply-angle uncertainty) and
the case in which only material elastic parameters (elastic
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Þ. (a) Only ply-angle uncertainties and (b) only elastic uncertainty.
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Fig. 13. FRFs of the box-beam with CUS (15) (Da = 2�, dVi
¼ 0:05). (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point, where the load is applied (with

complete uncertainty).
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uncertainty). Fig. 10a compares the 95% confidence intervals of the
responses if the complete and ply-angle uncertainty, whereas
Fig. 10b compares the 95% confidence intervals of the responses
if the complete and elastic uncertainty. It is remarkable for this
type of cross-section and lamination that a relatively small coeffi-
cient of variation in the elastic properties has more influence than
a relatively important dispersion of the fiber orientation angles.

Figs. 11 and 12 illustrate the FRFs of the box beam with a CAS
(15) configuration. The simulations were carried out for Da = 2�
and dVi

¼ 0:05, i = 5, . . . , 10 in the appropriate random variables,
that correspond to possible variability in the construction of
composite structures [19]. Fig. 11a illustrates the deterministic
FRFs of the most representative bending and twisting kinematic
variables of the beam model. It is possible to see the highly coupled
character of the beam dynamics which is associated to the consti-
tutive elastic coupling of the CAS (15) stacking sequence. It is inter-
esting to check the FRFs pattern of Fig. 11a with the corresponding
values and modes indicated in Table 4. Fig. 11b compares the
deterministic response and the mean response of the stochastic
model as well as the 95% confidence interval of the random
response. For this figure both sets of parameters were considered
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Fig. 14. Comparisons of the box-beam with CUS (15) (Da = 2�, dVi
¼ 0:05
uncertain with their corresponding uncertainty measure (Da or
dVi

). Fig. 12a shows the FRFs of the deterministic and stochastic
models considering only the ply-angle uncertainty, on the other
hand Fig. 12b shows the same responses but considering only
uncertainty in the elastic properties. Although in some cases the
ply-angle uncertainty can affect substantially the response (e.g.
fourth mode in Fig. 12a); the typical uncertainty associated to elas-
tic properties has generally more influence than the one related to
ply-angles, as it is possible to see in the precedent figures. Figs. 13
and 14 show the same information of the previous two figures but
for the lamination case CUS (15) in a box-beam. The frequency
response functions of the beam with CUS (15) laminates have a
similar behavior to the one observed in the beam with the CAS
(15) stacking sequence, although the influence of the ply-angle
uncertainty is a little-bit.

The responses of the box-beam with CAS (45) laminates can be
observed in Figs. 15 and 16. Although CAS (15) and CAS (45) have
in essence the same type of elastic coupling, both differ in the elas-
tic coupling intensity. Nevertheless, the ply-angle uncertainty ap-
pear to be as important as the elastic uncertainty in the stochastic
response of CAS (45) laminates as can be observed in Fig. 16a and b.
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). (a) Only ply-angle uncertainties and (b) only elastic uncertainty.
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Fig. 15. FRFs of the box-beam with CAS (45) (Da = 2�, dVi
¼ 0:05). (a) Kinematic variables: uyc, uzc and /x. (b) Displacement of the point where the load is applied (with

complete uncertainty).
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Fig. 16. Comparisons of the box-beam with CAS (45) (Da = 2�, dVi
¼ 0:05). (a) Only ply-angle uncertainties and (b) only elastic uncertainty.
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5. Conclusions

In this article a study about the influence of uncertainty in
the dynamics of thin-walled fiber reinforced composite beams
has been carried out. In this study a thin-walled beam model
for composite materials has been employed as the deterministic
model, whose numerical outcome represents the expected re-
sponse. Thereafter the stochastic model has been constructed
by introducing random variables associated to the uncertain
parameters of the problem. The parameters selected for the
studies of uncertainty propagation were the elastic properties
of the composite material and the orientation angles of fiber
reinforcement in the laminates. The probability density functions
of each random variable have been derived according to the
Maximum Entropy Principle. Typical open and closed cross-sec-
tion with several types of stacking sequences have been evalu-
ated. From the calculation carried out in this article, the
following items can be concluded:
� The propagation of uncertainty is strongly influenced by the
panel laminates of the cross-section and the type of elastic cou-
pling inherent to them.
� The propagation of uncertainty is larger in the cases where

strong constitutive couplings are present (e.g. CAS laminates
in rectangular cross-sections).
� Angle-ply laminates are quite sensitive to the uncertainty of the

fiber orientation.
� Stacking sequences with an important number of plies ori-

ented in the main orthotropic directions (i.e. a = 0� or
a = 90�) proved to be robust with respect to the variability
of the ply angle, especially in the case of non-coupled
modes.
� If the beam is mainly constructed with laminates that have

an important number of plies oriented in the main ortho-
tropic directions, the principal source of uncertainty propa-
gation is due to the uncertainty of the material elastic
properties.
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� If the beam is constructed with laminates that lead to strong
elastic coupling, the main source of uncertainty propagation is
related to the uncertainty of the fiber reinforcement angle.
� For laminates oriented in a = 45� (CAS, CUS or angle-ply), the

uncertainty of angle-ply orientation is more influent than the
uncertainty associated to the material elastic properties.

Composite structures have notable features of uncertainty as
observed in the previous sections. The parametric probabilistic ap-
proach employed in this work has been a useful tool to quantify the
uncertainty and to explore its propagation in the linear dynamics
of the thin-walled composite beams. However, there are other con-
cerns associated with the uncertainty of the model itself that can-
not be analyzed even with a meticulous selection of uncertain
parameters and associated random variables (and consequently
their probability density functions), for example, the uncertainty
in structural damping or the formulation of shear deformations
or warping effects and their influences in the dynamics of beams
or the variation of properties along the beam length. This type of
problems can be faced with other tools such as Monte Carlo Mar-
kov Chain approaches or the non-parametric probabilistic ap-
proach. Also elastic properties may be correlated random
variables and their influence should be analyzed. However these
matters would be part of further extensions to the present
contribution.
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Appendix A. Extended definition of matrices and vectors
present in the principle of virtual works

The vector of external forces ePX and the matrix of mass coeffi-
cients Mm can be calculated in the following form:

ePX ¼
Z

A
Xx Xy Xz

� �
Gm dydz; ðA:1Þ

Mm ¼
Z

A
qðy; zÞGT

mGm dydz; ðA:2Þ

where Xx; Xy and Xz are general volume forces, whereas:

Gm ¼
1 0 �y 0 z 0 �x
0 1 0 0 0 �z 0
0 0 0 1 0 y 0

2
64

3
75; ðA:3Þ

The vector of natural boundary conditions eBX can be written in
the subsequent form:

eBX ¼

�Q x þ Q x

�Q y þ Q y

�Mz þMz

�Q z þ Q z

�My þMy

�Tsv � Tw þ Tsv þ Tw

�Bþ B

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ðA:4Þ

where Qx; Qy; Qz; My; Mz; Tw and Tsv are prescribed forces ap-
plied at the boundaries.
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