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This work presents a beam finite element with multibody capabilities for modeling high aspect ratio
composite wind turbine components, particularly the tower and the blades. The proposed formulation
is based on an Updated Lagrangian approach, in which the virtual work equations are written as a func-
tion the director field and its derivatives. The cross-sectional modeling of the wind turbine components is
based on the constitutive relations obtained from the analysis of the mechanics of composite laminates.
The formulation of the equations of motion and the derivation of a hinge joint is presented. Several
results for a large wind turbine model are shown.
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1. Introduction

The extraction of energy from the wind is one of the main topics of
research in the engineering community. Particularly, the use of hor-
izontal axis turbines is one of the most efficient methods to extract
this energy and the fact that the extracted power mostly depends
on the turbine rotor diameter is continuously pushing the geometric
limit of the designs. Today the largest wind turbine in the world
equipped with 64 m blades but it is expected in the near future that
prototypes of wind turbines with 100 m blades appear. A question
naturally arises about how affective are the available engineering
tools to study these new designs. Many discussions have been made
about the end of the geometrically linear theories era in the wind tur-
bine structural modeling scenario, but the open question prevails:
how effective structural linear theories are to predict the behavior
of modern wind turbines within an acceptable precision?

The dynamic behavior of large wind turbines is frequently ana-
lyzed by means of flexible multibody systems and blades modeling
is frequently done with thin-walled beam theory. The analysis of
very flexible multibody beams involves a deep knowledge of tridi-
mensional finite rotations. The nonvectorial nature of finite rota-
tions introduces a great complexity to the finite element
formulation. Several approaches have been proposed in the litera-
ture to address this problem, but the most powerful is based on the
concept of the geometrically exact beam finite element, which can
be traced back to the works of Simo [1] and Cardona [2]. After these
pioneering works, other authors have addressed the problem of
geometrically exact beams [3–12]. For its capability to deal with
composite material, particularly useful in the present context are
the geometrically exact Eulerian and Total Lagrangian formulations
presented by Saravia et al. [11,13].

The cross-sectional stiffness that feeds the beam theory can be by
three different methods; 3D finite element analysis, 2D finite ele-
ment analysis and Classical Lamination Theory (CLT). 3D finite ele-
ment approaches are very effective and could be considered the
most accurate. The methods based on 2D finite element model of
the cross-section are mainly due to Hodges et al. [14–17]; they has
been frequently used in the analysis of composite blades and results
to be very effective. The CLT approaches generally rely on the con-
struction of an analytical function of the cross-section which is then
integrated to obtain the stiffness parameters [18]. They are very fast
and simple and if used carefully they can give excellent results.

Regarding multibody modeling of wind turbines, generally
beam finite element formulations are used because of its capability
to accurately predict the structural behavior of both the tower and
the blades, also accounting for the interaction phenomena between
them. The development of finite element algorithms for flexible
multibody applications started in the early nineties with the work
of Cardona et al. [19]. New approaches were quickly developed
[20,21] and the different successful implementations pushed the
subject from the scientific to the technological level. Most of the
multibody beam formulations were developed using an isotropic
constitutive law, although its capability to be fed with stiffness
matrices of composite cross-sections is retained. A few ad hoc geo-
metrically exact composite thin-walled beam formulations for
multibody applications have been reported in the literature. Most
of the formulations are based on the VAM (Variational Asymptotic
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Method) approach [14–17] were developed for helicopter rotor
modeling and were successfully applied to wind turbines in the
last years [22]. The theory is very effective and accurate, but it re-
quires a 2D finite element discretization of the cross-section in or-
der to obtain the cross-sectional stiffness.

It is also common to find wind turbine analyzes that use an iso-
tropic constitutive law [18,23–26], however this constitutive law is
not capable of accurately describing the real behavior modern
wind turbine blades, because they are built of highly heteroge-
neous sections made of composite materials. Also, many of the
flexible multibody formulations used for modeling wind turbine
blades assume linearity of the kinematic variables with respect
to some intermediate frame of reference [18,23,27–29]. Of course
this assumption introduces uncertainty, especially in the case of
the highly flexible modern wind turbine designs.

Geometrically nonlinear modeling of wind turbines is not an
extensively used approach [18]; although, it is possible to find sev-
eral studies about the dynamic behavior of wind turbines using com-
mercial software that provides geometrically nonlinear finite
element formulations [30]. Nonlinear aeroelastic simulation of
tilt-rotors using multibody procedures was done in [31] using the
nonlinear finite element formulation described in [32]. Also,
aero-servo-elastic modeling and control of wind turbines using
finite-element multibody procedures was done in [33]. Other inter-
esting works regarding the influence of geometrical nonlinearities in
the dynamic behavior of wind turbines can be found in [27,34–36].

According to the stated situation about the wind turbine model-
ing trends, we propose in this work a composite beam multibody for-
mulation that can contribute to the study of the nonlinear dynamic
behavior of these machines. The static part of the present formula-
tion is based on the adaptation of the previous developed geometri-
cally exact composite beam finite element formulation [13] to an
Updated Lagrangian approach; this is done to avoid the singularities
of the rotation tensor. The resulting approach is frame invariant and
thus capable of describing the deformation state of a multibody sys-
tem. In contrast to the developments in [13], the present formulation
can deal with the dynamic problem. This extension in the modeling
capability is based on the introduction of the key concepts of the dy-
namic of flexible multibodies; (i) the treatment of arbitrary rota-
tions, (ii) the development of the equations of joints and (iii) the
development of the inertial virtual work. The treatment of arbitrary
rotations is aided by the use of an Updated Lagrangian approach
based on spatial nodal directors; the singularities of the rotation
manifold are avoided by updating the reference rotation periodically
and the director field is used to evaluate the deformation state of the
bodies without being updated.

Also, a novel aspect of the present formulation is the develop-
ment of a viscous joint. This joint is formulated based on the dy-
namic relations between the director vectors of master and slave
nodes; thus, the dissipative effect of the joint can model the wind
turbine generator torque. The main advantages of modeling the
generator torque as a viscous joint are the avoidance of tracking
the orientation of the generator shaft and the elimination of the
complexities due to the work conjugacy of applied moments.

Results of the application of the present formulation to the anal-
ysis of a modern large scale wind turbine are presented; this in-
cludes several plots showing the temporal evolution of the most
important variables of the wind turbine multibody model
2. Beam theory

2.1. Kinematics

The kinematic description of the thin-walled beam relates two
states of a beam, an undeformed reference state B0, and a de-
formed state B. We associate to B0 a material frame Ei and to B a
spatial (floating) frame ei, both frames being orthonormal and
coincident at time t = 0. The absolute displacements that occur
during finite deformation are measured by a vector u = (u1, u2,
u3). The relation between the orthonormal frames is given by the
linear transformation:

ei ¼ Kðhðx; tÞÞEi; ð1Þ

where K(h(x, t)) is the total rotation tensor (a two-point tensor field
2SO(3); the special orthogonal Lie group) and h is the total Cartesian
rotation vector.

Using Eq. (1) we can write the position vectors of a point in the
beam in the reference and current configuration respectively as:

Xðx; n2; n3Þ ¼ X0ðxÞ þ
X3

i¼2

niEi;

xðx; n2; n3; tÞ ¼ x0ðx; tÞ þ
X3

i¼2

niei: ð2Þ

In these equations the first term stands for the position a reference
point and the second term stands for the position a point in the
cross-section relative to the reference point. In this work we set
the centroid to be the reference point. We can also express the spa-
tial position vector as:

xðx; n2; n3; tÞ ¼ x0ðx; tÞ þ Kðx; tÞn; ð3Þ

where n ¼
P3

i¼2niEi is the material position vector of a point with re-
spect to the centroid. Note that, x is the running length coordinate
and n2 and n3 are cross-section coordinates. Also, the displacement
field is:

uðx; n2; n3; tÞ ¼ x� X ¼ u0ðx; tÞ þ ðKðx; tÞ � IÞ
X3

2

niEi; ð4Þ

where u0 represents the displacement of the centroid. The nonlinear
manifold of 3D rotation transformations K (belonging to the special
orthogonal Lie Group SO(3)) is obtained mathematically by means
of a trigonometric form in terms of the Cartesian rotation vector h

[2,37]. The set of kinematic variables is defined by three displace-
ments and three increments of the rotational vector h as:

V :¼ f/ ¼ ½u0; h�T : ½0; ‘� ! R3g; ½u0; h�T

¼ ½u01;u02;u03; h1; h2; h3�T : ð5Þ

Note that although we have designed the rotational kinematic var-
iable as the incremental rotation vector with respect to the previous
converged configuration, the development of virtual quantities is al-
most identical to that of a formulation parametrized with the total
rotation vector. For the sake of simplicity in the notation, we will
develop the virtual quantities of the formulation naming h as the
rotation vector, without specifying if it is an incremental or total
quantity. In the finite element implementation we shall introduce
the key aspects of the Updated Lagrangian Approach and clearly
distinguish between total and incremental rotations.

2.2. Strains

In order to obtain the expression of the Green-Lagrange strains
we first obtain the derivatives of the position vectors of the unde-
formed and deformed configurations as:

X ;1 ¼ X 00 þ n2E02 þ n3E03; X;2 ¼ E2; X ;3 ¼ E3;

x;1 ¼ x00 þ n2e02 þ n3e03; x;2 ¼ e2; x;3 ¼ e3;
ð6Þ

where the subindex, i indicates derivative with respect to the ith
coordinate. Injecting these vectors into the GL strain
EGL ¼ 1

2 ðx;i � x;j � X;i � X;jÞ [38] we obtain three nonvanishing compo-



Fig. 1. Curvilinear coordinate system.
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nents; in vector notation: EGL = [E11 2E12 2E13]T. Note that the exis-
tence of transverse shear strains implies e1 � x,1 – 0.

We can write the GL strain as:

EGL ¼ D e; ð7Þ

where we have introduced a generalized strain vector such that:

D ¼
1 n3 n2 0 0 0 1

2 n2
2

1
2 n2

3 n2n3

0 0 0 1 0 �n3 0 0 0
0 0 0 0 1 n2 0 0 0

264
375;

e ¼

�
j2

j3

c2

c3

j1

v2

v3

v23

266666666666666664

377777777777777775
¼

1
2 x00 � x00 � X 00 � X

0
0

� �
x00 � e03 � X 00 � E

0
3

x00 � e02 � X 00 � E
0
2

x00 � e2 � X 00 � E2

x00 � e3 � X 00 � E3

e02 � e3 � E02 � E3

e02 � e02 � E02 � E
0
2

e03 � e03 � E03 � E
0
3

e02 � e03 � E02 � E
0
3

266666666666666664

377777777777777775
: ð8Þ

The generalized beam strains belong to a material description and
are expressed in a rectangular coordinate system.

Now we introduce a curvilinear coordinate system (x, n, s) and
transform the GL strains to this coordinate system, the cross-sec-
tion shape will be there defined by functions ni(n, s). The coordi-
nate s is measured along the tangent to the middle line of the
cross-section, in clockwise direction and with origin conveniently
chosen. Also, the thickness coordinate n(�e/2 6 e/2) is perpendicu-
lar to s and with origin in the middle line contour. To represent the
GL strains in this curvilinear coordinate system we make use of a
curvilinear transformation tensor P, which is formed by the deriv-
atives of the middle line coordinates of the cross-section �ni as:

P ¼
1 0 0
0 d�n2

ds
d�n3
ds

0 � d�n3
ds

d�n2
ds

264
375: ð9Þ

The tensor P transforms the rectangular strain measures in intrinsic
strain measures; hence the GL strain vector in the curvilinear coor-
dinate system is obtained by transforming the rectangular GL
strains as:bEGL ¼ ½Exx 2Exs 2Exn�T ¼ P EGL ¼ P D e: ð10Þ

The GL strain vector in curvilinear coordinates has the simple closed
expression:

bEGL ¼
�þ n2j3 þ n3j2 þ 1

2 n2
2v2 þ 1

2 n2
3v3 þ n2n3v23

�n02c2 þ �n03c3 þ n2
�n03 � n3

�n02
� �

j1

��n03c2 þ �n02c3 þ n2
�n02 þ n3

�n03
� �

j1

264
375: ð11Þ

It must be remembered that �ni are variables that locates the points
lying in the middle-line contour; note that the prime symbol has
been used to denote derivation with respect to the coordinate s.

The location of a point anywhere in the cross-section can be ex-
pressed as:

n2ðn; sÞ ¼ �n2ðsÞ � n
d�n3

ds
; n3ðn; sÞ ¼ �n3ðsÞ þ n

d�n2

ds
: ð12Þ

The strain state of the composite laminate (see.[39]) will be de-
scribed by a shell strain vector:

�s ¼ exx cxs cxn ,xx ,xs½ �T : ð13Þ

Now we introduce Eq. (12) into Eq. (11) to express the GL
strains as a function of the mid-surface coordinates �ni and its deriv-
atives, we find that a matrix T establish the relationship between
the GL curvilinear strains and the generalized strains as:
�s ¼ T e: ð14Þ

Substituting Eq. (12) into Eq. (11) and neglecting higher order terms
in the thickness (i.e. terms in n2) we obtain:

T ðsÞ¼

1 �n3
�n2 0 0 0 1

2
�n2

2
1
2
�n2

3
�n2

�n3

0 0 0 �n02
�n03

�n2
�n03��n3

�n02 0 0 0
0 0 0 ��n03

�n02
�n2

�n02þ�n3
�n03 0 0 0

0 �n02 ��n03 0 0 0 ��n2
�n03

�n3
�n02

�n2
�n02��n3

�n03
� �

0 0 0 0 0 � �n022 þ�n023
� �

0 0 0

26666664

37777775:
ð15Þ

It is noted that the matrix T plays the role of a double transforma-
tion matrix that directly maps the generalized strains e into the cur-
vilinear GL strain �s without the need of an intermediate
transformation (see Fig. 1).

2.3. Cross-sectional modeling

One of the most important aspects regarding wind turbine
blade modeling is the formulation of its cross-sectional stiffness.
As it can be seen from Fig. 2, the typical cross-section of a wind tur-
bine blade is highly heterogeneous; this greatly complicates the
cross-sectional modeling and a closed form solution for the
cross-sectional stiffness matrix is not possible to obtain. As it
was said, several methods for the determination of the cross-sec-
tional stiffness can be found in the literature. We propose an ap-
proach based on a 1D discretization of the cross-section; this is
particularly attractive for optimization studies, since it opens the
possibility for using cross-sectional parameters as target functions
without re-meshing the beam cross-section.

As it was stated, the present formulation can handle composite
materials in a geometrically exact framework without modifying
the classical thin-walled beam approach. We have chosen the GL
strain as a measure of strain; this implies that we must use a mate-
rial stress tensor as its work conjugate variable, this is the second
Piola-Kirchhoff stress tensor r. For an orthotropic lamina, the
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relationship between r and the GL strain tensor, can be expressed
in curvilinear coordinates as a matrix of stiffness coefficients Qij

[39,40]:

rxx

rss

rnn

rsn

rxn

rxs

2666666664

3777777775
¼

Q 11 Q12 Q13 0 0 Q 16

Q 12 Q22 Q23 0 0 Q 26

Q 13 Q23 Q33 0 0 Q 36

0 0 0 Q 44 Q 45 0
0 0 0 Q 45 Q 55 0

Q 16 Q26 Q36 0 0 Q 66

2666666664

3777777775

�xx

�ss

�nn

csn

cxn

cxs

2666666664

3777777775
; ð16Þ

where Qij are components of the transformed constitutive (or stiff-
ness) matrix defined in terms of the elastic properties (elasticity
moduli and Poisson coefficients) and fiber orientation of the
ply.[39]. In matrix form the above equation takes the form:

r ¼ Q�s: ð17Þ

Although the last relationships were derived for a single lamina,
we can obtain the constitutive relations for a laminate by spanning
the integrals in the thickness of the lamina over the different layers
of the laminate (each layer being a single lamina). Therefore, using
the hypotheses of plane stress in the laminate and plane stress, i.e.
Nss = 0.[39], the constitutive equations for the laminate are:

Nxx

Nxs

Nxn

Mxx

Mxs

26666664

37777775 ¼
A11 A16 0 B11 B16

A16 A66 0 B16 B66

0 0 AH
55 0 0

B11 B16 0 D11 D16

B16 B66 0 D16 D66

26666664

37777775
exx

cxs

cxn

vxx

vxs

26666664

37777775; ð18Þ

where Aij are components of the laminate reduced in-plane stiffness
matrix, Bij are components of the reduced bending-extension cou-
pling matrix, Dij are components of the reduced bending stiffness
matrix and AH

55 is the component of the reduced transverse shear
stiffness matrix.

We can express the above relation in matrix form as:

Ns ¼ C �s; ð19Þ

where C is the composite shell constitutive matrix and �s is the cur-
vilinear shell strain vector defined in Eq. (14).

Now, in order to reduce the 2D formulation to a 1D formulation,
we express the shell forces as a function of the generalized strains.
Replacing Eq. (14) into Eq. (19) we obtain;

Ns ¼ C T e: ð20Þ

Now, we transform the shell forces in Eq. (20) back to the ‘‘gen-
eralized space’’ by using the double transformation matrix T .
Hence, we obtain a sort of the transformed back shell stress as:

NG
s ¼ T T Ns ¼ T T C T e: ð21Þ

We see that NG
s is a vector of generalized shell stresses defined

in the global coordinate system. It is a function of the cross-section
mid-contour and thus integration over the contour gives the vector
of generalized beam forces S(x) (work conjugate with the general-
ized strains) as:

SðxÞ ¼
Z

S
NG

s ds ¼
Z

S
T T C T ds

� �
eðxÞ ¼ D eðxÞ; ð22Þ

D ¼
Z

S
T T C T ds: ð23Þ

The beam constitutive matrix D is obtained in a closed form or
assembled as a sum of one dimensional laminate segments and
thus it does not involve a 2D finite element analysis of the cross-
section. This method for obtaining the cross-sectional stiffness is
very simple and fast. Also, it opens the possibility of addressing
optimization problems of large deformation of thin-walled com-
posite beams.

3. Variational equilibrium

The weak form of equilibrium of a three dimensional body B is
given by [41,42]:

dWð/;d/Þ ¼
Z
B0

r �d� dV �
Z
B0

q0b �d/ dV �
Z
@B0

ðp �du0þm � dhÞdX;

ð24Þ

where b, p and m are: body forces, prescribed external forces and
prescribed external moments per unit length respectively. � is the
GL strain tensor, work conjugate to the second Piola-Kirchhoff
stress tensor r. Where r could be defined in either a rectangular
or a curvilinear coordinate system (such a distinction is, at least
here, unnecessary).

3.1. The virtual strains

The admissible variation of the director field is required to ob-
tain the variation of the generalized strains. From Eq. (1), we can
write:

dei ¼ dðKðxÞEiÞ ¼ dKðxÞEi: ð25Þ

The admissible variation of the rotation tensor (Lie variation) is
obtained by superposing an infinitesimal virtual rotation onto the
existing finite rotation, see e.g. [10,43]. This virtual rotation can be-
long to a material vector space or a spatial vector space, they will
be called dH and dw respectively. It is interesting to note that both
virtual rotations are elements of the tangent space at K, i.e.
TKSO(3), dH 2 Tmat

K and dw 2 Tspat
K . Both virtual rotation vectors

are often called spins.
Considering the latter we can construct a perturbed rotation

tensor by using either the spatial or the material form of com-
pound rotation as:

K� ¼ expð�d ~wÞK ¼ Kexpð�d eHÞ; ð26Þ

where � indicates the skew symmetric matrix of a vector b such
that ~ba ¼ b� a. Now, by making use of the cartesian rotation vec-
tor, we can propose:

K� ¼ expð~hþ �d~hÞ; ð27Þ

and try to find an incremental rotation tensor d~h such that it belongs
to the same tangent space as the rotation tensor ~h, i.e. TISO(3).
Recalling Eq. (26) for the material virtual rotation tensor and recall-
ing that K ¼ expð~hÞ we have:

expð~hþ �d~hÞ ¼ expð~hÞexpð�d eHÞ: ð28Þ

By taking derivatives with respect to the parameter � at � = 0 we
can obtain (see e.g. [8,44]):

dH ¼ Tdh; dw ¼ TTdh; ð29Þ

where T = T(h) is a linear mapping between the tangent spaces
Tspat

I SOð3Þ ! Tspat
K SOð3Þ [2]. Note that, unlike K, T changes the base

point I into K.
Now, recalling Eq. (26) we obtain the kinematically admissible

variation of the rotation tensor as:

dK ¼ d
d�
½Kexpð�d eHÞ�j�¼0 ¼ Kd eH ¼ d ~wK: ð30Þ

From the last equation it is straightforward to verify that
d eH ¼ KTd ~wK. Therefore, we can recall Eq. (25) to write:
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dei ¼ KðdH� EiÞ ¼ dw� ei: ð31Þ

Now, recalling Eq. (29), we can write the last equation as a function
of the total rotation vector like:

dei ¼ ðTTdhÞ � ei: ð32Þ

Noting that e0 ¼ gTT
h0e we can find the variation of the director’s

derivative as:

de0i ¼ ðdTT
h0 þ TTdh0Þ � ei þ ðTT

h0Þ � ½ðTTdhÞ � ei�: ð33Þ

The set of kinematically admissible variations can now be de-
fined as:

dV :¼ fd/ ¼ ½du0; dh�T : ½0; ‘� ! R3jd/ ¼ 0 on Sg; ð34Þ

where S describes de boundaries with prescribed displacements
and rotations.

The variations of the directors and its derivatives are now used to
obtain the virtual generalized strains. Considering that d Ei = 0 and
that dX 00 ¼ 0, and performing the variation to Eq. (8) we obtain:

de ¼

x00 � du00
e03 � du00 þ x00 � de03
e02 � du00 þ x00 � de02
e2 � du00 þ x00 � de2

e3 � du00 þ x00 � de3

de02 � e3 þ e02 � de3

2 de02 � e02
� �

2 de03 � e03
� �

de02 � e03 þ e02 � de03

266666666666666664

377777777777777775
: ð35Þ

To maintain the compactness of the formulation, it will be use-
ful to write the last expression as a function of a new set of inter-
mediate variables du as:

de ¼ Hdu; ð36Þ

where

H ¼

x00
T 0 0 0 0 0

e03
T 0 0 0 0 x00

T

e02
T 0 0 0 x00

T 0

eT
2 0 x00

T 0 0 0

eT
3 0 0 x00

T 0 0

0 0 0 e02
T eT

3 0

0 0 0 0 e02
T 0

0 0 0 0 0 e03
T

0 0 0 0 e03
T e02

T

26666666666666666664

37777777777777777775

; du ¼

du00
dh

de2

de3

de02
de03

2666666664

3777777775
: ð37Þ
3.2. Virtual work of internal and inertia forces

Recalling Eq. (24), the first term can be written in its shell form
as:

dWið/; d/Þ ¼
Z
‘

Z
S

d�T
s Ns ds dx: ð38Þ

The reduction to a one dimensional formulation is now aided by the
deduction of 1D beam forces presented in Eq. (22). Transforming
the virtual curvilinear shell strains into virtual generalized strains
we can rewrite the last expression as:

dWið/; d/Þ ¼
Z
‘

deT
Z

S
T T Nsds

� �
dx: ð39Þ

In which the term in parentheses is the generalized beam forces
vector S(x) (see Eq. (22)). Lastly, we write the one dimensional ver-
sion of the virtual work principle in terms of the generalized strains
and the generalized beam forces:

dWið/; d/Þ ¼
Z
‘

deT S dx: ð40Þ

The virtual work of external forces can be written as:

dWeð/; d/Þ ¼
Z

l
ð�n � du0 þ �m � dhÞdx; ð41Þ

where �n is the external forces vector and �m the external moments
vector. These vectors are defined according to:

�n ¼
Z

S

Z
e

b dn dsþ
Z

S
t dsþ F i;

�m ¼
Z

S

Z
e

X � b dn dsþ
Z

S
X � t dsþMi;

ð42Þ

where b is the distributed body force vector and t is external stress
vector and Fi and Mi are point loads and moments.

Next we derive the virtual work of the inertia forces. Since they
play a key role in the dynamics of the multibody system, its treat-
ment should be fully consistent with the geometrical hypotheses of
the preceding theory.

Of course both a material and a spatial approach can be used to
obtain the virtual work of the inertia forces; it is often preferred to
use the material version in order to avoid the Lie derivative in the
linearization process, we stick to that approach in what follows.

The inertial virtual work of the beam is expressed as:

dWað/; d/Þ ¼
Z
B0

q0dxT €x dx: ð43Þ

Using a material description the virtual configuration and accelera-
tion give:

dx ¼ dx0 þ dKn ¼ dx0 þ Kd eHn

€x ¼ €x0 þ €Kn ¼ €x0 þ ðK eX eX þ K _eXÞn: ð44Þ

We can operate over the last expression to obtain:

dWað/; d/Þ ¼
Z
B0

q0ðdx0 þ Kd eHnÞ
T
½ €x0 þ ðK eX eX þ K _eXÞn�dx: ð45Þ

Integrating over the cross-section we obtain:

dWað/; d/Þ ¼
Z

l
m dxT

0
€x0

� �
þ dHTðJ _Xþ eXJ XÞdx; ð46Þ

where we have assumed that pole (reference point) of the cross-
section is coincident with the center of mass, then

R
A ndA ¼ 0.

Therefore, the cross-sectional mass and constant inertia tensors
are given by:

m ¼
Z

A
q0 dA; J ¼

Z
A
q0

~nT~ndA; ð47Þ

where q is the material density. It is interesting to note that the
constant inertia tensor is characteristic of material descriptions.

4. Linearized equilibrium equations

The linearization of the equilibrium equations is necessary to
solve the nonlinear system of equation by means of the Newton
method. The linearization of the variational equilibrium equations
is obtained through the directional derivative and, assuming con-
servative loading, its application gives four tangent terms; the
material and the geometric stiffness matrices, the mass tangent
matrix and the load tangent matrix.

Applying the directional derivative in the direction D/ to the
internal virtual work and recalling Eqs. (40) and (35), we obtain
the tangent stiffness as:
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DdWið/; d/Þ � D/ ¼
Z
‘

ðdeTDDeþ DdeT SÞdx; ð48Þ

where ‘ is the length of the undeformed beam and D indicates
directional derivative.

Using Eq. (36) the first term of the right hand side of the above
equation gives de material stiffness terms as:

D1dWið/; d/Þ � D/ ¼
Z
‘

duTHTDHDu dx: ð49Þ

On the other hand, from the second term, the general expression of
the geometric stiffness operator gives:

D2dWið/; d/Þ � D/ ¼
Z
‘

DdeT S dx: ð50Þ

The linearization of the virtual generalized strains is:

Dde ¼

du0 � Du00
du00 � De03 þ de03 � Du00 þ x00 � Dde03
du00 � De02 þ de02 � Du00 þ x00 � Dde02
du00 � De2 þ de2 � Du00 þ x00 � Dde2

du00 � De3 þ de3 � Du00 þ x00 � Dde3

de02 � De3 þ de3 � De02 þ e3 � Dde02 þ e02 � Dde3

2 e02 � Dde02 þ de02 � De02
� �

2 e03 � Dde03 þ de03 � De03
� �

de02 � De03 þ de03 � De02 þ e03 � Dde02 þ e02 � Dde03

266666666666666664

377777777777777775
: ð51Þ

To complete de development of the geometric stiffness matrix,
we need to find the linearization of the virtual generalized strains,
i.e. DdeT, for what we first need to obtain the linearized virtual
directors. Using Eq. (32), the linearization of the virtual directors
can be obtained as:

Ddei ¼ ðDTTdhÞ � ei þ ðTTdhÞ � ½ðTTDhÞ � ei�: ð52Þ

Now we need to linearize the virtual work of the inertia forces.
Using Eq. (29) we can obtain the angular velocity and angular accel-
eration spin vectors as:

X ¼ T _h; X ¼ _T _hþ T €h: ð53Þ

Replacing the above expression into the expression (46) we obtain:

dWað/; d/Þ ¼
Z

l
m dxT

0
€x0

� �
þ dhTðTT J _T _hþ TT J T €h

þ TT gðT _hÞJ T _hÞdx: ð54Þ

The last expression is already in linear form with respect to the
acceleration field €/, so its linearization involves only the lineariza-
tion with respect to a change in configuration and velocities:

DdWað/;d/Þ � ½Dð/; _/; €/Þ� ¼DdWa � ½D/�þDdWa � ½D _/�þ
Z

l
d/TMD€/:

ð55Þ

In the above equation, the mass matrix is:

M ¼
m 0
0 TT J T

� �
; ð56Þ

where m = m I, being I is the 3 � 3 identity matrix.
The linearization of the virtual work of the inertia forces in the

directions D/ and D _/ give raise to centrifugal and gyroscopic iner-
tia matrices. Numerical tests to be presented in a future work con-
firm that centrifugal and gyroscopic inertia effects are negligible,
this preliminary conclusion is in line with the observations made
in [45]. Because it is costly to evaluate the complex matrices that
evolve from the treatment of these effects, they will be disregarded
hereon. Thus, the linearized version of the virtual work of the iner-
tia forces reduces to:

DdWað/; d/Þ � ½Dð/; _/; €/Þ� ¼
Z

l
d/TMD€/: ð57Þ

Now, the linearization of the virtual work of the external forces
gives raise to the tangent load stiffness; only the case of conserva-
tive loading makes this stiffness zero. Clearly, for wind turbine
applications the case of conservative loading is too restrictive since
the aerodynamic loading is of course nonconservative.

Adopting a spatial description and integrating distributed forces
and moments we can express the virtual work of external forces
(41) as:

dWeð/; d/Þ ¼
Z

L
dxT

c ðF þ F
!ÞdV þ

Z
L

dhTðM þ M
�!þMÞdV ; ð58Þ

where F and F
!

are fixed and follower forces respectively and
M; M

�!
and M represent moment related quantities associated to

fixed moments, follower moments and imposed moments respec-
tively [46]. Assuming that moments can be generated either by
eccentric forces or point torques, the last expression gives:

dWe ¼
Z

L
dxT

c ðP þ K P
!ÞdV þ

Z
L

dhTðTT ~nKT P þ TT~n P
!

þ T ��mÞdV ; ð59Þ

where P and P
!

are the initial components of the fixed and follower
forces and ��m is the applied point torque.

Assuming that the external forces are not dissipative, the linear-
ization of its virtual work can be obtained as:

DdWeð/; d/Þ � ½Dð/; _/; €/Þ� ¼ DdWeð/; d/Þ � ½D/�; ð60Þ

it gives:

DdWeð/; d/Þ � ½D/� ¼
Z

L
dxT

c DK P
!

dV þ
Z

L
dhTðDTT~nKT P

þ TT ~nDKT P þ DTT~n P
!þ DT ��mÞdV : ð61Þ

It is possible to write the last expression as:

DdWeð/; d/Þ � ½D/� ¼
Z

L
d/TLD/dx;

L ¼
0 NKðP

!Þ
0 NTT ð~nKT PÞ þ TT~nNKT ðPÞ þ NTT ð~n P

!Þ þ NTð ��mÞ

" #
;

ð62Þ

being NA and operator such that for any matrix A and any vector b:

NAðbÞ � ½D/� ¼ D½AðbÞ� � ½D/�: ð63Þ

As it can be seen from the expression of the operator L, there exist
linearization terms for all external loading except for the case of
noneccentric fixed forces; except for this case, all the loading is
nonconservative.

5. Finite element formulation

As it was mentioned, the finite element implementation is
based on an Updated Lagrangian procedure; some aspects are sim-
ilar to that of the Total Lagrangian implementation in [13] and will
be omitted. The main motivation for the proposition of an Updated
Lagrangian formulation is due to the fact that the updating proce-
dure can effectively avoid the singularities that arise when the
rotation vector modulus is near 2p. In the present formulation,
after each time step the rotation vector is set to zero and the total
rotation is stored as the reference rotation of the next time step.
Contrary to the mentioned procedure for the rotation vector, the
director field is updated iteratively, so it has always a total (spatial)
meaning.
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In the present implementation two triads per element (one for
each node) form the basis for the intermediate kinematic variables;
see Fig. 3. Thus, the obtention of the derivatives of the director field
can be obtained by interpolation.

The director field is updated iteratively at the nodes using an
incremental scheme as:

êtþ1
i ¼ KDðhÞêt

i ; ð64Þ

where êtþ1
i is the vector i of the director triad at time t þ 1; êt

i is the
vector i of the director triad at time t and KD(h) is the incremental
rotation tensor. The nodal triads give us the possibility to approxi-
mate the derivative of the director field as:

e0nþ1
i ffi

Xnn

j¼1

N0jê
j nþ1
i : ð65Þ
5.1. Interpolation and directors update

The finite element implementation is based on linear interpola-
tion and one point reduced integration; thus avoiding shear lock-
ing. A relevant procedure of the finite element implementation is
the use of interpolation to obtain the derivatives of the director
field, this greatly simplifies the expression of the tangent stiffness
matrix. It must be noted that although the interpolation operation
causes the orthonormality property of the interpolated triad to be
lost, this is not a drawback since the generalized deformations are
evaluated in a Total sense. This is, deformations are calculated from
nodal triads and after the iteration process the interpolated triads
are discarded.

We interpolate the position vectors in the undeformed and de-
formed configuration as:

X ¼
Xnn

j¼1

Nj
bX j; x ¼

Xnn

j¼1

NjðbX j þ ûjÞ; ð66Þ

where ^ indicates a nodal value, j is the node index and nn is the
number of nodes per element. Also, we define:

N j ¼
Nj 0 0
0 Nj 0
0 0 Nj

264
375; Nj ¼

Nj 0
0 N j

� �
: ð67Þ

The same interpolation is also applied to the configuration and its
variation, so:

/ ¼
Xnn

j¼1

Nj/̂j; /0 ¼
Xnn

j¼1

N0j/̂j; d/ ¼
Xnn

j¼1

Njd/̂j; d/0

¼
Xnn

j¼1

N0jd/̂j: ð68Þ

A simple way to obtain the derivatives of the director field is to use
interpolation. So, being Nj linear Lagrangian shape function coeffi-
cients, it will be assumed that:
Fig. 3. Updated Lagrangian finite element.
e0i ffi
Xnn

j¼1

N0jê
j
i; ð69Þ

where êj
i stands for the director i at the node j and nn is the number

of nodes per element, which in the present case is 2.
It is very important to observe that the use of interpolation of tri-

ads to obtain the derivatives of the director field actually causes a
minor loss of accuracy in the evaluation of the deformation state of
the element if compared to that given by the use of derivation of
the right hand side of Eq. (1), as done in the Eulerian formulation
developed in [11]. This drawback disappears as the mesh is refined,
then the deformation state converge to that of the Eulerian formula-
tion; for the present application we assume that the shape change of
the cross-section impose a restriction on the element length that
precludes the emergence of the mentioned accuracy problem

5.2. Discrete virtual directors

Assuming holonomic constraints we may interchange varia-
tions and derivatives, i.e. d(e0) = (de)0. Using this property, we can
use Eq. (69) to obtain the variation of the directors and its deriva-
tives as:

dei ffi
Xnn

j¼1

Njdêj
i; de0i ffi

Xnn

j¼1

N0jdêj
i: ð70Þ

The obtention of the linearization of the directors and its deriv-
atives is more involved and requires the linearization of the tan-
gential transformation. Observing the linearization of the
variation of the directors appears in the virtual strains (and also
in its linearization) always pre multiplied by some constant vector
a, for simplicity in the arranging of terms, it is preferable to obtain
the expression for this product and not only for the second varia-
tion. Thus, recalling Eq. (52), we find that:

a � Ddei ¼ a � DTT
Ddh

	 

� ei þ TT

Ddh
	 


� TT
DDh

	 

� ei

h in o
: ð71Þ

Switching to matrix notation, using spinors in place of cross-
products and reordering some terms we can re-write the above
equation as:

a � Ddei ¼ dhTDTDð~eiaÞ þ dwTð~a~eiÞDw; ð72Þ

where ~̂ej
i is the spinor of the director i at node j and:

DTDð~eiaÞ ¼ D½TDð~eiaÞ� � Dh: ð73Þ

The linearization of the term TDð~eiaÞ can be found in [10,14]. Now,
recalling Eq. (29) it is possible to rewrite the discrete form of Eq.
(72) as:

a � Ddei ffi dĥT
Xnn

j¼1

Nj N a; êj
i

	 

þ TD~a~̂ej

iT
T
D

h i" #
Dĥ; ð74Þ

where

N a; êj
i

	 

¼ D½TDð~eiaÞ� � Dh: ð75Þ

In the same form, the expression for the second variation of the
director’s derivatives can be found in its discrete form by making
use of Eq. (70):

a � Dde0i ¼ dĥT
Xnn

j¼1

N0j N a; êj
i

	 

þ TD~a~̂ej

iT
T
D

h i" #
Dĥ: ð76Þ
5.3. Discrete virtual strains

Having derived the expressions for the discrete virtual directors,
its derivatives and its corresponding linearization, it is now possi-
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ble to find a discrete expression for the discrete virtual generalized
strain and its linearization.

We can relate the intermediate vector du to the kinematic vec-
tor d/ ¼ dû0j dĥj

� �T
by means of a nodal matrix B as:

du ffi
Xnn

j¼1

Bjd/̂j; ð77Þ

where

Bj ¼

N 0j 0

0 NjT
T
Dj

0 Nj~e
jT

2 TT
Dj

0 Nj~e
jT

3 TT
Dj

0 N0j~e
jT

2 TT
Dj

0 N0j~e
jT

3 TT
Dj

26666666666664

37777777777775
; ð78Þ

where � indicates the skew symmetric matrix of a vector and ^
indicates a nodal variable. Thus ~ei

j is a skew director in the direction
j of the node i and TT

Dj is the transpose of the incremental tangential
transformation at the node j. Henceforth summation over index j
will be implicitly defined, so we will omit the summation symbol
and the node index j.

Finally, recalling Eq. (36) we can write the virtual generalized
strains as:

de ffi HBd/̂: ð79Þ

The discrete form of the incremental virtual strains, i.e. Dde, is more
difficult to obtain. Using the structure of the geometric stiffness
operator of Eq. (50) we can obtain a matrix G as to satisfy the equal-
ity DdeT S ¼ duTGDu, a lengthy manipulation gives:

G ¼

S1 0 Q 2 Q 3 M3 M2

A 0 0 0 0
0 0 0 0

0 M1 0
Sym 2P2 P23

2P3

26666666664

37777777775
; ð80Þ

where the term A is equivalent to that of the Total Lagrangian For-
mulation [13], except that the total tangential transformation must
be replaces by the incremental tangential transformation.

5.4. The tangent stiffness matrix

The derivation of the tangent stiffness matrix is similar to that
of the Total Lagrangian formulation, so we present it here briefly.
Introducing Eq. (77) into Eq. (49) we can obtain the discrete form
of the material virtual work as:

D1dWið/̂; d/̂Þ � D/̂ ¼
Z
‘

ðBd/̂ÞTHTDHðBD/̂Þdx: ð81Þ

Then, the element material stiffness matrix is:

kM ¼
Z
‘

BTHTDHBdx: ð82Þ

Proceeding in a similar way, we use Eqs. (80) and (50) to obtain
the discrete geometric stiffness terms as:

D2dWið/̂; d/̂Þ � D/̂ ¼
Z
‘

ðBd/̂ÞTGðBD/̂Þdx: ð83Þ

Therefore, the element geometric stiffness matrix becomes:

kG ¼
Z
‘

BTGBdx: ð84Þ
Following the standard steps of the finite element method, the
element and global tangent stiffness matrices are:

kT ¼
Z
‘

BTðHTDHþGÞBdx;

K ¼
Xels

e¼1

kT ; ð85Þ

where the summation operator is used to represent the finite ele-
ment assembly process.

5.5. The tangent mass matrix

Using linear interpolation for the acceleration field, i.e.
€/ ¼

Pnn
j¼1Nj

€̂/n, we can obtain the discrete version of the mass ma-
trix of the Eq. (56). First, the discrete version of the linearized vir-
tual work of the acceleration forces is written as:

DdWað/; d/Þ � ½Dð/; _/; €/Þ� ffi
Z

l
d/̂TNTMND €̂

/dx; ð86Þ

where ^ indicates nodal values and we have defined N ¼
Pnn

j¼1Nj

and

d/ ffi
Xnn

j¼1

Njd/̂
j: ð87Þ

Implicitly assuming summation over index j we can write the dis-
crete form for the tangent mass matrix (56) as:

M ¼
Z

l
NTMNdx: ð88Þ
6. Multibody dynamics

6.1. Equations of motion of the constrained system

The formulation of the dynamic behavior of multibody systems
gives a set of differential-algebraic system of equations if Lagrange
multipliers are used to impose the constraints [45]. In the present
work, the numerical solution of the constrained algebraic problem
is found through the augmented Lagrangian method.

The equations of motion of the multibody system are:

M€/þ BTðpUþ kkÞ ¼ gð/; _/; tÞ
kUð/; tÞ ¼ 0;

(
ð89Þ

where BT is the constraints gradient matrix, U is the constraints
vector, k is the Lagrange multipliers vector and g is the apparent
forces vector (sum of internal, external and complementary inertia
forces). Also, p and k are the penalty and scaling factors.

The linearized discrete equations of motion are obtained using
Eqs. (5) and (8) as:

M 0
0 0

� �
D €̂

/

Dk

" #
þ Kþ pBT B kBT

kB 0

" #
D/̂

Dk

" #
¼

r
�U

� �
; ð90Þ

where r is the vector of residual forces:

r ¼ gð/; €/; tÞ �M
€̂
/� BTðpUþ kkÞ: ð91Þ

It is interesting note that we have neglected dependence of inertia
forces with the configuration, which is consistent with the pre-
sented derivation of the inertial virtual work. Also, since the penalty
factor was chosen to be sufficiently large, we assumed that the ef-
fect of the geometric stiffness associated to the Lagrange multipliers
is negligible compared to the effect of the penalty term, i.e.
pBTB� @/(kBTk).
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6.2. The viscous hinge joint

In a horizontal axis wind turbine the mechanism that connects
the tower and the rotor can be modeled as a viscous hinge joint;
we present in what follows the formulation of this typical joint
in the framework of the present formulation. Extension of the for-
mulation to other joints is straightforward.

The formulation of joints is based on kinematic relations be-
tween the configuration variables of two nodes. Often, the treat-
ment of rotation kinematic constraints is aided by the definition
of nodal triads that are not part of the beam finite element formu-
lation. In the present formulation, the treatment of rotational con-
straints is greatly simplified by that fact that nodal triads are part
of the finite element model, and thus no additional triad definitions
are needed.

Following the idea of Cardona et al. [19], each joint will be for-
mulated as an element. Hence, an element stiffness matrix and an
element internal force vector is provided by the joint formulation
and assembled into the global system in a conventional manner
and the Lagrange multipliers associated with the imposed con-
straints are treated as additional degrees of freedom.

The hinge imposes three vectorial constraints between two
nodes, a displacement vector constraint and two director con-
straints. We express them as:

U ¼
uB � uA

eA
1 � eB

2

eA
1 � eB

3

264
375 ¼ 0: ð92Þ

The variation of the constraints give:

dU ¼
duB � duA

deA
1 � eB

2 þ eA
1 � deB

2

deA
1 � eB

3 þ eA
1 � deB

3

264
375 ¼ duB � duA

d ~wAeA
1

� �
� eB

2 þ eA
1 � d ~wBeB

2

� �
d ~wAeA

1

� �
� eB

3 þ eA
1 � d ~wBeB

3

� �
264

375: ð93Þ

Reordering some terms and invoking Eq. (29) we can re-write
the last expression as:

dU ¼ Bd/̂; where B ¼
�I 0 I 0
0 ~eA

1eB
2

� �T TT
1 0 ~eB

2eA
1

� �T TT
2

0 ~eA
1eB

3

� �T TT
1 0 ~eB

3eA
1

� �T TT
2

264
375:
ð94Þ

In the above expression, B is the 5 � 12 constraints gradient matrix.
As it can be seen, the expression of the constraints gradient matrix
is very simple and does not contain the rotation tensor.

Now, the discrete equation of motion for a rigid and massless
hinge element can be written as:

pBT B kBT

kB 0

" #
D/̂

Dk

" #
¼ �BTðpUþ kkÞ

�U

" #
: ð95Þ

Both the pseudo stiffness matrix and the pseudo internal forces vec-
tor are assembled into the global system in a conventional fashion.

The derivation of the viscous forces requires some algebraic
manipulation. The rotational relation between the master and
slave nodes of the hinge can be expressed as:

Ks ¼ KmKj; ð96Þ

where Ks, Km and Kj are the rotation tensor of the slave node, the
rotation tensor of the master node and the joint rotation tensor. The
joint rotation tensor can obtained through the exponential map of
the joint rotation vector:

hj ¼ hs � hm; ð97Þ

where hs and hm are the slave node and the master node rotation
vector, respectively. Note that addition can be done since both vec-
tors belong to the same tangent space, i.e. Tm
KR

, being KR the refer-
ence rotation tensor.

The viscous moment originated in the joint can be seen as an
entity of Tm

K because of its proportionality with the material angu-
lar velocity, this is:

Mv ¼ cvXj; ð98Þ

being Xj the material angular velocity of the joint, which can be
written as:

Xj ¼ Tjð _hs � _hmÞ; ð99Þ

where we have exploited the relation _hj ¼ _hs � _hm.
According to a material description, the virtual work of the dis-

sipative torque is:

dWv ¼ dHj �Mv ¼ dHj � cvXj: ð100Þ

The expression of the material spin of the joint, i.e. d Hj, can be ob-
tained calculating the variation of Eq. (96), this is:

dKs ¼ dKmKj þ KmdKj;

Ksd eHs ¼ Kmd eHmKj þ KmKjd eHj:
ð101Þ

Using some algebra we can obtain:

dHj ¼ dHs � KT
j dHm: ð102Þ

Then the virtual work of the dissipative moments reads:

dWv ¼ dHs � KT
j dHm

	 

� ½cvT jð _hs � _hmÞ�: ð103Þ

In matrix form it can be written as:

dWv ¼ dhTCv _h

Cv ¼ cv
T sT j �T sT j

�KT
j TmTj KT

j TmT j

" #
; dh ¼

dhs

dhm

� �
; _h ¼

_hs

_hm

" #
:

ð104Þ

From the above development we can finally obtain the viscous no-
dal moment vector as:

Mv ¼ Cv _h: ð105Þ

The Updated Lagrangian version of the matrix Cv is simply:

Cv ¼ cv
TDsTDj TDsð�TDjÞ

�ðKRjKDjÞT TmT j ðKRjKDjÞT TDmTDj

" #
; ð106Þ

where the subscript D indicates an incremental matrix and the sub-
script R indicates reference; thus, KRj and KDj are the reference and
incremental rotation matrices of the joint respectively.
7. Application

7.1. A simple two body test

In order to evaluate the performance of the multibody imple-
mentation of the present finite element, we set a double pendulum
beam configuration made of EGlass-Epoxy that falls under the ef-
fect of gravity. The pendulum has a square cross-section with
b = 0.1, h = 0.1, e = 0.01, laminated in a {45, �45, �45, 45} configu-
ration, see Fig. 4. The material properties of the composite layers
are given in Table 1; Exx is the Young modulus in the axial direction,
Ess is the Young modulus in the tangential direction, Gxs is the in-
plane shear modulus, Gxn is the transverse shear modulus and mxs

is the in-plane Poisson modulus. Note that x is the longitudinal axis
of the pendulum.



Gravity

Hinge

1 1

Fig. 4. Bi-pendulum configuration.

Table 1
Material properties of EGlass–Epoxy.

Exx Ess Gxs Gxn mxs q

45.0 � 109 12.0 � 109 5.5 � 109 5.5 � 109 0.3 2000
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We compare the proposed pendulum against an Abaqus 3D
shell model, the Fig. 5 presents the evolution of the tip vertical dis-
placements in time.

It can be seen from Fig. 5 that the displacements obtained with
the present finite element exactly match those obtained with the
Abaqus Shell model; the same agreement is obtained in velocities
and accelerations. It must be noted that since the double pendulum
quickly adopts a chaotic behavior, the correlation suddenly ends
after a not very long period of time. Although both formulations
are written in different platforms and computational cost compar-
isons may be not accurate, a glance at time consumptions shows
that performing 1000 time steps takes Abaqus 1092 s, while the
proposed finite element Matlab implementation takes only 240 s.
7.2. Application to wind turbine modeling

In the following we present the results of the application of the
present finite element to the simulation of a modern wind turbine
design. This wind turbine experiment displacements and rotations
in the nonlinear range, where the present finite element should be-
have efficiently.

The wind turbine is a 13.2 MW machine, its configuration and
design parameters were obtained from [47]. The machine has three
100 m long blades and an all fiberglass material mapping, see Fig. 6
(dimension are in meters).

The multibody wind turbine model consist of 66 finite ele-
ments: 51 beam finite elements were used to discretize the blades
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Fig. 5. Tip displacements of the composite bi-pendulum.
(17 elements per blade), 2 rigid and 2 mass finite elements were
used to model the nacelle, a viscous joint element was used to
model the tower-rotor interaction and 10 beam elements were
used for the tower. Excepting for the joint and the nacelle ele-
ments, all the finite elements assume a composite material map-
ping as specified in [47].

The aerodynamic forces were obtained by a BEM based aero-
elastic formulation that is consistent with the finite kinematic
hypothesis; this formulation will be presented in a future work.
It must be noted that most of the tests were conducted without
considering the effect of structural damping, mainly because the
traditional damping models that assume that damping forces are
a function of the configuration velocities are not consistent with
geometrically exact concept. However, in order to have a quick pic-
ture of the effects of structural damping in the response of the sys-
tem, we have briefly analyzed at the end of this section a simplified
solution of the inclusion of structural damping.
7.3. Wind turbine start

Firstly, we test the behavior of the multibody formulation when
modeling the wind turbine during its start process. This is a very
important test since the induced vibrations in the wind turbine
reach its maximum during the start, and thus not only the time
integration algorithm must deal with fast transient conditions
but also the structural formulation must deal with high strains
and stresses.

There are several ways to bring the wind turbine multibody
model into motion, e.g.: impose a velocity field in the rotor, impose
a torque in the hinge joint, impose a tangential force in the blades,
etc. The imposition of the velocity field requires a special program-
ming routine for assigning to every degree of freedom the corre-
sponding velocity (which is quite complex for the rotations). The
imposition of a hinge torque is very simple, but convergence is dif-
ficult to obtain when it is desired to get a high angular acceleration.
Finally, using a tangential force to induce the motion is very simple
since finite rotations do not play a role in the imposition algorithm
and also there are no convergence inconveniences.

Considering the comments above, the test starts with the impo-
sition of a tangential force in the blades lasting 2 s. Then the force
is set to zero and a wind blowing at 13 m/s is imposed; the wind
continues blowing for 18 s. We chose to make the starting process
very fast since it makes the system to oscillate quickly and then the
multibody formulation can be tested.

The Fig. 7 presents the first 20 s of the evolution of the flapping
acceleration at the three blade tips. As it can be seen, the high fre-
quency vibrations induced by the starting force are quickly
damped out by the aerodynamic damping (note that no structural
damping was considered). On the contrary, the blade free vibra-
tions that occur after retiring the force are not damped by the aero-
dynamic forces.

The same behavior can be observed on the root flap-wise and
lag-wise moments, see Figs. 7 and 8. It is important to note that
the present finite element naturally gives the flap-wise and lag-
wise moments as a result, i.e. it is not necessary to perform any
force or moment projections. This is because the generalized forces
(and moments) are defined in the element coordinate system,
which has local triads oriented normal and parallel to the chord,
i.e in the flap-wise and lag-wise directions.
7.4. Normal power production

Now we present the results obtained for the normal operating
condition of the wind turbine; according to the IEC Standard, this
condition is generated by a 11.3 m/s wind velocity. The test is con-
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ducted during 100 s, what is enough to get the steady state re-
sponse of the wind turbine (see Fig. 9).

The Fig. 10 shows the evolution of the tip displacements at the
three blades. To understand the time history of displacement it
must be noted that the wind turbine rotor is spatially rotated in
two axed by the pre-cone and tilt angles, 5 and 2.5 degrees respec-
tively. As it can be seen, the displacement time history is consistent
with the wind turbine geometry. However it must be stressed the
fact that in the present formulation the displacements and rota-
tions of the bodies has a ‘‘total’’ meaning; thus it is not possible
to directly obtain from the time histories of the kinematic variables
the magnitudes of the displacements and rotations that is associ-
ated to the deflection of a certain component of the multibody sys-
tem. Of course, this drawback can easily be overcome by different
methods, as for example adding tracking references frames.

Fig. 11 show the evolution of the flap-wise root moments for
the three blades during the whole test. The bending moments in
the blades give consistent results when comparing the blades to
each other. Also, the magnitudes of the moments agree with those
obtained by means of the linear beam multibody model used in
[47], which predicts a flap-wise moment of approximately
5000 KNm.

The Fig. 12 shows the evolution of the angle of attack, measured
in degrees, for three different positions of one of the blades. It can
also be seen that angle of attack oscillates during the whole test,
this oscillation is generated by different sources: (i) by the flex-
ural-torsional geometrical and constitutive coupling in the blade,
(ii) by the cone shape of the plane of rotation and (iii) by the aero-
dynamic moment. In a future work the incidence of this sources in
the magnitude of the effective angle of attack will be analyzed in
detail. Note that the angle of attack is near 80 degrees at the start
of the test because at this time the tangential velocity of the blade
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Fig. 11. Flap-wise moments at blade roots.
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is zero and then the local blade velocity is a result of the wind
speed only.
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7.5. Simplified damping modeling

As it was stated before, the vibration of the blades is damped by
both the structural and the aerodynamic damping. However, it is
very important to note that in the present formulation the typical
techniques for applying the structural damping cannot always be
applied consistently without damping the rigid body motion; this
is the case of Rayleigh damping. This is because the velocity vector
has a total meaning, which implies that it is not possible to know
what portion of the velocity of a point associated to a certain
deflection and what portion is associated to a rigid body motion.
Therefore, if one assumes that the damping forces are a function
of the configuration velocities, then these forces commonly contain
a fictitious component associated to the rigid body motion. A com-
mon procedure for modeling damping in multibody dynamics is to
use stiffness proportional damping, in which the fact that the rigid
body velocity vector lies in the nullspace of the stiffness matrix en-
sures that there the mentioned rigid body damping forces do not
exist. Although stiffness proportional damping damps excessively
the higher frequencies and do not provides low frequency damp-
ing, it is a very attractive approach because of its simplicity. This
is the approach the we used in the present example.

The Figs. 12 and 13 show the response of the multibody wind
turbine model during the start. As it can be seen, the effect of the
structural damping on the blade vibration is responsible for damp-
ing the free vibration modes.

Considering the results presented above and the fact that a con-
sistent formulation for the structural damping as configuration
velocities proportional form is not convenient in the present con-
text, it is undoubtedly necessary to derive an alternative formula-
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tion for the structural damping; probably, to consider the damping
forces as a function of the strain rate could be effective.
7.6. Normal wind turbine operation with transient gust

We analyze in the present example the behavior of the multi-
body wind turbine model in a high deformation scenario origi-
nated by an operating gust in the absence of a control system for
the generator brake. In this case, the wind blows with a mean value
of 11.3 m/s and a gust of 25 m/s is imposed linearly from 20 to 40 s
(see Fig. 14).

The Fig. 15 shows the time history of the flap-wise moments in
the blade roots and the Fig. 16 shows the deformed shape of the
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wind turbine for an instant near the maximum deflection configu-
ration. The proposed formulation results to be very stable still in
this high deformation scenario.
8. Conclusions

An Updated Lagrangian geometrically exact composite beam
element for multibody applications has been presented. In the pro-
posed formulation the virtual work equations was written as a
function of generalized strains, which are parametrized in terms
of the director field and its derivatives.

The theoretical background of the formulation of the cross-sec-
tional properties was briefly presented. Details about the applica-
tion of the classical lamination theory to the obtention of the
cross-sectional stiffness of complex cross-sections were also
presented.

Different characteristic aspects of the multibody problem, such
as the handling of finite rotations and the formulation of joints
have also been addressed; it was given special attention to the
modeling details that arise in wind turbine applications. The for-
mulation of a viscous hinge joint was developed. The joint permits
to represent the interaction between the tower and the rotor con-
sidering the torque given to the generator as a dissipative moment.

Several examples of the application of the proposed formulation
to the case of a large wind turbine were presented. The tests
showed that the formulation is very stable and effective still under
conditions of large deformation.
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