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Abstract: In this work, we investigated the influence of the K2Mn(NH2)4 additive on the hydrogen
sorption properties of the Mg(NH2)2 + 2LiH (Li–Mg–N–H) system. The addition of 5 mol% of
K2Mn(NH2)4 to the Li–Mg–N–H system leads to a decrease of the dehydrogenation peak temperature
from 200 ◦C to 172 ◦C compared to the pristine sample. This sample exhibits a constant hydrogen
storage capacity of 4.2 wt.% over 25 dehydrogenation/rehydrogenation cycles. Besides that, the
in-situ synchrotron powder X-ray diffraction analysis performed on the as prepared Mg(NH2)2 +

2LiH containing K2Mn(NH2)4 indicates the presence of Mn4N. However, no crystalline K-containing
phases were detected. Upon dehydrogenation, the formation of KH is observed. The presence of KH
and Mn4N positively influences the hydrogen sorption properties of this system, especially at the
later stage of rehydrogenation. Under the applied conditions, hydrogenation of the last 1 wt.% takes
place in only 2 min. This feature is preserved in the following three cycles.

Keywords: Bimetallic amide; hydrogen storage; amide-hydride; in situ X-ray diffraction; activation
energy; reaction rate

1. Introduction

The use of renewable energy sources for fulfilling the world energy demand is one of the greatest
challenges humankind has to face in the near future. Due to the intermittent nature and uneven
distribution of these energy sources, an efficient energy vector must be found. In terms of energy
storage, hydrogen is considered as a suitable candidate to solve this problem due to its high energy
density (142 MJ/kg) (e.g. petroleum 47 MJ/kg) [1]. However, the conversion from a fossil fuel-based
economy to a hydrogen-based economy is challenging. One of the key issues is the lack of an effective
method to store hydrogen for stationary and mobile applications [2]. In the last decades, the possibility
to store hydrogen in a solid state using metal hydride-based systems was investigated [3,4]. In this
regard, several light metal complex hydrides such as alanates, borohydrides and amide-hydride
systems were studied [5–11]. In particular, the reactive hydride composite (RHC) systems based on
amide-hydrides are considered as promising hydrogen storage media, due to their suitable hydrogen
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contents, good reversibility and tunable thermodynamic properties [9,12,13]. The first example of this
class of material was the lithium imide/amide system according to reaction 1 [9].

Li2NH + H2 � LiNH2 + LiH ∆H = −45 kJ mol−1 (1)

After the publication of this pioneering work, several other amide-based RHC systems were
synthesized and investigated [14]. Among them, the Li–Mg–N–H system attracted increasing attention
due to its high hydrogen storage capacity (5.6 wt.%), favorable dehydrogenation enthalpy (∆H:
40 kJ/mol-H2) and good reversibility [15,16]. Theoretical calculations show that the thermodynamic
properties allow for a rather low dehydrogenation reaction at 90 ◦C and a pressure of 1 bar of H2,
which is close to the operating temperature of proton exchange membrane fuel cells (PEMFCs) [17].
However, sufficient operating dehydrogenation rates have been obtained only at temperatures higher
than 220 ◦C so far, due to kinetic constrains [18]. Several additives were used in order to improve
the reaction properties of this system [19–29]. The introduction of KH leads to a sensible reduction
of the dehydrogenation temperature attributed to the formation of K2Mg(NH2)4 and KLi3(NH2)4

during dehydrogenation [27]. These K-containing intermediates enable an energetically more favorable
reaction pathway. The hydrogenation process of dehydrogenated Mg(NH2)2 + 2LiH appears to be
more constrained than the first dehydrogenation [30,31]. In this regard, the addition of KH significantly
improves the hydrogenation behavior [32]. Also RbH appears to be an excellent additive for enhancing
the hydrogen sorption properties of this system [33,34]. Recently, the bimetallic amide-hydride systems
K2Mn(NH2)4 + 8LiH and K2Zn(NH2)4 + 8LiH with ultrafast hydrogenation properties were reported
by Cao et al. [35–37]. In these works, extremely fast hydrogenation of as much as 60% of the total H2

capacity (1.75 wt.%) within 60 seconds was observed. These values are the fastest rehydrogenation rates
in amide-hydride systems reported to date. The use bimetallic amides as additives on amide-hydride
systems has not been investigated so far.

In this work, we studied the reaction properties of the Mg(NH2)2–2LiH–xK2Mn(NH2)4 (x: 0–0.35)
system. The effects of the addition of bimetallic amide K2Mn(NH2)4 were investigated by means
of calorimetric techniques, such as high pressure differential scanning calorimetry (HP-DSC) and
differential thermal analysis (DTA) coupled with a mass spectrometer (MS). The material H2 capacity
was determined by volumetric technique (Sieverts apparatus), whereas the structural characterizations
were performed via in-situ synchrotron powder X-ray diffraction (SR-PXD) method. This study
provides new insight into the use of bimetallic amides as an additive on amide–hydride systems.

2. Materials and Methods

Starting materials for the synthesis of K2Mn(NH2)4 are potassium (cubes, Sigma Aldrich, 99.5%
purity, in mineral oil) and manganese (powder, Sigma Aldrich, ≥99% purity). A piece from the
potassium cube was stirred with hexane in a jar several times to remove the mineral oil. K2Mn(NH2)4

was synthesized by ball milling metallic potassium and manganese powders in a molar ratio of 2:1
with a ball to powder ratio 10:1 for 12 h with a speed of 100 rpm under an atmosphere of 7 bar of NH3.
PXD pattern of the post-milled sample confirmed the formation of the monoclinic K2Mn(NH2)4 phase
(Figure S1). Additionally, a tiny amount of (5 wt.%) cubic MnH0.07 was formed. All milling procedures
in this work were carried out in a Fritsch P6 ball miller, using a stainless steel milling vial (250 ml) and
milling balls. The material handling and milling was carried out in a dedicated glove box under a
continuously purified argon flow (O2 and H2O levels lower than 1 ppm).

Mg(NH2)2 was synthesized in house via a two-step process. Firstly, MgH2 was ball milled at
400 rpm, under 7 bar of NH3 pressure for 24 h. The vial was evacuated each 6 hours and refilled with
fresh NH3. In order to increase the material conversion yield, after ball milling, the material was heated
to 300 ◦C under 7 bar of NH3 for 24 hours in a high-pressure stainless steel reactor (20 ml) from the Parr
Instrument Company. The purity of the obtained Mg(NH2)2 was above 95%, which was determined
with thermogravimetric analysis (TG). Later, Mg(NH2)2 was ball milled with LiH and K2Mn(NH2)4

(total amount: 1 g) for 36 h with a ball to powder ratio of 60:1 at 400 rpm under a pressure of 50 bar of
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H2. Three material batches with increasing quantities of K2Mn(NH2)4 (i.e., 0.01, 0.05 and 0.35 mol)
and four additional batches (one without additive and three batches containing KH additive) were
prepared for comparison purposes. Sample compositions and designations are listed in Table 1.

Table 1. Compositions and designations for the investigated samples.

Sample Composition Sample Code

Mg(NH2)2 + 2LiH Mg–Li
Mg(NH2)2 + 2LiH + 0.01K2Mn(NH2)4 Mg–Li–1KMN
Mg(NH2)2 + 2LiH + 0.05K2Mn(NH2)4 Mg–Li–5KMN
Mg(NH2)2 + 2LiH + 0.35K2Mn(NH2)4 Mg–Li–35KMN

Mg(NH2)2 + 2LiH + 0.07KH Mg–Li–7KH
Mg(NH2)2 + 2LiH + 0.15KH Mg–Li–15KH
Mg(NH2)2 + 2LiH + 0.30KH Mg–Li–30KH

Volumetric differential pressure method was used for the determination of hydrogen storage
properties of the as-milled and cycled composites. A homemade Sieverts apparatus was utilized
for this purpose. About 100 mg of the sample was loaded into the sample holder in an Ar-filled
glovebox (O2 and H2O levels lower than 1 ppm). All dehydrogenation/rehydrogenation measurements
were performed under 1 bar of H2 and under 80 bar of H2, respectively, with a temperature ramp
starting from room temperature (RT) to 180 ◦C. Details about the heating rate for each experiment
were recorded in figure captions.

Multiple dehydrogenation/rehydrogenation cycles (25 cycle) of Mg–Li and Mg–Li–5KMN samples
were performed in a high-pressure stainless steel autoclave from Estanit GmbH. The stainless steel
specimen holder, which has six inlets, enables to simultaneously cycle several specimens under equal
experimental conditions. However, due to the presence of specimens with different compositions, it is
not possible to determine the gravimetric hydrogen capacities of each specimen. Powders of M–Li and
Mg–Li–5KMN specimens were placed inside these inlets (~400 mg each) inside and Ar-filled glovebox
(O2 and H2O levels lower than 1 ppm). Dehydrogenation/rehydrogenation were carried out under
isothermal conditions at 180 ◦C, with pressures of 1 bar (dehydrogenation time: 20 hours) and 80 bar
of H2 (rehydrogenation time: 4 hours), respectively.

DTA/MS characterization of the materials was performed using Netzsch Simultaneous Thermal
Analysis (STA) 409 and Hiden Analytical HAL 201 instruments, respectively. For performing these
measurements, 10 mg of powder was loaded into an Al2O3 crucible and later placed into the DTA
instrument, which is inside an Ar-filled glovebox (O2 and H2O levels lower than 1 ppm). Samples
were heated from RT to 300 ◦C with a heating rate of 3 ◦C/min under 50 mL/min argon flow. The
compositions of the gasses evolved during the DTA measurements were analyzed via MS technique.

SR-PXD experiments were performed at MAX II Synchrotron facility in Lund, Sweden, beamline
I711 [38]. The instrumental geometry of the powder diffractometer is Debye–Scherrer. The used X-ray
wavelength was λ = 0.9941 Å. The diffraction images were collected using an Agilent Titan detector
(2048 × 2048 pixel, each of size 60 × 60 mm2) placed at about 80 mm from the sample holder. The
exact sample to detector distance and the instrumental function were obtained performing the Rietveld
refinement (using the MAUD program) of the diffraction pattern of a LaB6 standard specimen [39,40].
The powder was introduced into a sapphire capillary inside an Ar-filled glove box (O2 and H2O levels
lower than 10 ppm) and then fixed into an in-house developed in-situ cell [41] which allows controlling
the heating temperatures and operating gas pressures [42]. The first dehydrogenations were recorded
in the temperature range between RT and 180 ◦C, with a heating rate of 5 ◦C/min under 1 bar of H2.
Following this experiment, the rehydrogenation process was recorded heating the material from RT
to 180 ◦C under 80 bar of H2 (heating ramp of 5 ◦C/min). The 2D images were integrated using the
FIT2D software, and quantitative analysis were performed via the Rietveld method using the MAUD
software [39,40,43].
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The Effect of the additive addition on the kinetic behaviour of solid–gas reactions was evaluated
also via the Kissinger method [44]. In fact, this method is suitable for the samples that exhibit multi-step
reactions and it allows to determine the Ea of a reaction process without assuming a kinetic model.
The equation for the Ea calculation is shown in Equation (1);

ln
(
β/T2

m

)
= ln(AR/Ea) −

Ea

RTm
, (2)

where A is the pre-exponential factor and R is the gas constant. The temperature for the maximum
reaction rate (Tm) was obtained from DSC curves measured at heating rates (β) of 1 ◦C/min, 3 ◦C/min,

5 ◦C/min and 10 ◦C/min under 1 bar of H2 backpressure Then, ln
(
β

T2
m

)
against 1/Tm was plotted, and Ea

and A was calculated from linear fitting.

3. Results and Discussion

3.1. First Dehydrogenation/Hydrogenation Properties

DTA curves and associated MS traces measured for the additive-free sample Mg–Li as well as
the K2Mn(NH2)4-containing samples (Table 1) are shown in Figure 1A–C. The Mg–Li sample exhibits
an endothermic peak at 200 ◦C with a shoulder at 190 ◦C, which is in agreement with the two-step
dehydrogenation pathway of Mg(NH2)2 + 2LiH [45]. At this temperature, mainly H2 is released
together with a small amount of NH3. Above 225 ◦C, the release of NH3 becomes dominant. Compared
to the pristine system, the dehydrogenation reaction of the system containing 1 mol% K2Mn(NH2)4

starts at a lower temperature (i.e., 110 ◦C), whereas the maximum of the dehydrogenation peak at
200 ◦C remains unchanged. When the additive amount is increased to 5 mol% (Mg–Li–5KMN), both
dehydrogenation onset and peak temperature decrease to 80 ◦C and 172 ◦C, respectively. For both
samples, Mg–Li–1KMN and Mg–Li–5KMN, the release of NH3 below 200 ◦C is below the detection limit.
However, increasing the amount of additives beyond 5 mol% (Mg–Li–35KMN) leads to significant NH3

release, which starts at around 175 ◦C. Despite the fact that the dehydrogenation peak temperature
of Mg–Li–35KMN is the lowest (143 ◦C), the H2 peak area is also notably smaller in respect to those
of the other samples. This is clearly due to the high amount of additive contained in this sample
(~49 wt.%). Due to the pour amount of released H2 and high amount of released NH3, the sample
Mg–Li–35KMN was not further investigated. DTA and MS results indicate that Mg–Li–5KMN has the
optimum properties (among the investigated systems), since it presents the lowest H2 release onset
temperature (80 ◦C) with no NH3 release until 200 ◦C.

In order to understand the reaction pathway of Mg–Li–5KMN, its dehydrogenation/

rehydrogenation reactions were investigated via in-situ SR-PXD technique. The results of this
investigation (PXD patterns as the function of temperature) are presented in the two-dimensional
contour plot of Figure 2. The diffraction pattern acquired at RT (after ball milling) shows the existence of
tetragonal Mg(NH2)2, cubic LiH, MgO and Mn4N. Besides that, no K2Mn(NH2)4 reflections are present.
During the first dehydrogenation (Figure 2A), the reflections of cubic KH appear at 85 ◦C. At the same
temperature, peaks belonging to orthorhombic Li2Mg(NH)2 are also observed. As the temperature
increases, the intensity of the Mg(NH2)2 peaks diminishes and the intensity of the Li2Mg(NH)2 peaks
increases. The continuous shift of the diffraction peaks towards lower 2θ angles, observed upon
heating, is due to thermal expansion. Through the first hydrogenation attempt (Figure 2B), Li2Mg(NH)2

peak intensities start to decrease at 110 ◦C and a broad peak of Mg(NH2)2 appears at about 2θ =

9◦. Mg(NH2)2 and LiH suddenly recrystallize at 165 ◦C (sharp Mg(NH2)2 and LiH peaks appear).
The absence of peaks ascribable to K2Mn(NH2)4 through all the first cycles indicates that during
ball milling, K2Mn(NH2)4 transforms into Mn4N and a potassium compound with amorphous or
nanocrystalline features. Therefore, K2Mn(NH2)4 must be considered as a precursor for the formation
of Mn4N and KH.
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Rietvelt refinement performed on the diffraction patterns acquired after the first dehydrogenation/

rehydrogenation cycle (Figure S2) reveals that the specimen is composed of Mg(NH2)2 (60.6 wt.%), LiH
(29.8 wt.%), KH (3.1 wt.%), MgO (3.5 wt.%), and Mn4N (3 wt.%). Since K2Mn(NH2)4 was not present
in the in-situ SR-PXD data (Figure 2), we expect that it decomposes into KH and Mn4N with NH3 and
H2 release as shown in reaction 2;

Mg(NH2)2 + 2LiH + K2Mn(NH2)4 → Li2Mg(NH)2 + 2KH +
1
4

Mn4N + xNH3(g) + yH2(g) (3)

In the literature, some metal nitrides (TaN and TiN) are known to catalytically enhance
dehydrogenation of the 2LiNH2 + MgH2 system [20]. Besides that, the Mn4N + LiH system is
known to be an effective catalyst for NH3 synthesis [46]. Therefore, we firstly studied the possible effect
of Mn4N on the reaction kinetics and thermal behavior of the Mg(NH2)2 + 2LiH system. However,
we could not observe any beneficial effect from Mn4N either in DSC analysis or in the volumetric H2

release curves (Figures S3 and S4). Secondly, we investigated the effect of pure KH additions, which
is also known to be an effective additive to reduce dehydrogenation peak temperature and improve
reaction kinetics of the Mg(NH2)2 + 2LiH system [21,27]. In order to investigate the effect of KH on the
hydrogen sorption properties, three additional samples were prepared with increasing the amount of
KH (Mg–Li–7KH, Mg–Li–15KH and Mg–Li–30KH). These samples were prepared at the same milling
conditions as Mg–Li–5KMN. Volumetric H2 release curves of the first dehydrogenation of the prepared
samples are presented in Figure 3A. Upon dehydrogenation, Mg–Li shows a release of hydrogen
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equal to 4.1 wt.%. The same amount was released in the Mg–Li, Mg–Li–7KH systems. The sample
Mg–Li–5KMN has slightly lower H2 capacity (3.8 wt.%). The amount of released hydrogen decreases
to 3.5 wt.% and 3.2 wt.% for the samples Mg–Li–15KH and Mg–Li–30KH, respectively. In order to
compare the kinetic behavior of all investigated samples, the measured H2 capacity was normalized
(Figure S5). Apparently, the kinetic behaviors of all additive-containing samples are very similar and
they are comparably faster than the pristine Mg–Li. The slow dehydrogenation kinetics obtained from
the Mg–Li sample at 180 ◦C is not surprising, since the corresponding peak temperature observed in
the DSC analysis measured under 1 bar of H2 is as high as 216 ◦C (Figure 1A).
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Figure 2. (A) In-situ synchrotron powder X-ray diffraction (SR-PXD) pattern for the first dehydrogenation
of Mg–Li–5KMN under 1 bar of H2. (B) In-situ SR-PXD pattern for the first hydrogenation of
Mg–Li–5KMN under 80 bar of H2. Sample was heated from RT until 180 ◦C with 3 ◦C/min heating rate
and each 15 seconds, a SR-PXD data was collected (λ = 0.9941 Å). Additionally, dehydrogenation and
hydrogenation experiments were extended to 30 min in isothermal conditions (180 ◦C).
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Figure 3. Non-isothermal (A) dehydrogenation, (B) rehydrogenation kinetics of prepared samples.
Heating was applied from room temperature until 180 ◦C, with a heating rate of 3 ◦C/min.
Dehydrogenation and rehydrogenation were carried out under 1 bar and 80 bar of H2, respectively.

The measured rehydrogenation kinetics of all the investigated samples are presented in Figure 3B.
The rehydrogenation kinetics of Mg–Li are slower than those of KH-containing samples and those
containing K2Mn(NH2)4. Interestingly, the rehydrogenation rate of Mg–Li–5KMN noticeably increases
toward the end of the hydrogenation. In fact, the last 1 wt.% of H2 is loaded in only 2 min. This
rehydrogenation rate (at this stage of hydrogenation) is four times faster than that of Mg–Li–7KH. This
result suggests that the presence of K2Mn(NH2)4 and the in-situ dual formation of KH and Mn4N
accelerated the diffusive processes commonly found in the last stage of hydrogenation processes owing
to the formation of low H2 diffusion coefficients of the hydride phases [44].

3.2. Dehydrogenation/Rehydrogenation Properties upon Cycling

This particular feature (rehydrogenation rate increases toward the end of the reaction) is preserved
upon the following two dehydrogenation/rehydrogenation cycles (Figure 4). Interestingly, the first
hydrogenation is faster than the second, which was observed before with a similar system [36]. Usually,
hydrogenation of materials are slower at the later stage [47,48]. In practical applications, fast kinetics
are favored [49,50]. In the case of K2Mn(NH2)4-containing samples, the fast hydrogenation kinetics at
later reaction stages represent an advantage over other hydrogen storage systems, with which full
saturation is hardly reached.

The volumetric measurements of the H2 dehydrogenation for the 1st and 25th cycles of Mg–Li
and Mg–Li–5KMN are presented in Figure 5A. Mg–Li–5KMN sample releases 3.8 wt.% of H2 within
3 hours in the first dehydrogenation. The amount of released H2 reaches 4.2 wt.% in the second
dehydrogenation, due to a longer measurement time. For this system, no noticeable loss in H2 capacity
was observed for 25 cycles. In contrast, the amount of released H2 for Mg–Li after 25 cycles decreased
from 4.2 wt.% to 2.2 wt.%. It is clear that repeated dehydrogenation/rehydrogenation cycles lead to
slower reaction kinetics for both samples. It was already reported that for the amide-hydride systems,
high operating temperatures cause the agglomeration of dehydrogenation/rehydrogenation products
and segregation of reactants and K-based additives [51]. Although reaction kinetics of Mg–Li–5KMN
slow down upon cycling, the positive effect of the presence of additives on the reversibility of the
sample maintains within the measured 25 cycles. In-situ SR-PXD contour plot of the Mg–Li–5KMN
sample at the 25th dehydrogenation (Figure 5B) reveals that identified phases are the same as in the
first dehydrogenation (Figure 2A). Thus, once formed, KH and Mn4N additives remain stable.
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Figure 5. (A) Dehydrogenation kinetics of Mg–Li and Mg–Li–5KMN samples in the 1st and 25th cycles.
Samples were heated from RT until 180 ◦C with a heating rate of 5 ◦C/min under 1 bar of H2. (B) In-situ
SR-PXD contour plot of Mg–Li–5KMN at 25th dehydrogenation under 1 bar of H2. Sample was heated
from room temperature until 180 ◦C with 3 ◦C/min heating rate, and each 15 seconds, a SR-PXD data
was collected (λ= 0.9941 Å). Additionally, dehydrogenation experiment was extended to 120 min at
isothermal conditions (180 ◦C).

3.3. Apparent Activation Energies and Rate Constants

The Kissinger method was applied to calculate the apparent activation energies (Ea) and frequency
factor (A) from DSC curves for Mg–Li and Mg–Li–5KMN samples (Figure 6A). Considering the
complexity of the reaction, mainly for the material with the additive, the temperatures at the observed
maximum reaction rate were taken for the calculation of these parameters (Figures S6 and S7). It is
worthy to remind that the dehydrogenation peak temperature of Mg–Li–5KMN was 30 ◦C lower than
that of the pristine Mg–Li (Figure 1A), and reaction kinetics were comparably faster (Figure 3). However,
the Ea as well as A values are higher for the Mg–Li–5KMN than for Mg–Li, i.e., 196 ± 5 kJ/mol H2

and 2.7 × 1022, 161 ± 5 kJ/mol H2 and 3.5 × 1017, respectively. It is reported that the reaction
pathway of KH-added Mg(NH2)2+2LiH is different under argon and hydrogen atmosphere [27,52].
Dehydrogenation under hydrogen instead of argon alters the dehydrogenation products, which results
in an increase of Ea in the case of Mg–Li–5KMN with respect to Mg–Li. This behavior is different
from the reports in the literatures, where Ea is lowered with the addition of K-compounds [34,53].



Energies 2019, 12, 2779 9 of 12

In order to understand these contradictory findings, rate constants (k) were calculated (Figure 6B,
Table S1) by the Arrhenius expression k = A·exp[−Ea/RT] (1/s) at the cycling temperature of 180 ◦C.
Then, k was multiplied with the H2 capacities obtained from Figure 3A in order to obtain reaction
rates (Figure 6B). Despite the fact that Mg–Li–5KMN has a higher Ea value in respect to Mg–Li, the
calculated kinetic constant (Table S1) and reaction rate indicate faster kinetic behavior for Li–5KMN at
180 ◦C. These outcomes are in agreement with the observed kinetic behavior (Figure 3). It suggests
that the notable increase of the frequency factor for Mg–Li–5KMN prompts a more efficient interaction
between reactants at the interphases, resulting in faster kinetic behavior.
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4. Conclusions

The influence of bimetallic amide K2Mn(NH2)4 additive on dehydrogenation/rehydrogenation
properties of Mg(NH2)2 + 2LiH system was investigated. In-situ SR-PXD analysis of the as-milled
Mg–Li–5KMN reveals that K2Mn(NH2)4 decomposes into Mn4N and a potassium compound with
amorphous or nanocrystalline nature. KH appears through the first dehydrogenation. Once formed,
Mn4N and KH remain stable for 25 cycles. The observed dehydrogenation peak temperature of
Mg–Li–5KMN is ~30 ◦C lower than that of Mg–Li. Furthermore, Mg–Li–5KMN has a high storage
capacity of 4.2 wt.% of H2, which is stable for at least 25 cycles. Another positive feature observed in
this study is the surprisingly fast rehydrogenation rate at the last stage of the rehydrogenation reaction.
Under the applied conditions, hydrogenation of the last 1 wt.% takes place in only 2 min, which is
four times faster than in the respective Mg–Li–7KH sample. These fast reaction rates are preserved
in the following three cycles. Further investigations should be made to understand this fast reaction
behavior and the nature of the dual in-situ-formed additives.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/14/2779/s1,
Figure S1: PXD pattern of K and Mn after ball milling under NH3. λ=Cu, Kα. Based on Rietveld refinement,
weight fraction of K2Mn(NH2)4: 95 wt.%, MnH0.07: 5 wt.%, Figure S2: SR-PXD pattern of the Mg–Li–5KMN after
rehydrogenation, λ= 0.9941 Å. Blue dots: Measurement data, Black line: Calculated fit, Figure S3: DSC curves
of Mg–Li and 5 mol% Mn4N containing Mg–Li samples. Heating rate: 3 K/min, Figure S4: H2 release curves of
Mg–Li and 5 mol% Mn4N containing Mg–Li samples under 1 bar of H2. Heating: RT→ 180 ◦C, 3 ◦C/min, Figure
S5: Non-isothermal normalized dehydrogenation kinetics of prepared samples. Heating was applied from room
temperature until 180 ◦C, with a heating rate of 3 ◦C/min. Dehydrogenation was carried out under 1 bar of H2,
Figure S6: DSC and corresponding Arrhenius plots of Mg–Li at the 1st dehydrogenation, Figure S7: DSC and
corresponding Arrhenius plots of Mg–Li–5KMN at the 1st dehydrogenation, Table S1: Calculation of the kinetic
constant applying the Arrhenius equation.
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