
Expert Systems with Applications 40 (2013) 1858–1870
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
ONTOarg: A decision support framework for ontology integration based
on argumentation

Sergio Alejandro Gómez ⇑, Carlos Iván Chesñevar, Guillermo Ricardo Simari
Department of Computer Science and Engineering, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bahía Blanca, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
a r t i c l e i n f o

Keywords:
Ontology integration
Description logics
Inconsistency handling
Defeasible argumentation
Defeasible logic programming
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.eswa.2012.10.025

⇑ Corresponding author at: Department of Compu
Universidad Nacional del Sur, Av. Alem 1253, (8000)

E-mail addresses: sag@cs.uns.edu.ar (S.A. Gómez),
ñevar), grs@cs.uns.edu.ar (G.R. Simari).
a b s t r a c t

Description Logic Programming (DLP) is a well-known approach to reason with Description Logic (DL)
ontologies, translating them into the language of logic programming (LP). Even though DLP offers several
advantages in terms of efficiency and reuse of existing logic programming tools (such as Prolog environ-
ments), a major hindrance of this approach is its limitation for reasoning in the presence of inconsistent
ontologies. Recent research has led to the use of defeasible argumentation to model different DL reason-
ing capabilities when handling inconsistent ontologies, resulting in so-called d-ontologies. In this article
we present ONTOarg, a decision support framework for performing local-as-view integration of possibly
inconsistent and incomplete ontologies in terms of Defeasible Logic Programming (DeLP). We show how
to reason on Description Logics (DL) ontologies in an ontology integration system by performing a dialec-
tical analysis in order to determine the membership of individuals to concepts. We present formal defi-
nitions of a framework for ontology integration of DL ontologies based on DeLP along with a case study
and review some of the properties of the approach.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Semantic Web (Berners-Lee, Hendler, & Lassila, 2001) (SW)
is a vision of the Web where agents can reason about resources
whose meaning is assigned in terms of ontologies (Gruber, 1993).
Within the Semantic Web, the OWL language has become the cur-
rent standard for defining ontologies and its underlying semantics
is based on Description Logics (DL) (Baader, Calvanese, McGuinness,
Nardi, & Patel-Schneider, 2003), for which specialized reasoners
exist (such as Racer (Haarslev & Möller, 2001) and Pellet (Parsia
& Sirin, 2004)). In this context, Description Logic Programming
(DLP) provides a practical approach to reason with DL ontologies,
translating them into the language of logic programming (LP)
(Grosof, Horrocks, Volz, & Decker, 2003). Although DLP offers sev-
eral advantages in terms of efficiency and reuse of existing LP tools
(such as Prolog environments), DLP is incapable of reasoning in the
presence of inconsistent ontologies. Dealing with inconsistencies
and potentially contradictory information is a common issue in
semantic web reasoning. The semantic integration of potentially
inconsistent information sources in the SW is complicated, as the
knowledge engineer usually has no authority to correct foreign
ontologies. Inconsistencies can also arise whenever the domains
ll rights reserved.

ter Science and Engineering,
Bahía Blanca, Argentina.
cic@cs.uns.edu.ar (C.I. Ches-
modeled are inherently inconsistent. Additionally, in many situa-
tions resources and their data are modeled in terms of ontologies
whose terms can differ, so that the ontologies must be aligned to
put their terms into mutual agreement (Klein, 2001).

Argumentation provides a sophisticated mechanism for the for-
malization of commonsense reasoning, which has found applica-
tion and proven its importance in different areas of Artificial
Intelligence (AI) such as legal systems, multi-agent systems, and
decision support systems among others (see e.g. Bench-Capon &
Dunne, 2007; Janjua & Hussain, 2012; Modgil et al., 2013; Rahwan
& Simari, 2009). Intuitively, an argument can be thought of as a
coherent set of statements that supports a claim. The ultimate
acceptance of an argument will depend on a dialectical analysis
of arguments in favor and against the claim (Rahwan & Simari,
2009). In the last decade, several frameworks for formalizing argu-
mentative reasoning have been developed (also called generically
Argumentation Systems), providing different knowledge representa-
tion and inference capabilities.

Recent research has led to the use of defeasible argumentation
to model different DL reasoning capabilities when handling incon-
sistent ontologies, resulting in so-called d-ontologies (Gómez,
Chesñevar, & Simari, 2010). These special ontologies are based on
Defeasible Logic Programming (DeLP) (García & Simari, 2004), a
defeasible argumentation framework based on logic programming.
In contrast with other approaches, d-ontologies have the flexibility
of allowing to assess defeasibly the membership of an individual to
a concept description in the presence of a potential inconsistent

http://dx.doi.org/10.1016/j.eswa.2012.10.025
mailto:sag@cs.uns.edu.ar
mailto:cic@cs.uns.edu.ar
mailto:grs@cs.uns.edu.ar
http://dx.doi.org/10.1016/j.eswa.2012.10.025
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1859
ontology. However, this approach was intended for a single ontol-
ogy, and fell short when dealing with different ontologies which
have to be integrated in a single one. There are two kinds of ontol-
ogy integration approaches, viz. global-as-view (GAV) and local-
as-view (LAV) (Calvanese, Giacomo, & Lenzerini, 2001). When
performing LAV integration, concepts of the local ontologies are
mapped to queries over a global ontology.

In this article, we present ONTOarg, a decision support frame-
work for modeling LAV ontology integration when the involved
ontologies can be potentially inconsistent. The ontologies are ex-
pressed in the language of DL but their semantics is expressed in
terms of DeLP. The alignments between the local and global ontol-
ogies are expressed as DL inclusion axioms that are also interpreted
as DeLP sentences. As the ontologies are potentially inconsistent, a
dialectical analysis is performed on the interpretation of both the
ontologies and the mappings from the local to the global ontology.
ONTOarg can be seen as a front-end expert system for the ontology
engineers, which solves automatically the problem of alignments
using an argumentative proof procedure.

The rest of this paper is structured as follows. In Section 2 we
present the fundamentals of Description Logics and Defeasible Lo-
gic Programming. Section 3 recalls the d-ontologies framework for
reasoning with possibly inconsistent ontologies. In Section 4, we
extend d-ontologies for performing local-as-view integration of
possibly inconsistent ontologies. Section 5 discusses some proper-
ties of the proposed approach. In Section 6 we compare our ap-
proach with related work. Finally Section 7 concludes the paper.
2. Knowledge representation and reasoning in the semantic
web

2.1. Description logics

Description Logics (DL) (Baader et al., 2003) are a family of
knowledge representation formalisms based on the notions of con-
cepts(unary predicates, classes) and roles (binary relations) that al-
low to build complex concepts and roles from atomic ones.

Let C, D stand for concepts, R for a role and a, b for individuals.
Concept descriptions are built from concept names using the con-
structors conjunction (C u D), disjunction (C t D), complement
(:C), existential restriction ($R.C), and value restriction ("R.C). To
define the semantics of concept descriptions, concepts are inter-
preted as subsets of a domain of interest, and roles as binary rela-
tions over this domain. Further extensions are possible including
inverse (P�) and transitive (P+) roles. A DL ontology consists of
two finite and mutually disjoint sets: a Tbox which introduces
the terminology and an Abox which contains facts about particular
objects in the application domain. Tbox statements have the form
C v D (inclusions) and C � D (equalities), where C and D are (possi-
bly complex) concept descriptions. Objects in the Abox are referred
to by a finite number of individual names and these names may be
used in two types of assertional statements: concept assertions of
the type a:C and role assertions of the type ha,bi:R.

To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary
relations over this domain. An interpretation I = hDI,�Ii consists of
a non-empty set DI (the domain of I) and a function �I (the interpre-
tation function of I) which maps every concept name A to a subset
AI of DI, and every role name R to a subset RI of DI � DI. The inter-
pretation function is extended to arbitrary concept descriptions as
follows: (:C)I = DI nCI; (C t D)I = CI [DI; (C u D)I = CI \ DI;
($R.C)I = {xj$y s.t. (x,y) 2 RI and y 2 CI}, and ("R.C)I = {xj"y, (x,y) 2 RI

implies y 2 CI}.
The semantics of Tbox statements is as follows. An interpreta-

tion I satisfies C v D iff CI # DI, I satisfies C � D iff CI = DI. An
interpretation I satisfies the assertion a:C iff aI 2 CI, and it satisfies
ha,bi:R iff (aI,bI) 2 RI. An interpretation I is a model of a DL (Tbox
or Abox) statement / iff it satisfies the statement, and is a model
of a DL ontology R iff it satisfies every statement in R. A DL ontol-
ogy R entails a DL statement /, written as R � /, iff every model of
R is a model of /.

A knowledge representation system based on DL is able to per-
form specific kinds of reasoning, its purpose goes beyond storing
concept definitions and assertions. As a DL ontology has a seman-
tics that makes it equivalent to a set of axioms of first-order logic, it
contains implicit knowledge that can be made explicit through
inferences. Inferences in DL systems are usually divided into Tbox
reasoning and Abox reasoning. In this paper we are concerned only
with Abox reasoning, more precisely with instance checking (Baader
et al., 2003). Instance checking consists of determining if an asser-
tion is entailed from an Abox. For instance, T [A � a:C indicates
that the individual a is a member of the concept C w.r.t. the Abox
A and the Tbox T.

Two anomalies in ontologies are incoherence and inconsistency
(Baader et al., 2003). A concept is unsatisfiable in a Tbox if its inter-
pretation is empty in any interpretation of the Tbox. A Tbox is inco-
herent if there exists an unsatisfiable concept. An ontology is
incoherent if its Tbox is incoherent. An ontology is inconsistent if
there exists no models. In the following example we present an
inconsistent ontology.

Example 1. Let R1 = (T,A) be an ontology, where:

T ¼

Penguin v Bird

Bird v Fly

Bird u Broken Wing v :Fly

Super Penguin v Penguin u Fly

8>>>><
>>>>:

9>>>>=
>>>>;
; and

A ¼
OPUS : Super Penguin

OPUS : Broken Wing

()
:

The Tbox T says that penguins are birds; birds can fly unless they
have a broken wing, and superpenguins are penguins capable of fly-
ing. The Abox A asserts that it is known that Opus is a superpenguin
having a broken wing.

We will show intuitively why R1 is inconsistent. As Opus is a
super-penguin with a broken wing, and super-penguins are
penguins, then he cannot fly (i.e., OPUS is an instance of :Fly). At
the same time, as Opus is a super-penguin, so he is also a penguin,
and indirectly a bird, he is able to fly (i.e., OPUS is an instance of
Fly). Therefore, Super_Penguin v Fly u :Fly = \, so Super_Penguin

should be an empty concept but is not.
In the next section, we will introduce Defeasible Logic Program-

ming, a formalism for knowledge representation and non-mono-
tonic reasoning that can handle situations like the one presented
above in a natural way.

2.2. Defeasible Logic Programming

When a rule supporting a conclusion may be defeated by new
information, it is said that such reasoning is defeasible (Pollock,
1974, 1987; Nute, 1988; Pollock, 1995; Simari & Loui, 1992).
When defeasible reasons or rules are chained to reach a conclu-
sion, we have arguments instead of proofs. Arguments may com-
pete, rebutting each other, so that a process of argumentation is
a natural result of the search for arguments. Adjudication of com-
peting arguments must be performed, comparing arguments in
order to determine what beliefs are ultimately accepted as war-
ranted or justified. Preference among conflicting arguments is de-
fined in terms of a preference criterion which establishes a
relation ‘‘�’’ among possible arguments; thus, for two arguments

1860 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
A and B in conflict, it may be the case that A is strictly preferred
over B ðA � BÞ, that A and B are equally preferable (A � B and
A � B) or that A and B are not comparable with each other. In
the above setting, since we arrive at conclusions by building
defeasible arguments, and since logical argumentation is usually
referred to as argumentation, we sometimes call this kind of rea-
soning defeasible argumentation.

The growing success of argumentation-based approaches has
caused a rich crossbreeding with other disciplines, providing inter-
esting results in different areas such as group decision making
(Zhang, Sun, & Chen, 2005), knowledge engineering (Carbogim,
Robertson, & Lee, 2000), legal reasoning (Prakken & Sartor, 2002;
Verheij, 2005), and multiagent systems (Parsons, Sierrra, &
Jennings, 1998; Sierra & Noriega, 2002; Rahwan et al., 2003),
among others. During the last decade several defeasible argumen-
tation frameworks have been developed, most of them on the basis
of suitable extensions to logic programming (see Chesñevar,
Maguitman, & Loui, 2000; Prakken & Vreeswijk, 2002; Kakas &
Toni, 1999). Defeasible logic programming (DeLP) (García & Simari,
2004) is one of such formalisms, combining results from defeasible
argumentation theory (Simari & Loui, 1992) and logic program-
ming (Lloyd, 1987). DeLP is a suitable framework for building
real-world applications which has proven to be particularly
attractive in that context, such as clustering (Gómez & Chesñevar,
2004), intelligent web search (Chesñevar & Maguitman, 2004b;
Chesñevar, Maguitman, & Simari, in press), knowledge manage-
ment (Chesñevar, Brena, & Aguirre, 2005a, 2005b), multiagent sys-
tems (Brena, Chesñevar, & Aguirre, 2006), and natural language
processing (Chesñevar & Maguitman, 2004a), intelligent web forms
(Gómez, Chesñevar, & Simari, 2008), among others.

Defeasible Logic Programming (DeLP) (García & Simari, 2004)
provides a language for knowledge representation and reasoning
that uses defeasible argumentation (Chesñevar et al., 2000; Prakken
& Vreeswijk, 2002; Simari & Loui, 1992) to decide between contra-
dictory conclusions through a dialectical analysis. In a defeasible lo-
gic program P ¼ ðP;DÞ, a set P of strict rules P Q1, . . . ,Qn, and a
set D of defeasible rules P 	 Q1, . . . ,Qn can be distinguished.

Definition 1. LDeLP¼dfLDeLPP [LDeLPD
is the language of DeLP

programs, where LDeLPP is the language of DeLP programs formed
by strict rules B A1, . . . ,An with (n P 1) and facts B (i.e., rules
where n = 0), and LDeLPD

is the language of DeLP programs formed
only by defeasible rules B 	 A1, . . . ,An with (n P 1).

Literals can be positive or negative. The complement of a literal
L (noted as L) is p if L =
p and
p if L = p. Notice that there is an
extension to DeLP that allows to define presumptions (or defeasible
rules without body) that model defeasible facts (see (García &
Simari, 2004, Section 6.2)); they are however outside the scope
of this work.

Deriving literals in DeLP results in the construction of argu-
ments. An argument A is a (possibly empty) set of ground (i.e.,
without variables) defeasible rules that together with the set P
provides a logical proof for a given literal Q, satisfying the addi-
tional requirements of non-contradiction and minimality. Formally:

Definition 2. Given a DeLP program P, an argument A for a query
Q, denoted hA;Qi, is a subset of ground instances of defeasible
rules in P, such that: (i) there exists a defeasible derivation for Q
from P [A; (ii) P [A is non-contradictory (i.e., P [A does not
entail two complementary literals P and
P), and, (iii) there is no
A0 �A such that there exists a defeasible derivation for Q from
P [A0. An argument hA1;Q1i is a sub-argument of another
argument hA2;Q2i if A1 #A2.

The notion of defeasible derivation corresponds to the usual
query-driven SLD derivation used in logic programming, per-
formed by backward chaining on both strict and defeasible rules;
in this context a negated literal
P is treated just as a new
predicate name no_P. Minimality imposes a kind of ‘Occam’s razor
principle’ on argument construction. The non-contradiction
requirement forbids the use of (ground instances of) defeasible
rules in an argument A whenever P [A entails two complemen-
tary literals. The notion of contradiction is captured by the notion
of counterargument.

Definition 3. An argument hA1;Q1i is a counterargument for an
argument hA2;Q2i iff there is a subargument hA;Qi of hA2;Q2i
such that the set P [{Q1,Q} is contradictory. An argument hA1;Q1i
is a defeater for an argument hA2;Q2i if hA1;Q1i counterargues
hA2;Q2i, and hA1;Q1i is preferred over hA2;Q2i w.r.t. a preference
criterion � on conflicting arguments. Such criterion is defined as a
partial order � # ArgsðPÞ � ArgsðPÞ. The argument hA1;Q1i will
be called a proper defeater for hA2;Q2i iff hA1;Q1i is strictly
preferred over hA;Qi w.r.t. �; if hA1;Q1i and hA;Qi are unrelated
to each other will be called a blocking defeater for hA2;Q2i.

Generalized specificity (Simari & Loui, 1992) is typically used as
a syntax-based preference criterion among conflicting arguments,
favoring those arguments which are more informed or more direct
(Simari & Loui, 1992; Stolzenburg, García, Chesñevar, & Simari,
2003). For example, let us consider three arguments
h{a 	 b,c},ai,h{
a 	 b},
ai and h{(a 	 b); (b 	 c}),ai built on the ba-
sis of a program P ¼ ðP;DÞ where

P ¼ b; cf g

D ¼

b 	 c;

a 	 b;

a 	 b; c;

 a 	 b

8>>><
>>>:

9>>>=
>>>;
:

When using generalized specificity as the comparison criterion be-
tween arguments, the argument h{a 	 b,c},ai would be preferred
over the argument h{
a 	 b},
ai as the former is considered more
informed (i.e., it relies on more premises). However, argument
h{
a 	 b},
ai is preferred over h{(a 	 b); (b 	 c}), a ias the former
is regarded as more direct (i.e., it is obtained from a shorter deriva-
tion). However, it must be remarked that besides specificity other
alternative preference criteria could also be used; e.g., considering
numerical values corresponding to necessity measures attached to
argument conclusions (Chesñevar, Simari, Alsinet, & Godo, 2004,
2005) or defining argument comparison using rule priorities. This
last approach is used in D-PROLOG (Nute, 1988), Defeasible Logic
(Nute, 1992), extensions of Defeasible Logic (Antoniou, Maher, &
Billington, 2000, 1998), and logic programming without negation
as failure (Kakas, Mancarella, & Dung, 1994; Dimopoulos & Kakas,
1995).

In order to determine whether a given argument A is ulti-
mately undefeated (or warranted), a dialectical process is
recursively carried out, where defeaters for A, defeaters for these
defeaters, and so on, are taken into account. An argumentation
line starting in an argument hA0;Q0i is a sequence
½hA0;Q0i; hA1;Q 1i; hA2;Q2i; . . . ; hAn;Qni . . .� that can be thought
of as an exchange of arguments between two parties, a proponent
(evenly-indexed arguments) and an opponent (oddly-indexed argu-
ments). Each hAi;Q ii is a defeater for the previous argument
hAi�1;Q i�1i in the sequence, i > 0. In order to avoid fallacious rea-
soning, dialectics imposes additional constraints on such an argu-
ment exchange to be considered rationally acceptable. Given a
DeLP program P and an initial argument hA0;Q0i, the set of all
acceptable argumentation lines starting in hA0;Q0i accounts for
a whole dialectical analysis for hA0;Q0i (i.e., all possible dialogues
about hA0;Q 0i between proponent and opponent), formalized as a
dialectical tree.

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1861
Nodes in a dialectical tree ThA0 ;Q 0i can be marked as undefeated
and defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree
will be marked as an AND-OR tree: all leaves in ThA0 ;Q0i will be
marked U-nodes (as they have no defeaters), and every inner node
is to be marked as D-node iff it has at least one U-node as a child,
and as U-node otherwise. An argument hA0;Q 0i is ultimately ac-
cepted as valid (or warranted) w.r.t. a DeLP program P iff the root
of its associated dialectical tree ThA0 ;Q0i is labeled as U-node.

Given a DeLP program P, solving a query Q w.r.t. P accounts for
determining whether Q is supported by (at least) one warranted
argument. Different doxastic attitudes can be distinguished as fol-
lows: Yes, accounts for believing Q iff there is at least one warranted
argument supporting Q on the basis of P; No, accounts for believing

Q iff there is at least one warranted argument supporting
Q on
the basis of P; Undecided, neither Q nor
Q are warranted w.r.t.
P, and Unknown, Q does not belong to the signature of P.

We present a property from García and Simari (2004) that will
be useful for proving some results about our proposal (see
Section 5).

Proposition 1. For any program P in DeLP, it cannot be the case that
both Q and
Q are warranted.

In the next sections we will present a method for expressing
arbitrary DL ontologies in DeLP. For now on, based on the fact dis-
covered by Grosof et al. (2003) that DL inclusion axioms of the
form ‘‘C v D’’ can be equated to PROLOG rules of the form ‘‘D
(X):�C(X)’’, we will show how the application problems modeled
by the ontologies presented in Section 2.1 can be expressed in DeLP
in such a way that it could be possible for an agent to automatically
reason in such cases. Notice also that following PROLOG usual con-
ventions, predicates are noted with lowercase letters (e.g., bird, fly,
etc.), variable names with capital letters (e.g., X,Y,Z, etc.), and con-
stant names with lowercase letters (e.g., opus, etc.).

Example 2. Here follows the DeLP program P2 ¼ ðP;DÞ that
models the situation presented in Example 1:

P ¼

birdðXÞ penguinðXÞ
penguinðXÞ super penguinðXÞ
super penguinðopusÞ
broken wingðopusÞ

8>>><
>>>:

9>>>=
>>>;
; and

D ¼

 flyðXÞ 	 birdðXÞ; broken wingðXÞ
flyðXÞ 	 birdðXÞ
flyðXÞ 	 super penguinðXÞ

8><
>:

9>=
>;:

In DeLP, the answer for fly(opus) is Yes while the answer for

fly(opus) is No as it is shown next. It is possible to build an argu-
ment hA1; flyðopusÞi, where:

A1 ¼ flyðopusÞ 	 birdðopusÞf g:

This argument is properly defeated by another argument
hA2;
 flyðopusÞi, with:

A2 ¼
 flyðopusÞ 	 birdðopusÞ; broken wingðopusÞf g:

However, argument A1 is reinstated by another argument
hA3; flyðopusÞi which is a blocking defeater for A2, where:

A3 ¼ flyðopusÞ 	 super penguinðopusÞf g:
In Section 3 we will review under which constraints the trans-

lation of arbitrary DL ontologies to DeLP can be performed.
Fig. 1. Parallel between reasoning with DeLP and DL.
3. Reasoning with inconsistent ontologies: d-ontologies

In the presence of inconsistent ontologies, traditional DL rea-
soners (such as Racer (Haarslev & Möller, 2001)) issue an error
message and stop further processing. Thus the burden of repairing
the ontology (i.e., making it consistent) is on the knowledge engi-
neer. However, the knowledge engineer is not always available
and in some cases, such as when dealing with imported ontologies,
he has neither the authority nor the expertise to correct the source
of inconsistency. Therefore, we are interested in coping with incon-
sistencies such that the task of dealing with them is automatically
solved by the reasoning system.

In (Gómez et al., 2010), we propose using DeLP to perform such
a task by translating DL ontologies into DeLP programs. By doing so
we gain the capability of reasoning with inconsistent ontologies.
However this approach also loses some expressiveness in the in-
volved ontologies. As we will show in Definition 4, certain restric-
tions will have to be imposed on DL ontologies in order to be
expressed in the DeLP language.

The work (Gómez et al., 2010) is based in part in (Grosof et al.,
2003) who show that the processing of ontologies can be im-
proved by the use of techniques from the area of logic program-
ming. In particular they have identified a subset of DL
languages that can be effectively mapped into a Horn-clause log-
ics. Given a DL ontology R = (T,A), we will consider the Tbox T as
partitioned into two disjoint sets—a strict terminology TS and a
defeasible terminology TD—such that T = TS [TD and TS \ TD = ;. No-
tice that in this work we suppose that the knowledge engineer
decides if an axiom is strict or defeasible (for a discussion on
how partitioning automatically DL terminologies, see (Gómez
et al., 2010, p. 138)).

We therefore propose translating the DL ontology R into a DeLP
program P ¼ ðP;DÞ ¼TðRÞ by means of a mapping T from the DL
language to the DeLP language. Intuitively the set P of strict rules
in P will correspond to the Abox A joined with TS in R, and the set
D of defeasible rules will correspond to TD in R. This translation
will be achieved by two specialized functions TP and TD, where
TP translates from a set of DL sentences into a set of DeLP strict
rules and TD translates from a set of DL sentences into a set of
DeLP defeasible rules, such that P ¼TPðTSÞ [TPðAÞ and
D ¼TDðTDÞ. The parallel between a reasoning system based on
DeLP and DL can be seen in Fig. 1.

Definition 4. Let A be an atomic class name, C and D class
expressions, and R a property. In the Lh language, C u D is a class,
and "R.C is also a class. Class expressions in Lh are called Lh-
classes. In the Lb language, C t D is a class, and $R.C is a class too.
Class expressions in Lb are called Lb-classes. The Lhb language is
defined as the intersection of Lh and Lb. Class expressions in Lhb

are called Lhb-classes.

Fig. 2. Ontology R3 ¼ T3
S ; T

3
D;A

3
� �

.

1862 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
Definition 5. Let C be an Lb-class, D an Lh-class, A;B Lhb-classes,
P,Q properties, a,b individuals. Let T be a set of inclusion and equal-
ity sentences in LDL of the form C v D, A � B, > v "P.D,> v "P�.D,
P v Q, P � Q, P � Q�, or P+ v P such that T can be partitioned into
two disjoint sets TS and TD. Let A be a set of assertions disjoint with
T of the form a:D or ha,bi:P. A d-ontology R is a tuple (TS,TD,A). The
set TS is called the strict terminology (or Sbox), TD the defeasible ter-
minology (or Dbox) and A the assertional box (or Abox).
Example 3. Consider the d-ontology R3 ¼ T3
S ; T

3
D;A

3
� �

presented in
Fig. 2. The strict terminology T3

S says that somebody who is check-

ing mail uses a web browser. The defeasible terminology T3
D

expresses that those who study usually pass exams, someone
who is sitting at a computer is normally studying unless he is
web surfing, those who do not study usually do not pass, if some-
one is using a web browser then he is presumably web surfing
unless he is reading Javadoc documentation. The set A3 asserts that
it is known that John, Paul and Mary are sitting at a computer; Paul
is using a browser; finally, Mary is also checking mail and reading
Javadoc documentation. Notice that the traditional (in the sense of

(Baader et al., 2003)) DL ontology T3
S [T3

D;A
3

� �
is incoherent since

somebody who both sits at a computer and web surfs then belongs
both to the ‘‘Studies’’ concept and to its complement, rendering the
concept empty.

For assigning semantics to a d-ontology two translation func-
tions TD and TP from DL to DeLP based on the work of (Grosof
et al., 2003) are defined. Firstly we will discuss informally why
the interpretation of DL ontologies as DeLP programs is sound.
Sboxes are going to be interpreted as strict rules, Aboxes as facts
and Dboxes as defeasible rules (thus considering them as default
inclusions). The basic premise for achieving the translation of DL
ontologies into DeLP is based on the observation that a DL inclu-
sion axiom ‘‘CvD’’ is regarded as a First-Order Logic statement
‘‘("x)(C(x) ? D(x))’’, which in turn is regarded as a Horn-clause
‘‘d(X) c(X)’’. Naturally ‘‘C u DvE’’ is treated as ‘‘e(X) c(X),d(X)’’.
Lloyd-Topor transformations are used to handle special cases as
conjunctions in the head of rules and disjunctions in the body of
rules; so ‘‘CvD u E’’ is interpreted as two rules ‘‘d(X) c(X)’’ and
‘‘e(X) c(X)’’ while ‘‘C t DvE’’ is transformed into ‘‘e(X) c(X)’’
and ‘‘e(X) d(X)’’. Likewise axioms of the form ‘‘$r.CvD’’ are trea-
ted as ‘‘d(X) r(X,Y),c(Y)’’. Dbox axioms are treated as defeasible
and are transformed using the TD function (e.g., TDðC v DÞ is
interpreted as d(X) 	 c(X)); Sbox axioms are considered strict and
are transformed using TP (e.g., TPðC v DÞ is interpreted as
{(d(X) c(X)), (
c(X)
d(X))}). Abox assertions are always con-
sidered strict (e.g., TPða : CÞ is regarded as a fact c(a) and
TPðha; bi : rÞ as r(a,b)). Notice that there are no technical obsta-
cles to prevent considering Abox assertions as defeasible. In fact,
DeLP considers defeasible facts as presumptions; however this
extension of the d-ontologies framework is outside the scope of
this paper.
Next we recall more formally how DL axioms are interpreted in
DeLP. Definition 6 shows how Dbox axioms are translated as DeLP
defeasible rules.

Definition 6. Let A, C, D be concepts, X, Y variables, P, Q properties.
The TD : 2LDL ! 2LDeLPD mapping is defined in Fig. 3. Besides,
intermediate transformations that will end as rules of the form
‘‘(H1 ^ H2) 	 B’’ will be rewritten as two rules ‘‘H1 	 B’’ and
‘‘H2 	 B’’ (as this is an incorrect DeLP syntax). Similarly transfor-
mations of the form ‘‘H1 	 H2 	 B’’ will be rewritten as
‘‘H1 	 B ^ H2’’, and transformations of the form ‘‘H 	 (B1 _ B2)’’
will be rewritten as two rules ‘‘H 	 B1’’ and ‘‘H 	 B2’’.

Definitions 7–9 show how both Sbox axioms and Abox asser-
tions are interpreted as DeLP strict rules.

Definition 7. Let A, C, D be concepts, X, Y variables, P, Q properties.
The T
P : 2LDL ! 2LDeLPP mapping is defined in Fig. 4. Besides,
intermediate transformations of the form ‘‘(H1 ^ H2) B’’ will be
rewritten as two rules ‘‘H1 B’’ and ‘‘H2 B’’. Similarly transfor-
mations of the form ‘‘H1 H2 B’’ will be rewritten as
‘‘H1 B ^ H2’’, and rules of the form ‘‘H (B1 _ B2)’’ will be
rewritten as two rules ‘‘H B1’’ and ‘‘H B2’’.

As DeLP is based on SLD-derivation of literals, simple transla-
tion of DL sentences to DeLP strict rules does not allow to infer neg-
ative information by modus tollens. For instance, ‘‘CvD’’ (all C’s are
D’s) is translated as ‘‘D(X) C(X)’’, DeLP is not able to derive
‘‘
 C(a)’’ from ‘‘
 D(a)’’. Thus given ‘‘C1 u C2 u . . . u Cn�1 u CnvD’’,
instead of only including the strict rule ‘‘D(X) C1(X),C2

(X), . . . ,Cn�1(X), Cn(X)’’ in its translation, we propose including all
of its transposes.

Definition 8. Let r = H B1,B2,B3, . . . ,Bn�1,Bn be a DeLP strict rule.
The set of transposes of rule r, noted as ‘‘Trans(r)’’, is defined as:

TransðrÞ ¼

H B1;B2; . . . ;Bn�1;Bn

B1 H;B2;B3; . . . ;Bn�1;Bn

B2 H;B1;B3; . . . ;Bn�1;Bn

B3 H;B1;B2; . . . ;Bn�1;Bn

. . .

Bn�1 H;B1;B2;B3 . . . ;Bn

Bn H;B1;B2; . . . ;Bn�1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;
Definition 9. We define the mapping from DL ontologies into DeLP
strict rules as TPðTÞ ¼ Trans T

PðTÞ
� �

.
Notice that reasoning with transposed strict rules is not more

computationally expensive than reasoning without them. Observe
that even though as this seems computationally expensive it is

Fig. 4. Mapping from DL ontologies to DeLP strict rules.

Fig. 3. Mapping from DL ontologies to DeLP defeasible rules.

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1863
only as expensive as deriving
b from a b and
a. Notice also
that, following trends in non-monotonic reasoning, we do not con-
sider transposition of defeasible rules (Brewka, Dix, & Konolige,
1997, p. 45); (Caminada, 2008).

The reader should also notice that the price paid for translating
DL ontologies into DeLP programs is the loss of some expressive-
ness. For instance, as noted by Grosof et al. (2003), DL axioms that
generate a rule with a disjunction in its head cannot be represented
in logic programming.

Definition 10. Let R = (TS,TD,A) be a d-ontology. The interpretation
of R is a DeLP program P ¼ ðTPðTSÞ [TPðAÞ;TDðTDÞÞ.

1864 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
Remark 1. Notice that in order to keep consistency within an
argument, some internal coherence between the Abox and the
Tbox must be enforced; namely given a d-ontology R = (TS,TD,A),
it must not be possible to derive two complementary literals from
TPðTSÞ [TPðAÞ.

We recall how the reasoning task of instance checking (Baader
et al., 2003, p. 19) is interpreted in d-ontologies:

Definition 11. Let R = (TS,TD,A) be a d-ontology, C a class name, a
an individual, and P ¼ ðTPðTSÞ [TPðAÞ;TDðTDÞÞ.

1. The individual a potentially belongs to class C iff there exists an
argument hA;CðaÞi w.r.t. P;

2. the individual a justifiedly belongs to class C iff there exists a war-
ranted argument hA;CðaÞi w.r.t. P, and,

3. the individual a strictly belongs to class C iff there exists an argu-
ment h;,C(a)i w.r.t. P.
Example 4. Consider again the d-ontology R3 presented in Exam-
ple 3, which is interpreted as the DeLP program P3 according to
Definition 10 as shown in Fig. 5. From P1, we can determine that
John justifiedly belongs to the concept Pass in R3 as there exists
a warranted argument structure hA1; passðjohnÞi that says that
John will pass the exam as he studies (because he sits at a com-
puter), where

A1 ¼
ðpassðjohnÞ 	 studiesðjohnÞÞ;
ðstudiesðjohnÞ 	 sits at computerðjohnÞÞ

� �
:

We cannot reach a decision w.r.t. the membership of Paul to the
concept ‘‘Pass’’ because there are two arguments attacking each
other, so the answer to the query pass(paul) is undecided. Formally,
there exist two arguments hB1;passðpaulÞi and hB2;
 passðpaulÞi,
where:

B1¼
ðpassðpaulÞ	 studiesðpaulÞÞ;
ðstudiesðpaulÞ	 sits at computerðpaulÞÞ

� �
; and

B2¼
ð
passðpaulÞ	
 studiesðpaulÞÞ;
ð
 studiesðpaulÞ	 sits at computerðpaulÞ;web surfingðpaulÞÞ;
ðweb surfingðpaulÞ	uses browserðpaulÞÞ

8><
>:

9>=
>;:

In the case of Mary’s membership to Pass, there is an argument
hC1;passðmaryÞi. that has two defeaters, hC2;
 passðmaryÞi and
hC3;
 studiesðmaryÞi, which are both defeated by
hC4;
 web surfingðmaryÞi, where:

C1¼
ðpassðmaryÞ	 studiesðmaryÞÞ;
ðstudiesðmaryÞ	 sits at computerðmaryÞÞ

� �
;

Fig. 5. DeLP program P3 in
C2¼
passðmaryÞ	
 studiesðmaryÞf g[C3;

C3¼
ð
 studiesðmaryÞ	 sits at computerðmaryÞ;web surfingðmaryÞÞ;
ðweb surfingðmaryÞ	uses browserðmaryÞÞ

()
; and

C4¼
ð
web surfingðmaryÞ	uses browserðmaryÞ;reads javadocðmaryÞÞ;
ðuses browserðmaryÞ	 checks web mailðmaryÞÞ

()
:

Therefore, Mary belongs justifiedly to the concept ‘‘Pass’’ as the lit-
eral pass(mary) is warranted. The dialectical trees for the three que-
ries are depicted graphically in Fig. 6.
4. The ONTOarg framework: architecture

The notion of d-ontology is powerful enough to reason defeasi-
bly within a specific ontology with inconsistencies. However, a
common problem for a knowledge engineer is associated with
dealing with different d-ontologies, which have to be unified or
integrated in order to get a global understanding of the knowledge
available in such ontologies, resulting in turn in the characteriza-
tion of a global ontology. In the literature (Calvanese et al.,
2001), the term ontology integration is associated with combining
ontologies residing in different sources in order to provide the user
with a unified view of such ontologies. The problem of designing
systems for ontology integration in the Semantic Web is particu-
larly important because ontologies are to be developed indepen-
dently from each other and, for this reason, they can be mutually
inconsistent. One possible architecture for ontology integration
systems is based on a global schema and a set of local sources.
The local sources contain the actual data while the global schema
provides a reconciled, unified view of the underlying sources. A ba-
sic service provided by ontology integration systems is that of
answering queries posed in terms of the global schema.

There are two main approaches to data integration, namely glo-
bal-as-view (GAV) and local-as-view (LAV). In the LAV approach, we
assume a global ontology G, a set S of local/source ontologies, and
the mapping between the global and the local ontologies is given
by associating each term in the local ontologies with a view VG over
the global ontology (Calvanese et al., 2001, Section 4). The intended
meaning of associating with a term C in S a view VG over G is that
such a view represents the best way to characterize the instances
of C using the concepts in G. The correspondence between C and
the associated view can be sound (all the individuals satisfying C
satisfy VG), complete (if no individual other than those satisfying
C satisfies VG), and/or exact (the set of individuals that satisfy C is
exactly the set of individuals that satisfy VG).

In the GAV and LAV approaches to data integration, the queries
w.r.t. the target ontology are reformulated w.r.t. the sources. Haase
terpreting ontology R3.

Fig. 6. Dialectical analyses for queries pass(paul) and pass(mary).

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1865
and Motik (2005) (referring to Lenzerini (2002) explain that in the
GAV systems the problem is simply reduced to unfolding the views,
since the reformulation is explicit in the mappings. In the LAV case,
the problem requires more complex reasoning steps as in the case
of sound mappings is not clear how to reformulate the concepts of
a source ontology in terms of a global ontology. Therefore, in this
work, we will restrict the case of LAV integration to complete
views.

Definition 12. An ontology integration system I is a triple
ðG;S;MÞ where:
� G is a global ontology expressed as a d-ontology over an alphabet
AG.
� S is a set of n source ontologies S1; . . . ;Sn expressed as d-ontol-

ogies over alphabets AS1 ; . . . ;ASn , resp. Each alphabet ASi

includes a symbol for each concept or role name of the source
Si, i = 1, . . . ,n.
� M is a set of n mappings M1; . . . ;Mn between G and S1; . . . ;Sn,

resp. Each mapping Mi is constituted by a set of inclusion axi-
oms of the form qSi

v qG, where qG and qSi
are concept descrip-

tions defined over the global ontology G and Si, i = 1, . . . ,n, resp.
The concepts qG are expressed over the alphabet AG and qSi

are
expressed over the alphabet ASi

. The sets M1; . . . ;Mn are called
bridge ontologies.

An ontology integration system will be interpreted as a DeLP
program (See Fig. 7).
?Q Strict rules Π

Deafeasible rules Δ

DeLP module

Answer

Query Q

Conversion module

DeLP code

KB

Ontology integration module

Global ontology G Local ontologies L1, L2, ..., Ln Mappings M1, M2, ..., Mn

Ontology integration system

User

Fig. 7. The ONTOarg system: architecture.
Definition 13. Let I ¼ ðG;S;MÞ be an ontology integration
system such that S ¼ fS1; . . . ;Sng and M ¼ fM1; . . . ;Mng, where

G ¼ ðTG
S ; T

G
D;A

GÞ; Si ¼ TSi
S ; TSi

D ;ASi
i

� �
, and, Mi ¼ TMi

S ; TMi
D

� �
, with

i = 1, . . . ,n. The system I is interpreted as the DeLP program
IDeLP ¼ ðP;DÞ, with:

P¼ TP TG
S

� �� �
[ðTPðAGÞÞ[

[n
i¼1

TP TSi
S

� � !
[

[n
i¼1

TP TMi
S

� � !
; and

D¼ TD TG
D

� �� �
[

[n
i¼1

TD TSi
D

� � !
[

[n
i¼1

TD TMi
D

� � !
:

Possible inferences in the integrated ontology IDeLP are mod-
eled by means of a dialectical analysis in the DeLP program that
is obtained when each DL sentence of the ontology is mapped into
DeLP clauses. Thus conclusions supported by warranted arguments
will be the valid consequences that will be obtained from the ori-
ginal ontology, provided the strict information in IDeLP is consis-
tent. Formally:
Definition 14. Let I ¼ ðG;S;MÞ be an ontology integration
system. Let a be an individual name, and C a concept name defined
in G.

1. Individual a is a potential member of C iff there exists an argu-
ment A for the literal C(a) w.r.t. DeLP program IDeLP .

2. Individual a is a justified member of C iff there exists a warranted
argument A for the literal C(a) w.r.t. DeLP program IDeLP .

3. Individual a is an strict member of C iff there exists an empty
argument for the literal C(a) w.r.t. DeLP program IDeLP .

We will illustrate the above notions with an example. Notice
that we label a concept C with the name of the ontology Si to
which it belongs (as in Si : C) following the XML name-space con-
vention (this notation follows the one used in (Haase & Motik,
2005)).

Example 5. Let us consider the problem of assigning reviewers for
papers. In Fig. 8, we present a global ontology G5 interpreted as: a
professor with a postgraduate degree can be a reviewer; someone
should not be a reviewer unless they are either a professor or have
a graduate degree; however, a professor, despite not having a
postgraduate degree, is accepted as a reviewer if he is an
outstanding researcher. We also present local ontologies L1 and
L2. L1 expresses that John is a professor who has a PhD, Paul is
also a professor but has neither a PhD nor a MSc, Mary just has a
MSc, and Steve is not a professor but has a MSc. The mapping
ML1;G expresses that the terms MSc and PhD from local ontology
L1 are contained in the term postgraduated in the global ontology,
and that someone have neither a MSc nor a PhD is not a
postgraduate. Ontology L2 expresses that a is an article, b a book,

Fig. 8. LAV ontology integration system.

1866 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
c a chapter and that Paul has published a, b and c. The mapping
ML2 ;G expresses that the view corresponding to the individuals
who have published an article, a chapter and a book corresponds to
the set of outstanding researchers.

The interpretation of above ontologies in DeLP yields the code
presented in Fig. 9. We show next the dialectical analyses that have
to be performed to compute the justified membership of John, Paul,
Mary and Steve to the concept ‘‘Reviewer’’ w.r.t. the ontology
integration system ðG; fL1;L2g; fML1 ;G;ML2 ;GgÞ.
Fig. 9. Ontologies G5, L1 and
The individual John is a justified member of the concept
‘‘Reviewer’’ because the argument hA; reviewerðjohnÞi has no def-
eaters and is thus warranted (see Fig. 10. (a)), with:
A ¼
ðrev iewerðjohnÞ 	 postgradðjohnÞ; prof ðjohnÞÞ;
ðpostgradðjohnÞ 	 phdðjohnÞÞ

� �
:

In Paul’s case, we conclude that he is a possible reviewer as he is
also a justified member of the concept ‘‘Reviewer.’’ Notice that Paul
L2 expressed in DeLP.

Fig. 10. Dialectical trees for reviewer(john), reviewer(paul) and reviewer(steve).

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1867
is a potential member of the concept ‘‘:Reviewer’’ as there is an argu-
ment hB1;
 reviewerðpaulÞi, with:

B1 ¼
ð
 rev iewerðpaulÞ 	
 postgradðpaulÞÞ;
ð
 postgradðpaulÞ 	
 mscðpaulÞ;
 phdðpaulÞÞ

� �
:

However, we see that there is another argument
hB2; rev iewerðpaulÞi that defeats B1, where:

B2 ¼

ðrev iewerðpaulÞ 	 prof ðpaulÞ;
 postgradðpaulÞ;
outstandingðpaulÞÞ;
ðoutstandingðpaulÞ 	
publishedðpaul; aÞ; articleðaÞ;
publishedðpaul; bÞ; bookðbÞ;
publishedðpaul; cÞ; chapterðcÞÞ;
ð
 postgradðpaulÞ 	
 mscðpaulÞ;
 phdðpaulÞÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

As B2 is undefeated, we conclude that the literal reviewer(paul) is
warranted (see Fig. 10(b) and (c)).

Steve is not a reviewer as he is a justified member of the
concept ‘‘:Reviewer’’ (see Fig. 10. (d)). In this case, there exists a
unique (undefeated) argument hC;
 reviewerðsteveÞi. On the other
hand, it is not possible to assess Mary’s membership to the concept
‘‘Reviewer’’ as no arguments for reviewer(mary) nor

reviewer(mary) can be built.
5. Some properties of the approach

We now introduce some properties of the proposed approach to
ontology integration presented above. Notice that the validity of
the properties is strongly related to DeLP reasoning dynamics.

Property 1. Let I ¼ ðG;S;MÞ be an ontology integration system. It
cannot be the case that an individual a is a justified member of
concepts C and :C simultaneously.
Proof. Suppose that both a is a justified member of both C and :C.
Then it must be the case that there exist two warranted arguments
hA;CðaÞi and hB;
 CðaÞi. But this is impossible as DeLP cannot
warrant two complementary literals (see (García & Simari,
2004)). h
Property 2. Let I ¼ ðG;S;MÞ be an ontology integration system. It
cannot be the case that an individual a is an strict member of concepts
C and :C simultaneously.
Proof. Suppose that G ¼ TG
S ; T

G
D;A

G
� �

; S ¼ fS1; . . . ;Sng with

Si ¼ TS
i ; T

D
i ;Ai

� �
, and Mi ¼ TS

Mi
; TD

Mi
;AMi

� �
, with i = 1, . . . ,n. Sup-

pose that a is an strict member of both C and :C. Then there must
exist two arguments h;,C(a)i and h;,
C(a)i w.r.t. IDeLP . Therefore

TP TG
S

� �
[
[n
i¼1

ðTP TS
i

� �
[TP TS

Mi

� �
[TPðAiÞ [TPðAMi

ÞÞ
will be inconsistent contradicting the internal coherence assump-
tion (see Remark 1). h
Property 3. The running time for determining the strict, potential and
justified membership of an individual to a class in an ontology integra-
tion system is finite.

Proof sketch: Let I ¼ ðG;S;MÞ be an ontology integration sys-
tem. As the d-ontologies in I have a finite number of both named
concepts and individual constants, the DeLP program IDeLP is finite.
Cecchi, Fillottrani, & Simari (2006) have shown that determining if
there exists an argument for a literal is NP; besides, as the warrant
procedure always builds a finite dialectical tree (García & Simari,
2004), then procesess for determining the strict, potential and jus-
tified membership always terminate.

6. Related work

Next we will review some recent research in reasoning with
inconsistencies in ontologies, reasoning with ontologies in logic
programming and recent advances in ontology integration, con-
trasting existing results with our approach.

6.1. Inconsistency treatment in ontologies

To the best of our knowledge, the treatment of DL ontologies in
Prolog is attributed to (Grosof et al., 2003). They show how to
interoperate, semantically and inferentially, between the leading
Semantic Web approaches to rules (RuleML Logic Programs) and
ontologies (OWL DL) by analyzing their expressive intersection.
They define a new intermediate knowledge representation called
Description Logic Programs (DLP), and the closely related Descrip-
tion Horn Logic (DHL) which is an expressive fragment of FOL.
They show how to perform the translation of premises and infer-
ences from the DLP fragment of DL to logic programming. Part of
our approach is based on Grosof et al.’s work as the algorithm for
translating DL ontologies into DeLP is based on it. However, as
Grosof et al. (2003) use standard Prolog rules, they are not able
to deal with inconsistent DL knowledge bases as our proposal
does.

The treatment of inconsistency in Description Logics ontologies
is not new since it has been addressed in related non-monotonic
approaches including the addition of a preference order on the
axioms (Heymans & Vermeir, 2002), imposing answer set
programming rules on top of ontologies (Eiter, Lukasiewicz,
Schindlauer, & Tompits, 2004), using Paraconsistent Logics
(Huang, van Harmelen, & ten Teije, 2005) or Belief Revision
(Wasserman, 1989) to determine a consistent subset of an incon-
sistent ontology. In Heymans & Vermeir (2002), the authors ex-
tend the DL SHOQðDÞ with a preference order on the axioms.
With this strict partial order certain axioms can be overruled, if
defeated with more preferred ones. They also impose a preferred
model semantics, introducing nonmonotonicity into SHOQðDÞ.
Similarly as in (Heymans & Vermeir, 2002) we allow to perform
inferences from inconsistent ontologies by considering subsets
(arguments) of the original ontology. (Heymans & Vermeir,
2002) also impose a hard-coded comparison criterion on DL

1868 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
axioms. In our work, the system, and not the programmer, decides
which DL axioms are to be preferred as we use specificity as argu-
ment comparison criterion. We think that our approach can be
considered more declarative in this respect. In particular the com-
parison criterion in DeLP is modular, so that rule comparison
could also be adopted (García & Simari, 2004).

Eiter et al. (2004) propose a combination of logic programming
under the answer set semantics with the DLs SHIFðDÞ and
SHOINðDÞ. This combination allows for building rules on top
of ontologies. In contrast to our approach, they keep separated
rules and ontologies and handle exceptions by codifying them
explicitly in programs under answer set semantics.

Huang et al. (2005) use paraconsistent logics to reason with
inconsistent ontologies. They use a selection function to determine
which consistent subsets of an inconsistent ontology should be
considered in the reasoning process. In our approach given an
inconsistent ontology R, we consider the set of warranted argu-
ments from TðRÞ as the valid consequences.

Williams & Hunter (2007) use argumentation to reason with
possibly inconsistent rules on top of DL ontologies. In contrast,
we translate possible inconsistent DL ontologies to DeLP to reason
with them within DeLP. Laera, Tamma, Euzenat, Bench-Capon, &
Payne (2006) propose an approach for supporting the creation
and exchange of different arguments, that support or reject possi-
ble correspondences between ontologies in the context of a multi-
agent system. In our work we assume correspondences between
ontologies as given.

Antoniou & Bikakis (2007) propose a rule-based approach to
defeasible reasoning based on a translation to logic programming
with declarative semantics that can reason with rules, RDF (S)
and parts of OWL ontologies. RDF data of the form rdf (Subject, Pred-

icate, Object) is translated as Prolog facts of the form Predicate (Sub-

ject,Object). They also define Prolog rules for processing RDF
Schema information (e.g., C (X):- rdf:type (X,C)) for modeling the
type construct). All of the rules are created at compile time before
actual querying takes place. To the best of our knowledge, in (Anto-
niou & Bikakis, 2007), the authors’ approach distinguishes between
strict and defeasible and possess flexibility for defining different
priority relations between arguments. As our approach is based
on DeLP, it also distinguishes between strict and defeasible rules,
and it also allows to replace the comparison criterion between
arguments in a modular way. Antoniou and Bikakis translate the
semantics of their argumentation system into Prolog, the seman-
tics of OWL sentences into Prolog, the semantics of RuleML sen-
tences into Prolog and then they perform query processing. We
translate OWL into DL and the into DeLP, thus keeping separated
the knowledge representation (in DeLP) from the query processing
(performed into the JAM).

Horridge, Parsia, and Sattler (2008) present a justification-based
approach to reasoning with ontologies. In that context, a justifica-
tion for an entailment in an OWL ontology is a minimal subset of
the ontology that is sufficient for that entailment to hold. Besides
they are able to find laconic justifications that provide minimal axi-
oms supporting an entailment, that can also be used to pinpoint
the cause of inconsistencies. The notion of justification for an
entailment in Horridge et al. (2008) is similar to the notion of
argument for a literal in our work as an argument is made up
of a minimal subset of the defeasible information in a DeLP pro-
gram along with the strict information that allows to derive a
defeasible conclusion (see Definition 2), thus providing a sort of
justification for an entailment to hold. However, in the case of
inconsistencies DeLP is not only able to consider all the argu-
ments for a literal, but also the defeat relation holding among
those arguments in order to determine what the valid conse-
quences of a d-ontology are (characterized as the warranted
arguments).
6.2. Ontology integration with inconsistent ontologies

The approach to ontology integration presented in this work is
an extension to Calvanese’s framework (Calvanese et al., 2001),
which in turn can be considered an instance of the more general
framework for data integration presented in Lenzerini (2002). Un-
like Calvanese’s approach, our proposal is able to deal with incon-
sistent ontologies.

Imam, MacCaull, and Kennedy (2007) discuss various imple-
mentation issues for the development of a prototype merging sys-
tem which will provide an inconsistency-tolerant reasoning
mechanism applicable to the healthcare domain. Their approach,
which is based on paraconsistent logic, is similar to ours in the
sense that does not lose information but instead is semi-automatic
as opposed to ours which is fully automated (except for the calcu-
lation of the mappings between ontologies that we assume as
given).

Next we show how our approach behaves with one of the case
studies presented in Imam et al. (2007). Consider the two ontolo-
gies R1 and R2 presented in (Imam et al., 2007, Section 2), where:

R1 ¼
Brain v CentralNervousSystem

Brain v BodyPart

CentralNervousSystem v NervousSystem

8><
>:

9>=
>;; and

R2 ¼
Brain v CentralNervousSystem

CentralNervousSystem v NervousSystem

BodyPart v :NervousSystem

8><
>:

9>=
>;:

Intuitively ontologies R1 and R2 express that the brain is part of the
central nervous system, the brain is a body part, and the central ner-
vous system is part of the nervous system, but a body part cannot
be included in the nervous system. According to (Imam et al.,
2007), ontologies R1 and R2 are merged as the single ontology R,
where:

R ¼

Brain v CentralNervousSystem

Brain v BodyPart

CentralNervousSystem v NervousSystem

BodyPart v :BodyPart

8>>><
>>>:

9>>>=
>>>;
:

Merging the two ontologies above would imply the contradiction
that Brain is a body part and not a body part. This kind of inconsis-
tency is known as ontological inconsistency, where a concept is as-
serted as subclass of multiple disjoint concepts. In our work,
according to the translation approach from DL to DeLP, this ontol-
ogy R along with an assertion ‘‘b:Brain’’ is interpreted as the DeLP
program P, where:

P ¼

centralNervousSystemðXÞ 	 brainðXÞ:
bodyPartðXÞ 	 brainðXÞ:
nervousSystemðXÞ 	 centralNervousSystemðXÞ:

 nervousSystemðXÞ 	 bodyPartðXÞ:
brainðbÞ:

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

In this case two arguments hA;nervousSystemðbÞi and
hB;
 nervousSystemðbÞi can be built, where:

A ¼
ðnervousSystemðbÞ 	 centralNervousSystemðbÞÞ;
ðcentralNervousSystemðbÞ 	 brainðbÞÞ

� �
; and

B ¼
ð
 nervousSystemðbÞ 	 bodyPartðbÞÞ;
ðbodyPartðbÞ 	 brainðbÞÞ

� �
:

As these two arguments are equi-preferred in DeLP, the answer to
the query nervousSystem(b) is Undecided. Therefore our system can-
not determine the membership of the individual b to the concept
NervousSystem.

S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870 1869
7. Conclusions

We have presented an approach for performing local-as-view
integration of Description Logic ontologies when these ontologies
can be potentially inconsistent. We have adapted the notion of
ontology integration system of Calvanese et al. (2001) for making
it suitable for the d-ontology framework, presenting both formal
definitions and a case study.

For reasoning with an inconsistent ontology, it can be repaired
manually by the knowledge engineer or automatically (e.g., using
Belief Revision (Ribeiro & Wassermann, 2009)). Other approaches
involve using some non-monotonic inference procedure to obtain
meaningful answers (e.g., paraconsistent logics (Huang et al.,
2005) which consider reasoning with a consistent subset of the
inconsistent ontology). Our approach directly copes with inconsis-
tency by reasoning within the framework of DeLP, thus relying in
defeasible argumentation for determining the membership status
of individuals to concepts. It must be noted that the proposed ap-
proach is only useful in the case of complete mappings, and there-
fore the case for local-as-view integration with sound and exact
mappings remains as an open problem and is part of our current
research efforts.

Acknowledgements

The research was funded by LACCIR Project 1211LAC004, by PIP
CONICET Projects 112-200801-02798 and 112-200901-00863, and
by Sec. Gral. de Ciencia y Tecnología, Universidad Nacional del Sur.

References

Antoniou, G., & Bikakis, A. (2007). DR-Prolog: A system for defeasible reasoning with
rules and ontologies on the semantic web. IEEE Transactions on Knowledge and
Data Engineering, 19(2), 233–245.

Antoniou, G., Billington, D., & Maher, M. (1998). Normal forms for defeasible logic.
In Proceedings of international joint conference and symposium on logic
programming (pp. 160–174). MIT Press.

Antoniou, G., Maher, M. J., & Billington, D. (2000). Defeasible logic versus logic
programming without negation as failure. Journal of Logic Programming, 42,
47–57.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.).
(2003). The description logic handbook – Theory, implementation and
applications. Cambridge University Press.

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171, 619–641.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web’, Scient.
American.

Brena, R., Chesñevar, C., & Aguirre, J. (2006). Argumentation-supported information
distribution in a multiagent system for knowledge management. In Proceedings
of ArgMAS 2005 (Utrecht, Netherlands, July 2005) In LNCS 4049 (pp. 279–296).
Springer-Verlag.

Brewka, G., Dix, J., & Konolige, K. (1997). Non monotonic reasoning. An overview.
Stanford, USA: CSLI Publications.

Calvanese, D., Giacomo, G.D. & Lenzerini, M. (2001). A framework for ontology
integration. In First semantic web working symposium (pp. 303–316).

Caminada, M. (2008). On the issue of contraposition of defeasible rules. In P.
Besnard, S. Doutre, & A. Hunter (Eds.), COMMA. Frontiers in Artificial Intelligence
and Applications (Vol. 172, pp. 109–115). IOS Press.

Carbogim, D., Robertson, D., & Lee, J. (2000). Argument-based applications to
knowledge engineering. The Knowledge Engineering Review, 15(2), 119–149.

Cecchi, L., Fillottrani, P. & Simari, G. (2006). On complexity of DeLP through game
semantics. In J. Dix & A. Hunter, (Eds.). 11th International workshop on
nonmonotonic reasoning (pp. 386–394).

Chesñevar, C. & Maguitman, A., (2004a). An argumentative approach to assessing
natural language usage based on the web corpus. In Proceedings of the 16th ECAI
Conference, Valencia, Spain (pp. 581–585).

Chesñevar, C. & Maguitman, A., (2004b). ARGUENET: An Argument-Based
Recommender System for Solving Web Search Queries. In Proceedings of the
2nd IEEE International IS-2004 Conference (pp. 282–287) Varna, Bulgaria.

Chesñevar, C., Brena, R., & Aguirre, J. (2005a). Knowledge distribution in large
organizations using defeasible logic programming. In Proceedings of the 18th
Canadian conference on AI (LNCS, Vol. 3501) (pp. 244–256). Springer-Verlag.

Chesñevar, C., Brena, R. & Aguirre, J., (2005b). Modelling power and trust for
knowledge distribution: An argumentative approach. In LNAI Springer Series
Proceedings of the 3rd Mexican International Conference on Artificial Intelligence –
MICAI 2005, vol. 3789 (pp. 98–108).
Chesñevar, C., Maguitman, A., & Loui, R. (2000). Logical models of argument. ACM
Computing Surveys, 32(4), 337–383.

Chesñevar, C., Maguitman, A., & Simari, G. (2006). Argument-based critics and
recommenders: A qualitative perspective on user support systems. Data &
Knowledge Engineering (DKE), 59(2), 293–319.

Chesñevar, C., Simari, G., Alsinet, T. & Godo, L., 2004. A logic programming
framework for possibilistic argumentation with vague knowledge. In
Proceedings of the international conference in uncertainty in artificial intelligence
(UAI 2004), Banff, Canada (pp. 76–84).

Chesñevar, C., Simari, G., Godo, L. & Alsinet, T., 2005. Argument-based expansion
operators in possibilistic defeasible logic programming: Characterization and
logical properties. In LNAI/LNCS Springer Series, Vol. 3571 (Proceedings of the 8th
ECSQARU Intl. Conference, Barcelona, Spain) (pp. 353–365).

Dimopoulos, Y., & Kakas, A. (1995). Logic programming without negation as failure.
In J. Lloyd (Ed.), Logic programming (pp. 369–383). Cambridge, MA: MIT Press.

Eiter, T., Lukasiewicz, T., Schindlauer, R. & Tompits, H., 2004. Combining Answer Set
Programming with Description Logics for the Semantic Web. KR 2004 (pp. 141–
151).

García, A., & Simari, G. (2004). Defeasible logic programming an argumentative
approach. Theory and Practice of Logic Programming, 4(1), 95–138.

Gómez, S. & Chesñevar, C., 2004. A hybrid approach to pattern classification using
neural networks and defeasible argumentation. In Proceedings of 17th
international FLAIRS conference Miami, Florida, USA, American association for
artificial intelligence (pp. 393–398).

Gómez, S. A., Chesñevar, C. I., & Simari, G. R. (2008). Defeasible reasoning in web
forms through argumentation. International Journal of Information Technology &
Decision Making, 7, 71–101.

Gómez, S., Chesñevar, C., & Simari, G. (2010). Reasoning with inconsistent
ontologies through argumentation. Applied Artificial Intelligence, 1(24), 102–148.

Grosof, B., Horrocks, I., Volz, R. & Decker, S., 2003. Logic programs: Combining logic
programs with description logics. In WWW2003, May 20–24, Budapest,
Hungary.

Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge
Acquisition, 5(2), 199–220.

Haarslev, V. & Möller, R., 2001. RACER System Description, Technical report,
University of Hamburg, Computer Science Department.

Haase, P., & Motik, B. (2005). A mapping system for the integration of OWL-DL
ontologies. In A. Hahn, S. Abels, & L. Haak (Eds.), IHIS 05: Proceedings of the first
international workshop on interoperability of heterogeneous information systems
(pp. 9–16). ACM Press.

Heymans, S. & Vermeir, D., 2002. A Defeasible Ontology Language, CoopIS/DOA/
ODBASE 2002 (pp. 1033–1046).

Horridge, M., Parsia, B. & Sattler, U., 2008. Laconic and Precise Justifications in OWL,
In ‘Proceedings of the international semantic web conference (ISWC 2008)’.

Huang, Z., van Harmelen, F. & ten Teije, A., 2005, Reasoning with Inconsistent
Ontologies. In L.P. Kaelbling & A. Saffiotti, (Eds.), Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh,
Scotland (pp. 454–459).

Imam, F., MacCaull, W. & Kennedy, M., 2007. Merging healthcare ontologies:
Inconsistency tolerance and implementation issues In Twentieth IEEE
International Symposium on Computer-Based Medical Systems (CBMS ’07) (pp.
74–85).

Janjua, N. K., & Hussain, F. K. (2012). Web@idss argumentation-enabled web-based
idss for reasoning over incomplete and conflicting information. Knowledge-
Based Systems, 32(0), 9–27.

Kakas, A. C., & Toni, F. (1999). Computing argumentation in logic programming.
Journal of Logic and Computation, 9(4), 515–562.

Kakas, A. C., Mancarella, P., & Dung, P. M. (1994). The acceptability semantics for
logic programs. In Proceedings of the 11th international conference on logic
programming (pp. 504–519). Santa Margherita, Italy: MIT Press.

Klein, M., 2001. Combining and relating ontologies: An analysis of problems and
solutions. In A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt & M. Uschold
(Eds.), Workshop on ontologies and information sharing, IJCAI’01, Seattle, USA.

Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T., & Payne, T. (2006). Reaching
agreement over ontology alignments. In Proceedings of the 5th International
Semantic Web Conference (ISWC 2006), Athens, GA. Lecture Notes in Computer
Science (Vol. 4273). Berlin/ Heidelberg: Springer.

Lenzerini, M., 2002. Data integration: A theoretical perspective, In Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2002, Madison, Winsconsin, USA.

Lloyd, J. (1987). Foundations of logic programming. Springer-Verlag.
Modgil, S., Toni, F., Bex, F., Bratko, I., Chesñevar, C., Dvořák, W., et al. (2013). The

added value of argumentation: examples and challenges. In O. Sascha (Ed.).
Handbook of agreement technologies (Vol. 8). New York, USA: Springer Verlag.

Nute, D. (1988). Defeasible reasoning. In J. H. Fetzer (Ed.), Aspects of artificial
intelligence (pp. 251–288). Norwell, MA: Kluwer Academic Publishers..

Nute, D. (1992). Basic defeasible logic. In L. Fariñas del Cerro (Ed.), Intensional logics
for programming. Oxford: Clarendon Press.

Parsia, B. & Sirin, E., 2004. Pellet: An OWL DL Reasoner. In 3rd International semantic
web conference (ISWC2004).

Parsons, S., Sierrra, C., & Jennings, N. (1998). Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8, 261–292.

Pollock, J. (1974). Knowledge and justification. Princeton.
Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11, 481–518.
Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person.

Bradford/MIT Press.

1870 S.A. Gómez et al. / Expert Systems with Applications 40 (2013) 1858–1870
Prakken, H., & Sartor, G. (2002). The role of logic in computational models of legal
argument – A critical survey. In A. Kakas & F. Sadri (Eds.), Computational logic:
logic programming and beyond (pp. 342–380). Springer.

Prakken, H., & Vreeswijk, G. (2002). Logical systems for defeasible argumentation. In
D. Gabbay & F. Guenther (Eds.), Handbook of philosophical logic (pp. 219–318).
Kluwer Academic Publishers.

Rahwan, I., & Simari, G. R. (2009). Argumentation in artificial intelligence. Springer.
Rahwan, I., Ramchurn, S. D., Jennings, N. R., Mcburney, P., Parsons, S., & Sonenberg, L.

(2003). Argumentation-based negotiation. Knowledge Engineering Review, 18(4),
343–375.

Ribeiro, M. M., & Wassermann, R. (2009). Base revision for ontology debugging.
Journal of Logic and Computation, 19(5), 721–743.

Sierra, C., & Noriega, P. (2002). Agent-mediated interaction from auctions to
negotiation and argumentation. In Foundations and applications of multi-agent
systems. LNCS series (Vol. 2403, pp. 27–48). Springer.
Simari, G., & Loui, R. (1992). A mathematical treatment of defeasible reasoning and
its implementation. Artificial Intelligence, 53, 125–157.

Stolzenburg, F., García, A., Chesñevar, C., & Simari, G. (2003). Computing generalized
specificity. Journal of Applied Non-Classical Logics, 13(1), 87–113.

Verheij, B. (2005). Virtual arguments. On the design of argument assistants for lawyers
and other arguers. The Hague: Asser Press.

Wasserman, P. D. (1989). Neural computing. Theory and practice. Van Nostrand
Reinhold.

Williams, M. & Hunter, A., 2007. Harnessing ontologies for argument-based
decision-making in breast cancer. In Proceedings of the international conference
on tools with AI (ICTAI’07) (pp. 254–261).

Zhang, P., Sun, J., & Chen, H. (2005). Frame-based argumentation for group decision
task generation and identification. Decision Support Systems, 39, 643–659.

	ONTOarg: A decision support framework for ontology integration based on argumentation
	1 Introduction
	2 Knowledge representation and reasoning in the semantic web
	2.1 Description logics
	2.2 Defeasible Logic Programming

	3 Reasoning with inconsistent ontologies: δ-onto
	4 The ONTOarg framework: architecture
	5 Some properties of the approach
	6 Related work
	6.1 Inconsistency treatment in ontologies
	6.2 Ontology integration with inconsistent ontologies

	7 Conclusions
	Acknowledgements
	References

