INEQUALITIES FOR ONE-SIDED OPERATORS IN ORLICZ SPACES

SERGIO J. FAVIER AND SONIA E. ACINAS

ABSTRACT. In this paper, we get strong type inequalities for one-sided maximal best approximation operators \(\mathcal{M}^\pm \) which are very related to one-sided Hardy-Littlewood maximal functions \(M^\pm \). In order to obtain our results, strong and weak type inequalities for \(M^\pm \) are considered.

1. Introduction

We denote by \(\mathcal{S} \) the set of functions \(\varphi : \mathbb{R} \to \mathbb{R} \) which are nonnegative, even, nondecreasing on \([0,\infty)\), such that \(\varphi(t) > 0 \) for all \(t > 0 \), \(\varphi(0+) = 0 \) and \(\lim_{t \to 0+} \varphi(t) = \infty \).

We say that a nondecreasing function \(\varphi : \mathbb{R}_+^n \to \mathbb{R}_+^n \) satisfies the \(\Delta_2 \) condition, symbolically \(\varphi \in \Delta_2 \), if there exists a constant \(\Lambda_\varphi > 0 \) such that \(\varphi(2a) \leq \Lambda_\varphi \varphi(a) \) for all \(a \geq 0 \).

An even and convex function \(\Phi : \mathbb{R} \to \mathbb{R}_+^n \) such that \(\Phi(a) = 0 \) iff \(a = 0 \) is said to be a Young function. Unless stated otherwise, the Young function \(\Phi \) is the one given by \(\Phi(x) = \int_0^x \varphi(t) \, dt \), where \(\varphi : \mathbb{R}_+^n \to \mathbb{R}_+^n \) is the right-continuous derivative of \(\Phi \).

If \(\varphi \in \mathcal{S} \), we define \(L^\varphi(\mathbb{R}^n) \) as the class of all Lebesgue measurable functions \(f \) defined on \(\mathbb{R}^n \) such that \(\int_{\mathbb{R}^n} \varphi(t f) \, dx < \infty \) for some \(t > 0 \) and where \(dx \) denotes the Lebesgue measure on \(\mathbb{R}^n \). If \(\varphi \) is a Young function, then \(L^\varphi(\mathbb{R}^n) \) is an Orlicz space (see [12]).

In the case of \(\Phi \) being a Young function such that \(\Phi \in \Delta_2 \), then \(L^\Phi(\mathbb{R}^n) \) is the space of all measurable functions \(f \) defined on \(\mathbb{R}^n \) such that \(\int_{\mathbb{R}^n} \Phi(|f|) \, dx < \infty \).

Also note that if \(\Phi \in C^1 \cap \Delta_2 \) such that \(\Phi(2a) \leq \Lambda_\Phi \Phi(a) \) for all \(a > 0 \), then its derivative function \(\varphi \) satisfies the \(\Delta_2 \) condition and

\[
\frac{1}{2} (\varphi(a) + \varphi(b)) \leq \varphi(a + b) \leq \frac{\Lambda_\Phi^2}{2} (\varphi(a) + \varphi(b)),
\]

for every \(a, b > 0 \).

A nondecreasing function \(\varphi : \mathbb{R}_+^n \to \mathbb{R}_+^n \) satisfies the \(\nabla_2 \) condition, denoted \(\varphi \in \nabla_2 \), if there exists a constant \(\Lambda_\varphi > 2 \) such that \(\varphi(2a) \geq \Lambda_\varphi \varphi(a) \) for all \(a \geq 0 \).

For \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), the classical Hardy-Littlewood maximal function \(M \) defined over cubes \(Q \subset \mathbb{R}^n \) is given by the formula

\[
M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(t)| \, dt.
\]

For \(f \in L^1_{\text{loc}}(\mathbb{R}) \), the one-sided Hardy-Littlewood maximal functions \(M^+ \) and \(M^- \) are introduced in [5] as follows:

\[
M^+ f(x) = \sup_{h > 0} \frac{1}{h} \int_{x}^{x+h} |f(y)| \, dy, \quad \text{with } x \in \mathbb{R},
\]

and

\[
M^- f(x) = \sup_{h > 0} \frac{1}{h} \int_{x-h}^{x} |f(y)| \, dy, \quad \text{with } x \in \mathbb{R}.
\]

This research was partially supported by CONICET and UNSL grants.

149
For the sake of simplicity, in the sequel we write M^\pm to refer to M^+ or M^-. It is well known that M is homogeneous, subadditive, weak type $(1, 1)$ and it also satisfies $\|Mf\|_\infty \leq \|f\|_\infty$. The one-sided maximal functions M^\pm are also homogeneous, subadditive, weak type $(1, 1)$ (see [5]) and strong type (∞, ∞). In addition, M may be defined from the one-sided maximal functions as follows

$$Mf(x) = \max\{M^+ f(x), M^- f(x)\}.$$

(2)

In fact,

$$\frac{1}{s+t} \int_{x-s}^{x-t} |f(y)| \, dy \leq \frac{s}{s+t} M^- f(x) + \frac{t}{t+s} M^+ f(x) \leq \max\{M^- f(x), M^+ f(x)\}.$$

Now, taking supremum over all $s, t > 0$, we have

$$Mf(x) \leq \max\{M^- f(x), M^+ f(x)\}.$$

On the other hand,

$$Mf(x) = \sup_{s,t>0} \frac{1}{s+t} \int_{x-s}^{x+t} |f(u)| \, du \geq \sup_{s,t>0} \frac{1}{s+t} \int_{x-s}^{x+t} |f(u)| \, du = M^- f(x).$$

Similarly, we have $Mf(x) \geq M^+ f(x)$. Therefore

$$Mf(x) \geq \max\{M^+ f(x), M^- f(x)\}.$$

In [1] and [6], weak and strong type inequalities for M in Orlicz spaces were obtained. The one-sided weighted maximal operator on \mathbb{R} in L^p spaces was studied by Sawyer [13], Martín-Reyes, Ortega Salvador and de la Torre [8], and Martín-Reyes [7]. The weighted Orlicz space case was treated in Ortega Salvador [10] assuming the reflexivity of the space, Kokilashvili and Krbec in [6], based on Ortega Salvador [10] and Ortega Salvador and Pick [11], removed the restriction to reflexive spaces and weakened some hypothesis.

In this paper, we follow the idea of Kokilashvili and Krbec in [6] for one-sided maximal functions on \mathbb{R} without dealing with weight functions. Namely, we specify conditions on $\varphi \in \mathcal{F}$ under which the weak type inequalities

$$|\{x \in \mathbb{R} : M^\pm f(x) > \lambda\}| \leq \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx,$$

(3)

and

$$|\{x \in \mathbb{R} : M^\pm f(x) > \lambda\}| \leq c_2 \int_{\mathbb{R}} \varphi \left(\frac{c_2 f(x)}{\lambda} \right) \, dx,$$

(4)

hold for all $\lambda > 0$ and where $f \in L^1_{\text{loc}}(\mathbb{R})$. We also characterize the strong type inequality

$$\int_{\mathbb{R}} \varphi(M^\pm f(x)) \, dx \leq c \int_{\mathbb{R}} \varphi(cf(x)) \, dx,$$

(5)

for all $f \in L^1_{\text{loc}}(\mathbb{R})$.

It is worth mentioning that inequalities (3), (4) and (5) are particular cases of results given in [6]; however, as we do not deal with weight functions, we include easier proofs.

Then, we get conditions to assure the validity of strong type inequalities like (5) for one-sided maximal operators M^\pm, related to one-sided best φ-approximation by constants to a function $f \in L^p_{\text{loc}}(\mathbb{R})$.

Last, we get strong type inequalities for lateral maximal operators M^\pm_p related to p-averages.
2. **Weak Type Inequalities for \(M^\pm \)**

The next concept is introduced in [6] and we will employ it to set conditions under which (3) and (4) are valid.

Definition 1. A function \(\varphi : [0, \infty) \to \mathbb{R} \) is quasiconvex on \([0, \infty)\) if there exist a convex function \(\omega \) and a constant \(c > 0 \) such that
\[
\omega(t) \leq \varphi(t) \leq c \omega(ct),
\]
for all \(t \in [0, \infty) \).

2.1. **Necessary and sufficient condition.** Lemma 1.2.4 in [6] establishes the equivalence between the validity of a weak type inequality like (3) for \(M \) and the quasiconvexity of \(\varphi \). Theorem 2.4.1 in [6] states an analogous equivalence for \(M^\pm \) employing weight functions. The next result is a particular case of this theorem; nevertheless, as we deal without using weights, we include an easier proof.

Theorem 2. Let \(\varphi \in \mathcal{S} \). \(\varphi \) is quasiconvex if and only if there exists \(c_1 > 0 \) such that
\[
|\{ x \in \mathbb{R} : M^\pm f(x) > \lambda \}| \leq \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx,
\]
for all \(\lambda > 0 \) and for all \(f \in L^1_{\text{loc}}(\mathbb{R}) \).

Proof. \(\Rightarrow \) Let \(\varphi \in \mathcal{S} \) be a quasiconvex function. By Lemma 1.2.4 in [6], there exists \(c_1 > 0 \) such that
\[
|\{ x \in \mathbb{R} : Mf(x) > \lambda \}| \leq \frac{c_1}{\varphi(\lambda)} \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx,
\]
for all \(\lambda > 0 \) and for all \(f \in L^1_{\text{loc}}(\mathbb{R}) \). From (2) and the monotonicity of Lebesgue measure, we have
\[
|\{ x \in \mathbb{R} : M^\pm f(x) > \lambda \}| \leq |\{ x \in \mathbb{R} : Mf(x) > \lambda \}|.
\]

Now, by (7) and (8), we get (6).

\(\Leftarrow \) We will prove the statement for \(M^+ \) reasoning as in the proof of Theorem 2.4.1 in [6]. The same argument with a slight modification is also valid for the case of \(M^- \).

Let \(a < b < c \) and assume \(\int_b^c |f(u)| \, du \neq 0 \). If \(x \in (a,b) \) there exists \(h > 0 \) such that \((x, x+h) \supset (b,c)\) and \(x+h = c \), then \(h < c - a \) and
\[
\chi_{(a,b)}(x) \frac{1}{c-a} \int_b^c |f(u)| \, du < \frac{1}{h} \int_b^c |f(u)| \, du \leq \frac{1}{h} \int_x^{x+h} |f(u)| \, du.
\]

Therefore, if \(x \in (a,b) \) then
\[
\frac{1}{c-a} \int_b^c |f(u)| \, du < M^+ f(x).
\]

On the other hand, if \(x \notin (a,b) \) then
\[
\chi_{(a,b)}(x) \frac{1}{c-a} \int_b^c |f(u)| \, du \leq M^+ f(x),
\]
as \(M^\pm f(x) \geq 0 \). Eventually, from (9) and (10),
\[
M^+ f(x) \geq \chi_{(a,b)}(x) \frac{1}{c-a} \int_b^c |f(u)| \, du \quad \text{for all } x \in \mathbb{R}.
\]

Let \(\lambda = \frac{1}{c-a} \int_b^c |f(u)| \, du > 0 \). By (6), there exists \(c_1 > 0 \) such that
\[
\left| \left\{ x \in \mathbb{R} : M^+ f(x) > \frac{1}{c-a} \int_b^c |f(u)| \, du \right\} \right| \varphi \left(\frac{1}{c-a} \int_b^c |f(u)| \, du \right) \leq c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx.
\]
From (9) we have
\begin{align*}
(b-a) \leq \left\{ x \in \mathbb{R} : M^+ f(x) > \frac{1}{c-a} \int_b^c |f(u)| \, du \right\},
\end{align*}
then there exists \(c_1 > 0 \) such that
\begin{align*}
(b-a) \varphi \left(\frac{1}{c-a} \int_b^c |f(u)| \, du \right) & \leq c_1 \int_b^c \varphi(c_1 f(x)) \, dx + c_1 \int_{\mathbb{R}-(b,c)} \varphi(c_1 f(x)) \, dx,
\end{align*}
for all \(f \in L^1_{\text{loc}}(\mathbb{R}) \) provided that \(\int_b^c |f(u)| \, du \neq 0 \).

Now, let \(f(x) = f(x) \chi_{(b,c)}(x) \), then there exists \(c_1 > 0 \) such that
\begin{align*}
(b-a) \varphi \left(\frac{1}{c-a} \int_b^c |f(u)| \, du \right) & \leq c_1 \int_b^c \varphi(c_1 f(x)) \, dx, \tag{11}
\end{align*}
with \(f \in L^1_{\text{loc}}(\mathbb{R}) \) such that \(\int_b^c |f(u)| \, du \neq 0 \).

In case of \(\int_b^c |f(u)| \, du = 0 \), (11) holds trivially.

Let \(c > 1 \) and \(a < b < c \) such that \(b-a = c-b \). Let \(t_1, t_2 > 0 \) and \(\theta \in (0, 1) \). We decompose \((b,c)\) into two disjoint sets \(F \) and \(F' \) such that \((b,c) = F \cup F'\), \(|F| = \theta(c-b)\) and \(|F'| = (1-\theta)(c-b)\). Let \(h(x) = t_1 \chi_F(x) + t_2 \chi_{F'}(x) \) for \(x \in (b,c) \), then
\begin{align*}
\frac{1}{c-a} \int_b^c |h(x)| \, dx = \frac{1}{2} [\theta t_1 + (1-\theta) t_2].
\end{align*}
Replacing in the left hand side of (11), there exists \(c_2 > 0 \) such that
\begin{align*}
(b-a) \varphi \left[\frac{\theta t_1 + (1-\theta) t_2}{2} \right] \leq c_1 \int_b^c \varphi(c_1 h(x)) \, dx = c_1(b-a)[\varphi(c_1 t_1) \theta + (1-\theta) \varphi(c_1 t_2)].
\end{align*}
Let \(0 < T_1 = \frac{t_1}{2}, 0 < T_2 = \frac{t_2}{2} \), then there exists \(K_2 = 2c_2 > 0 \) independent of \(T_1, T_2 \) and \(h \) such that
\begin{align*}
\varphi[\theta T_1 + (1-\theta) T_2] \leq K_2 [\theta \varphi(K_2 T_1) + (1-\theta) \varphi(K_2 T_2)]. \tag{12}
\end{align*}
Finally, by Lemma 1.1.1 in [6], (12) is equivalent to the fact that \(\varphi \) is quasiconvex. \(\square \)

2.2. **Sufficient conditions.** Next, we set sufficient conditions for (4) to be verified. The next result is a particular case of Theorem 2.4.2 in [6].

Theorem 3. Let \(\varphi \in \mathcal{S} \). If \(\varphi \) is quasiconvex, then there exists \(c_2 > 0 \) such that
\begin{align*}
|x| \in \mathbb{R} : M^+ f(x) > \lambda \} \leq c_2 \int_{\mathbb{R}} \varphi \left(\frac{c_2 f(x)}{\lambda} \right) \, dx,
\end{align*}
for all \(\lambda > 0 \) and for all \(f \in L^1_{\text{loc}}(\mathbb{R}) \).

Proof. It follows straightforwardly taking \(\rho = \sigma = g = 1 \) in the proof of Theorem 2.4.2 in [6]. \(\square \)

However, the quasiconvexity of \(\varphi \in \mathcal{S} \) is not a necessary condition for the validity of (4). Let \(\varphi(x) = |x|^p \) for \(p \geq 1 \), then \(\varphi \in \mathcal{S} \) and \(\varphi \) is a quasiconvex function on \([0, \infty)\). By Theorem 5 there exists \(c_2 > 0 \) such that
\begin{align*}
|x| \in \mathbb{R} : M^+ f(x) > \lambda \} \leq c_2 \int_{\mathbb{R}} \varphi \left(\frac{c_2 f(x)}{\lambda} \right) \, dx,
\end{align*}
for all \(\lambda > 0 \) and for all \(f \in L^1_{\text{loc}}(\mathbb{R}) \).

Now, let
\begin{align*}
\tilde{\varphi}(x) = \begin{cases}
|\chi|^p & \text{if } |\chi| \geq 1 \\
|\chi|^{\frac{p}{2}} & \text{if } |\chi| < 1
\end{cases}
\quad \text{for } p > 1;
\end{align*}
Finally, we set $y = \lambda$ for all $x \in \mathbb{R}$. Therefore, there exists $c_2 > 0$ such that
\[|\{x \in \mathbb{R} : M^\pm f(x) > \lambda\}| \leq c_2 \int_{\mathbb{R}} \phi \left(\frac{c_2 f(x)}{\lambda} \right) \, dx, \]
for all $\lambda > 0$ and for all $f \in L^1_{\text{loc}}(\mathbb{R})$, although ϕ is not a quasiconvex function. Hence, the converse of Theorem 5 is not true.

Remark 4. Let $\varphi, \bar{\varphi} \in \mathscr{F}$ such that $\varphi(x) \leq \bar{\varphi}(x)$ for all $x \in \mathbb{R}$. If φ is quasiconvex on $[0, \infty)$, then there exists $c > 0$ such that
\[|\{x \in \mathbb{R} : M^\pm (f)(x) > \lambda\}| \leq c \int_{\mathbb{R}} \bar{\varphi} \left(\frac{c f(x)}{\lambda} \right) \, dx, \]
for all $f \in L^1_{\text{loc}}(\mathbb{R})$ and for all $\lambda > 0$.

Moreover, we determine some characteristics of the class of functions that satisfy (4).

Theorem 5. Let $\psi \in \mathscr{F}$. Assume there exist constants $c_1 > 0$ and $x_0 \geq 0$ such that $\psi(x) \geq c_1 x$ for all $x \geq x_0$ and there exists a subinterval $(0, x_v) \subseteq (0, x_0)$ where ψ is either a convex function or a concave one. Then there exists a constant $c > 0$ such that
\[|\{x \in \mathbb{R} : M^\pm (f)(x) > \lambda\}| \leq c \int_{\mathbb{R}} \psi \left(\frac{c f(x)}{\lambda} \right) \, dx, \]
for all $f \in L^1_{\text{loc}}(\mathbb{R})$ and for all $\lambda > 0$.

Proof. From (2), the monotonicity of Lebesgue measure and Theorem 5.8 in [1].

Therefore, (4) is valid for all $f \in L^1_{\text{loc}}(\mathbb{R})$ and for all $\lambda > 0$, when $\psi \in \mathscr{F}$ belongs to a bigger subset than that of quasiconvex functions.

2.3. Necessary condition. We also find a necessary condition for (4) to be satisfied.

Theorem 6. Let $\varphi \in \mathscr{F}$. If there exists $c > 0$ such that
\[|\{x \in \mathbb{R} : M^\pm f(x) > \lambda\}| \leq c \int_{\mathbb{R}} \varphi \left(\frac{c f(x)}{\lambda} \right) \, dx, \quad (13) \]
for all $\lambda > 0$ and for all $f \in L^1_{\text{loc}}(\mathbb{R})$, then $\frac{\varphi(x)}{c^2} \leq \varphi(y)$ for all $y > c$.

Proof. First, we consider the case of M^\pm.

Let $0 < t_1 < t_2$, $I = (1 - \frac{t_1}{t_2}, 1)$ and $f(x) = t_2 \chi_I(x)$. For any $x \in (0, 1)$ we have $M^+ f(x) > t_1 > 0$ and then
\[|\{x \in \mathbb{R} : M^\pm f(x) > t_1\}| \geq 1. \]

Now, with $\lambda = t_1$ and $f(x) = t_2 \chi_I(x)$ in (13), there exists $c > 0$ such that
\[1 \leq c \int_{\mathbb{R}} \varphi \left(\frac{ct_2 \chi_I(u)}{t_1} \right) \, du = c \varphi \left(\frac{t_2}{t_1} \right) \frac{t_1}{t_2}, \]
Finally, we set $y = c \frac{t_2}{t_1} > c$, then $y \leq c^2 \varphi(y)$ for all $y > c$.

With the aim of obtaining the result for M^-, we set $I = (0, \frac{1}{t_2})$ where $0 < t_1 < t_2$ and we reason as in the case of M^+.\[\square \]
3. Strong type inequality for M^\pm

Theorem 1.2.1 in [6] establishes that the validity of a strong type inequality for M is equivalent to the fact that the function involved satisfies the ∇_2 condition. We obtain an analogous result for M^\pm.

Theorem 7. Let $\varphi \in \mathcal{F}$. The next statements are equivalent:

i) there exists $c_1 > 0$ such that

$$\int_{\mathbb{R}} \varphi(M^+(f(x))) \, dx \leq c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}),$$

(14)

ii) the function φ^α is quasiconvex for some $\alpha \in (0, 1)$,

iii) there exists $c_2 > 0$ such that $\int_0^T \varphi^\alpha(t) \, dt \leq c_2 \varphi(c_2) \int_0^T \tau \, d\tau$ for $0 < \sigma < \infty$,

iv) there exists $c_3 > 0$ such that for $t > 0$ $\int_0^t \frac{\varphi(u)}{u} \, du \leq c_3 \varphi(c_3 t)$,

v) there exists $a > 1$ such that

$$\varphi(t) < \frac{1}{2a} \varphi(at), \quad t \geq 0.$$

Proof. The proof of Theorem 1.2.1 in [6] follows this scheme: $i) \Rightarrow iii) \Rightarrow v) \Rightarrow ii) \Rightarrow i)$ and $iii) \Leftrightarrow iv)$. In the case of M^\pm it is sufficient to obtain $i) \Rightarrow iii)$ and $ii) \Rightarrow i)$ because the remaining implications are not modified when M is changed by M^\pm, as only properties of quasiconvex functions are employed.

i) \Rightarrow iii) Let $f(x) = \chi_{[a,b]}(x)$. After some calculations (see [4] p. 79)), we have

$$Mf(x) = \begin{cases} \frac{b-a}{b-x} & \text{if } x < a \\ 1 & \text{if } a \leq x \leq b \\ \frac{b-a}{x-a} & \text{if } x > b, \end{cases}$$

and

$$M^+(f(x)) = \begin{cases} \frac{b-a}{b-x} & \text{if } x < a \\ 1 & \text{if } a \leq x \leq b \\ 0 & \text{if } x > b, \end{cases}$$

and

$$M^-(f(x)) = \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } a \leq x \leq b \\ \frac{b-a}{x-a} & \text{if } x > b. \end{cases}$$

Consequently, we can write $M^+(f(x)) = Mf \chi_{[a,b]}(x)$ and $M^-(f(x)) = Mf \chi_{[a,\infty)}(x)$. Then, \Rightarrow iii) of Theorem 1.2.1 in [6].

ii) \Rightarrow i) Due to Theorem 1.2.1 in [6], v) implies that there exists $c_1 > 0$ such that

$$\int_{\mathbb{R}^n} \varphi(Mf(x)) \, dx \leq c_1 \int_{\mathbb{R}} \varphi(c_1 f(x)) \, dx, \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}),$$

(15)

thus, by (2) and the monotonicity of φ we have

$$\int_{\mathbb{R}} \varphi(M^+(f(x))) \, dx \leq \int_{\mathbb{R}} \varphi(Mf(x)) \, dx, \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}).$$

(16)

From (15) and (16), we get the desired inequality (14).

Remark 8. Item v) in Theorem 7 is equivalent to say that $\varphi \in \nabla_2$.

We point out that there exists an alternative way to get the strong type inequality (14) applying interpolation techniques.

Theorems 2, 3 and 4 guarantee the existence of classes of functions $\varphi \in \mathcal{F}$ that satisfy weak type inequalities like (3) and (4); in addition, the operators M^\pm are subadditive and strong type (∞, ∞). Then, by application of Theorem 2.4 in [9] or Theorem 5.2 in [11], we obtain

$$\int_{\mathbb{R}} \Psi(|M^\pm(f(x))|) \, dx \leq K \int_{\mathbb{R}} \Psi(4f(x)) \, dx, \quad \text{for all } f \in L^1_{\text{loc}}(\mathbb{R}),$$

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014
and for a family of Young functions Ψ such that $\Psi' = \psi$ is related to $\varphi \in \mathcal{F}$ and provided that the function φ satisfies additional conditions.

4. **One-sided maximal operators \mathcal{M}^\pm**

By $\hat{\mathcal{F}}$ we denote the class of all nondecreasing functions φ defined for all real number $t \geq 0$ such that $\varphi(t) > 0$ for all $t > 0$, $\varphi(0+) = 0$ and $\lim_{t \to \infty} \varphi(t) = \infty$.

Let $\Phi \in \hat{\mathcal{F}} \cap \Delta_2$ be a convex function and let B be a bounded measurable set of \mathbb{R}^n. The next definition is introduced in [2].

Definition 9. A real number c is a best Φ-approximation of $f \in L^\Phi(B)$ if and only if

$$
\int_B \Phi(|f(x) - c|) \, dx \leq \int_B \Phi(|f(x) - r|) \, dx, \text{ for all } r \in \mathbb{R}.
$$

With the symbol $\mu_\Phi(f)(B)$ the authors refer to the multivalued operator of all best approximation constants of the function $f \in L^\Phi(B)$. It is well known that $\mu_\Phi(f)(B)$ is a non empty set; and, if Φ is strictly convex, then $\mu_\Phi(f)(B)$ has an only one element.

In [2] the definition of $\mu_\Phi(f)(B)$ is extended in a continuous way for functions $f \in L^\Phi(B)$ such that $\varphi = \Phi'$ with $\Phi \in C^1$ as follows.

Definition 10. Let $\Phi \in \hat{\mathcal{F}} \cap \Delta_2$ be a function in C^1 and assume that $\Phi' = \varphi$. If $f \in L^\Phi(B)$, then a constant c is a extended best approximation of f on B if c is a solution of the next inequalities:

a) \[
\int_{\{f > c\}} \Phi(\|f(y) - c\|) \, dy \leq \int_{\{f \leq c\}} \Phi(\|f(y) - c\|) \, dy,
\]

and

b) \[
\int_{\{f < c\}} \Phi(\|f(y) - c\|) \, dy \leq \int_{\{f \geq c\}} \Phi(\|f(y) - c\|) \, dy.
\]

Let $\tilde{\mu}_\Phi(f)(B)$ be the set of all constants c.

In the particular case of $B = I^\pm_x(x)$ where $I^\pm_x(x)$ is a bounded one-sided interval of $x \in \mathbb{R}$ with positive Lebesgue measure ε, we write $\tilde{\mu}_\Phi^\pm(f)(x)$ for $\tilde{\mu}_\Phi(f)(I^\pm_x(x))$ which is the one-sided best approximation by constants and we set $\bar{\mu}_\Phi^\pm(f)(x)$ for the set $\tilde{\mu}_\Phi^\pm(f)(I^\pm_x(x))$ which is the extended one-sided best approximation by constants.

We define the one-sided maximal operators $\mathcal{M}_\varepsilon^\pm$, associated to one-sided best approximation by constants, in the following way:

$$
\mathcal{M}_\varepsilon^\pm f(x) = \sup_{\varepsilon > 0} \{f^\pm_{\varepsilon}(x) : f^\pm_{\varepsilon}(x) \in \bar{\mu}_\Phi^\pm(f)(x)\}.
$$

Remark 11. If $f^\pm_{\varepsilon}(x) \in \bar{\mu}_\Phi^\pm(f)(x)$, there exists $c^\pm_{\varepsilon} \in \bar{\mu}_\Phi^\pm(|f|)(x)$ such that $|f^\pm_{\varepsilon}(x)| \leq c^\pm_{\varepsilon}$.

In fact, since $|f| \geq f \geq -|f|$ and the extended one-sided best approximation operator is a monotone one (Lemma 12 in [3]), there exist $a^\pm_{\varepsilon} \in \bar{\mu}_\Phi^\pm(-|f|)(x)$ and $b^\pm_{\varepsilon} \in \bar{\mu}_\Phi^\pm(|f|)(x)$ such that $-a^\pm_{\varepsilon} \leq f^\pm_{\varepsilon}(x) \leq b^\pm_{\varepsilon}$.

However, $a^\pm_{\varepsilon} \in \bar{\mu}_\Phi^\pm(|f|)(x)$ and $c^\pm_{\varepsilon} = \max\{a^\pm_{\varepsilon}, b^\pm_{\varepsilon}\} \in \bar{\mu}_\Phi^\pm(|f|)(x)$ because $\bar{\mu}_\Phi^\pm(|f|)(x)$ is a closed set (Lemma 11 in [3]). As $c^\pm_{\varepsilon} \geq a^\pm_{\varepsilon}, b^\pm_{\varepsilon}$, we have $\mathcal{M}_\varepsilon^\pm f(x) \leq \mathcal{M}_\varepsilon^\pm |f| (x)$ and we may assume $f \geq 0$.

Now, we reason as in [2], working on I^\pm_x of \mathbb{R} instead of balls centered at $x \in \mathbb{R}^n$ with radius ε, and we get the following result.
Theorem 12. Let $\Phi \in J \cap \Delta_2$ be a C^1 convex function and we assume $\Phi' = \varphi$. Let $f \in L^p_{\text{loc}}(\mathbb{R})$ and we select $f^\pm_\varepsilon(x) \in \bar{\mu}^\pm_\varepsilon(f)(x)$ with $x \in \mathbb{R}$ and $\varepsilon > 0$. Then

$$\frac{1}{C} \varphi(|f^\pm_\varepsilon(x)|) \leq \frac{1}{\varepsilon} \int_{I^\pm_\varepsilon} \varphi(|f(y)|) \, dy \leq C \varphi(|f^\pm_\varepsilon(x)|),$$

and

$$\frac{1}{C} \varphi(|f^\pm_\varepsilon(x) - f(x)|) \leq \frac{1}{\varepsilon} \int_{I^\pm_\varepsilon} \varphi(|f(y) - f(x)|) \, dy,$$

being ε the Lebesgue measure of the intervals I^\pm_ε and $C = \frac{3\Lambda^2_\phi}{2}$ where Λ_ϕ is the constant given by the Δ_2 condition on Φ.

Proof. By Remark 11 we can assume $f \geq 0$ and then $f^\pm_\varepsilon(x) \geq 0$. In effect, by a) in Definition 10 if $c < 0$

$$\int_{I^\pm_\varepsilon} \varphi(|f(y) - c|) \, dy = \int_{\{f > c\} \cap I^\pm_\varepsilon} \varphi(|f(y) - x|) \, dy \leq \int_{\{f < c\} \cap I^\pm_\varepsilon} \varphi(|f(y) - x|) \, dy = 0.$$

(19)

As Φ is a C^1 convex function, then $\varphi(x) > 0$ for $x > 0$; if $c < 0$ then $f(y) - c > -c > 0$, consequently $\varphi(|f(y) - c|) > \varphi(-c) > 0$ and

$$\int_{I^\pm_\varepsilon} \varphi(|f(y) - c|) \, dy > |\varphi(-c)| \varepsilon > 0.$$

(20)

From (19) and (20) we obtain a contradiction.

Now, applying (1) and $|I^\pm_\varepsilon \cap \{f^\pm_\varepsilon < f\}| \leq \varepsilon$, we have

$$\frac{1}{\varepsilon} \int_{I^\pm_\varepsilon} \varphi(f(y)) \, dy \leq \frac{\Lambda^2_\phi}{2\varepsilon} \int_{I^\pm_\varepsilon \cap \{f^\pm_\varepsilon < f\}} \varphi(f(y) - f^\pm_\varepsilon(x)) \, dy + \frac{\Lambda^2_\phi}{2} \varphi(f^\pm_\varepsilon(x)) + \frac{1}{\varepsilon} \int_{I^\pm_\varepsilon \cap \{f^\pm_\varepsilon \geq f\}} \varphi(f(y)) \, dy.$$

(21)

Next, by b) of Definition 10 and if we suppose, without loss of generality, that $\Lambda_\Phi \geq \sqrt{2}$, we get

$$\frac{\Lambda^2_\phi}{2\varepsilon} \int_{I^\pm_\varepsilon \cap \{f^\pm_\varepsilon \geq f\}} |\varphi(-f(y) + f^\pm_\varepsilon(x)) + \varphi(f(y))| \, dy + \frac{\Lambda^2_\phi}{2} \varphi(f^\pm_\varepsilon(x)).$$

(22)

From (1) and as $f^\pm_\varepsilon(x) - f(y) \geq 0$ and $f(y) \geq 0$, then

$$\varphi(f^\pm_\varepsilon(x) - f(y)) + \varphi(f(y)) \leq 2\varphi(f^\pm_\varepsilon(x) - f(y) + f(y)) = 2\varphi(f^\pm_\varepsilon(x)),$$

and since $|I^\pm_\varepsilon \cap \{f^\pm_\varepsilon \geq f\}| \leq \varepsilon$, we obtain

$$\frac{\Lambda^2_\phi}{2\varepsilon} \int_{I^\pm_\varepsilon \cap \{f^\pm_\varepsilon \geq f\}} 2\varphi(f^\pm_\varepsilon(x)) \, dy + \frac{\Lambda^2_\phi}{2} \varphi(f^\pm_\varepsilon(x)) \leq \frac{3\Lambda^2_\phi}{2} \varphi(f^\pm_\varepsilon(x)).$$

(22)

Therefore, there exists $C = \frac{3\Lambda^2_\phi}{2}$ such that

$$\frac{1}{\varepsilon} \int_{I^\pm_\varepsilon} \varphi(f(y)) \, dy \leq C \varphi(f^\pm_\varepsilon(x)).$$

(23)
On the other hand, applying (1),

$$\varphi(f_\varepsilon^+(x)) = \frac{1}{\varepsilon} \int_{I_\varepsilon^+} \varphi(f_\varepsilon^+(x)) \, dy$$

$$\leq \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ \geq f\}} [\varphi(f_\varepsilon^+(x) - f(y)) + \varphi(f(y))] \, dy + \frac{1}{\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ \leq f\}} \varphi(f_\varepsilon^+(x)) \, dy. \quad (24)$$

Now, we apply a) of Definition 10 and we have

$$\leq \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ \leq f\}} \varphi(f(y) - f_\varepsilon^+(x)) \, dy + \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ > f\}} \varphi(f(y)) \, dy$$

$$+ \frac{1}{\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ < f\}} \varphi(f_\varepsilon^+(x)) \, dy$$

$$\leq \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ \leq f\}} [\varphi(f(y) - f_\varepsilon^+(x)) + \varphi(f_\varepsilon^+(x))] \, dy + \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ > f\}} \varphi(f(y)) \, dy, \quad (25)$$

provided that $1 \leq \Lambda_\Phi^2$. Now, by (1) we get

$$\leq \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ \leq f\}} 2\varphi(f(y)) \, dy + \frac{\Lambda_\Phi^2}{2\varepsilon} \int_{I_\varepsilon^+ \cap \{f_\varepsilon^+ > f\}} \varphi(f(y)) \, dy \leq \frac{\Lambda_\Phi^2}{\varepsilon} \int_{I_\varepsilon^+} \varphi(f(y)) \, dy,$$

because $\frac{\Lambda_\Phi^2}{2} \leq \Lambda_\Phi^2$ and $I_\varepsilon^+ = I_\varepsilon^+ \cap \{f_\varepsilon^+ \leq f\} \cup I_\varepsilon^+ \cap \{f_\varepsilon^+ > f\}$.

Then

$$\frac{1}{C} \varphi(f_\varepsilon^+(x)) \leq \frac{1}{\varepsilon} \int_{I_\varepsilon^+} \varphi(f(y)) \, dy, \quad (26)$$

where $C = \frac{3\Lambda_\Phi^2}{2\varepsilon}$ and (17) follows from (23) and (26).

It remains to prove (18). Note that if $f_\varepsilon^+(x) \in \mu_\varepsilon^+(f)(x)$, then $f_\varepsilon^+(x) - f(x) \in \mu_\varepsilon^+(f - f(x))(x)$. We apply (17) to the function $f - f(x)$ and we obtain

$$\frac{1}{C} \varphi(|f_\varepsilon^+(x) - f(x)|) \leq \frac{1}{\varepsilon} \int_{I_\varepsilon^+} \varphi(|f(y) - f(x)|) \, dy,$$

which is the inequality that we wished to obtain. □

Next, we get an inequality that allows us to compare M^\pm with \mathcal{M}^\pm.

Lemma 1. Let $\Phi \in \hat{\mathcal{F}} \cap \Delta_2$ be a C^1 convex function and let $\Phi' = \varphi$ be such that $A\varphi(t) \leq \varphi(kt)$ for all $t \geq 0$ and some constants $K,A > 1$. Then there exists $C > 0$ such that

$$\frac{1}{K} \varphi^{-1} \left(\frac{1}{C} M^\pm(\varphi(|f|))(x) \right) \leq \mathcal{M}^\pm(|f|)(x) \leq \varphi^{-1}(CM^\pm(\varphi(|f|))(x)), \quad (27)$$

where $M^\pm(f) = \sup_{\varepsilon > 0} \frac{1}{\varepsilon} \int_{I_\varepsilon^+} |f(y)| \, dy$.

Proof. Let φ^{-1} be the generalized inverse of the monotonous function φ which is defined by $\varphi^{-1}(s) = \sup\{t : \varphi(t) \leq s\}$, then

$$t \leq \varphi^{-1}(\varphi(t)) \quad \text{for all } t \geq 0, \quad (28)$$

and for every $\tilde{\varepsilon} > 0$

$$\varphi^{-1}(\varphi(t) - \tilde{\varepsilon)) \leq t \quad \text{for all } t \geq 0. \quad (29)$$

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014
The condition $A\phi(t) \leq \phi(Kt)$ for all $t \geq 0$ and some constants $A, K > 1$, implies that $\phi(0+) = 0$ and $\phi(t) \to \infty$ as $t \to \infty$; therefore, ϕ^{-1} is a real valued function and $\phi^{-1} \in \hat{S}$.

From (17) in Theorem 12 we have

$$|f|^+_{\epsilon}(x) \leq \phi^{-1}\left(\frac{C}{\epsilon} \int_{I_{\epsilon}} \phi(|f(y)|) \, dy\right),$$

and since

$$\frac{C}{\epsilon} \int_{I_{\epsilon}} \phi(|f(y)|) \, dy \leq CM^\pm(\phi(|f|))(x),$$

then

$$\mathcal{M}^\pm(|f|) = \sup_{\epsilon > 0} |f|^+_{\epsilon}(x) \leq \phi^{-1}(CM^\pm(\phi(|f|))(x)). \tag{30}$$

Now, by (17) in Theorem 12 and the monotonicity of ϕ we have

$$\frac{1}{\epsilon} \int_{I_{\epsilon}} \phi(|f(y)|) \, dy \leq C\phi(|f|^+_{\epsilon}(x)) \leq \phi(M^\pm(\phi(|f|))(x), \quad \text{for all } \epsilon > 0,$$

and therefore

$$M^\pm(\phi(|f|))(x) \leq C\phi(M^\pm(\phi(|f|))(x)). \tag{31}$$

As there exist $K, A > 1$ such that $A\phi(t) \leq \phi(Kt)$ for all $t \geq 0$, then $0 \leq \phi(t) < A\phi(t) \leq \phi(Kt)$ for all $t \geq 0$ and consequently $0 < \phi(Kt) - \phi(t)$ for all $t > 0$. Now, from (29) and taking $0 < \epsilon = \phi(Kt) - \phi(t)$ for all $t > 0$, we get

$$\phi^{-1}(\phi(t)) = \phi^{-1}(\phi(Kt) - \phi(t)) \leq Kt \quad \text{for all } t > 0. \tag{32}$$

From (31), the fact that ϕ^{-1} is a nondecreasing function and (32), we get

$$\phi^{-1}\left(\frac{1}{C}M^\pm(\phi(|f|))(x)\right) \leq \phi^{-1}(\mathcal{M}^\pm(\phi(|f|))(x)) \leq K.\mathcal{M}^\pm(\phi(|f|))(x). \tag{33}$$

Therefore, from (30) and (33).

$$\frac{1}{K} \phi^{-1}\left(\frac{1}{C}M^\pm(\phi(|f|))(x)\right) \leq \mathcal{M}^\pm(|f|)(x) \leq \phi^{-1}(CM^\pm(\phi(|f|))(x)). \tag{34}$$

\[\square\]

4.1. Strong type inequalities for \mathcal{M}^\pm.

Theorem 13. Let $\Phi \in \hat{S} \cap \Delta_2$ be a C^1 convex function and let $\Phi' = \phi$ be such that $A\phi(t) \leq \phi(Kt)$ for all $t \geq 0$ and for some constants $K, A > 1$. For a function $\theta \in \hat{S} \cap \Delta_2$, we have that the function $\theta \circ \phi^{-1}$ satisfies the ∇_2 condition if and only if there exists a constant \bar{C} independent of f such that

$$\int_R \theta(M^\pm(|f|))(x) \, dx \leq \bar{C} \int_R \theta(\bar{C}|f(x)|) \, dx,$$

for all $f \in L^\Phi_{\text{loc}}(R)$.

Proof. \Leftrightarrow Suppose that $\mathcal{M}^\pm(|f|)$ verifies

$$\int_R \theta(M^\pm(|f|))(x) \, dx \leq \bar{C} \int_R \theta(\bar{C}|f(x)|) \, dx,$$

for all $f \in L^\Phi_{\text{loc}}(R)$.

As $\theta \in \hat{S} \cap \Delta_2$, there exists $K_1 > 0$ such that

$$\int_R \theta(KM^\pm(|f|))(x) \, dx \leq K_1 \int_R \theta(K_1|f(x)|) \, dx, \tag{34}$$

for all $f \in L^\Phi_{\text{loc}}(R)$.

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014
From (27), (34) and the fact that M^\pm is homogeneous, we have
\[
\int_{\mathbb{R}} \theta \left(\varphi^{-1} \left(\frac{1}{C} M^\pm (\varphi(\|f\|))(x) \right) \right) \, dx = \int_{\mathbb{R}} \theta \left(\varphi^{-1} \left(M^\pm \left(\frac{1}{C} \varphi(\|f\|) \right)(x) \right) \right) \, dx
\leq \int_{\mathbb{R}} \theta(K(\mathcal{M}^\pm(\|f\|))(x)) \, dx
\leq K_1 \int_{\mathbb{R}} \theta(K(\|f\|))(x) \, dx.
\] (35)

Since $t \leq \varphi^{-1}(\varphi(t))$ for all $t \geq 0$, then $K_1 \|f(x)\| \leq \varphi^{-1}(\varphi(K_1 \|f(x)\|))$; now, by the monotonicity of θ and the fact that $\varphi \in \mathcal{I} \cap \Delta_2$, there exists $K_2 > 0$ such that
\[
\int_{\mathbb{R}} \theta(K_1 \|f(x)\|) \, dx \leq \int_{\mathbb{R}} \theta(\varphi^{-1}(\varphi(K_1 \|f(x)\|)))(x) \, dx \leq \int_{\mathbb{R}} \theta(\varphi^{-1}K_2(\varphi(\|f(x)\|)))(x) \, dx,
\] (36)

for all $f \in L^0_{\text{loc}}(\mathbb{R})$.

Therefore, from (35) and (36), we have
\[
\int_{\mathbb{R}} \psi(M^\pm(g)(x)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \psi(\tilde{C}g(x)) \, dx,
\] (37)

where $\psi = \theta \circ \varphi^{-1}$, $g = \frac{1}{\tilde{C}} \varphi(\|f\|)$ for any $f \in L^0_{\text{loc}}(\mathbb{R})$ and $\tilde{C} = \max\{K_1, K_2 C\}$.

As the inequality (37) holds for any $f \in L^0_{\text{loc}}(\mathbb{R})$ being $g = \frac{1}{\tilde{C}} \varphi(\|f\|)$, we choose $f = \varphi^{-1}(Cg)$ for any nonnegative function $g \in L^1_{\text{loc}}(\mathbb{R})$ and, using the fact that $\varphi(\varphi^{-1}(t)) = t$ provided that $t \in \text{Im } \varphi \cup \{\inf \text{Im } \varphi, \sup \text{Im } \varphi\}$, we obtain
\[
\int_{\mathbb{R}} \psi(M^\pm(g)(x)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \psi(\tilde{C}g(x)) \, dx,
\]

for all nonnegative functions $g \in L^1_{\text{loc}}(\mathbb{R})$ and where \tilde{C} is independent of g. Now, by Theorem 17 we get $\psi = \theta \circ \varphi^{-1} \in \mathcal{V}_2$.

\Rightarrow As $\psi = \theta \circ \varphi^{-1} \in \mathcal{V}_2$, by Theorem 17 there exists $K_1 > 0$ such that
\[
\int_{\mathbb{R}} \psi(M^\pm(g)(x)) \, dx \leq K_1 \int_{\mathbb{R}} \psi(K_1 g(x)) \, dx,
\] (38)

for all nonnegative functions $g \in L^1_{\text{loc}}(\mathbb{R})$. By (27) we have
\[
\mathcal{M}^\pm(\|f\|)(x) \leq \varphi^{-1}(CM^\pm(\varphi(\|f\|))(x)),
\] (39)

and if $K_2 = \max\{C, K_1\}$, both inequalities hold with K_2.

Therefore, from (38), the monotonicity of θ, the homogeneity of M^\pm and (39), we have
\[
\int_{\mathbb{R}} \theta(\mathcal{M}^\pm(\|f\|))(x)) \, dx \leq \int_{\mathbb{R}} \psi(K_2 M^\pm(\varphi(\|f\|))(x)) \, dx
\leq \int_{\mathbb{R}} \psi(K_2 M^\pm(K_2 \varphi(\|f\|))(x)) \, dx
\leq K_2 \int_{\mathbb{R}} \psi(K_2^2 \varphi(\|f(x)\|)) \, dx
\leq K_3 \int_{\mathbb{R}} \psi(K_3 \varphi(\|f(x)\|)) \, dx,
\] (40)

with $K_3 = \max\{K_2, C K_2 \}$. Moreover, since $A \varphi(t) \leq \varphi(Kt)$ for all $t \geq 0$ and for some $A, K > 1$, there exists l such that $K_3 \leq A^l$ and, applying the inequality l times, then
\[
K_3 \varphi(x) \leq A^l \varphi(x) \leq A^{l-1} \varphi(Kt) \leq \varphi(K^l t).
\]
Now
\[K_3 \int_{\mathbb{R}} \psi(K_3 \phi(|f(x)|)) \, dx \leq K_4 \int_{\mathbb{R}} \psi(\phi(K_4 |f(x)|)) \, dx, \]
where \(K_4 = \max\{K_3, K_1^r\} \). By (32) we have \(\phi^{-1}(\phi(t)) \leq Kt \) and since \(\theta \circ \phi^{-1} = \psi \), then \((\psi \circ \phi)(t) = (\theta \circ \phi^{-1} \circ \phi)(t) \leq \theta(Kt) \); now
\[K_4 \int_{\mathbb{R}} \psi(\phi(K_4 |f(x)|)) \, dx \leq K_4 \int_{\mathbb{R}} \theta(K \phi(K_4 |f(x)|)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \theta(\tilde{C} |f(x)|) \, dx, \]
(41)
being \(\tilde{C} = \max\{K_4, K K_4\} \).
Consequently, from (40) and (41), we get
\[\int_{\mathbb{R}} \theta(\mathcal{M}^\pm(|f(x)|)) \, dx \leq \tilde{C} \int_{\mathbb{R}} \theta(\tilde{C} |f(x)|) \, dx. \]
\[\square \]

Remark 14. If \(\phi \in \mathcal{F} \) such that \(t^p \leq \phi \leq C t^p \) then \(\phi(Kt) > A \phi(t) \) for all \(t \geq 0 \) and for any \(K > 1 \) such that \(A = \frac{K^p}{t^p} > 1 \). In consequence, Theorem 13 allows us to consider \(\phi \in \mathcal{F} \) which is not a strictly increasing function and in this case \(\mu^f_\phi(x) \) may have more than one element.

We also get sufficient conditions to have a strong type inequality for \(\mathcal{M}^\pm \) softening the hypothesis of Theorem 13.

Theorem 15. Let \(\Phi \in \mathcal{F} \cap \Delta_2 \) be a convex function in \(C^1 \) and let \(\Phi' = \phi \) such that \(A \phi(t) \leq \phi(Kt) \) for all \(t \geq 0 \) and for some constants \(K, A > 1 \). Then
\[\int_{\mathbb{R}} \Phi(\mathcal{M}^\pm(|f(x)|)) \, dx \leq C \int_{\mathbb{R}} \Phi(C |f(x)|) \, dx, \]
for all \(f \in L^p_{\text{loc}}(\mathbb{R}) \) and where the constant \(C \) is independent of \(f \).

Proof. With the aim of applying Theorem 13, we need to show \(\Phi \circ \phi^{-1} \in \nabla_2 \) where \(\Phi \in \mathcal{F} \cap \Delta_2 \) and a proof of this fact is done in [2]. \[\square \]

4.2. Operators \(M^\pm_p \). If \(\Phi(t) = t^{p+1} \) with \(p > 0 \) in (27), there exists a positive constant \(\tilde{K} \) independent of \(f \) such that
\[\frac{1}{\tilde{K}} (M^\pm(|f|^p)(x))^{\frac{1}{p}} \leq \mathcal{M}^\pm(|f|)(x) \leq \tilde{K} (M^\pm(|f|^p)(x))^{\frac{1}{p}}. \]
(42)
Let \(M^\pm_p(f)(x) = \left(\sup_{t > 0} \frac{1}{t} \int_{t}^{\infty} |f(t')|^p \, dt' \right)^{\frac{1}{p}} = (M^\pm(|f|^p)(x))^{\frac{1}{p}}. \) The operators \(M^\pm_p \) are related to one-sided \(p \)-averages of a function and they are homogeneous like \(M^\pm \).

A useful and particularly simple characterization of strong type inequalities involving \(M^\pm_p \) may be established for this special case employing Theorem 13.

Corollary 16. Let \(\theta \in \mathcal{F} \) and \(p > 0 \), then there exists \(\tilde{K} > 0 \) such that
\[\int_{\mathbb{R}} \theta(M^\pm_p(f)(x)) \, dx \leq \tilde{K} \int_{\mathbb{R}} \theta(\tilde{K} |f(x)|) \, dx, \]
(43)
for all \(f \in L^p_{\text{loc}}(\mathbb{R}) \) if and only if \(\theta(t^{1/p}) \in \nabla_2 \).

Proof. It follows from Theorem 13 with \(\Phi(x) = \frac{x^{p+1}}{p+1} \) because \(\Phi \in \mathcal{F} \cap \Delta_2 \) is a \(C^1 \) convex function such that \(A \phi(t) < \phi(Kt) \) for all \(t \geq 0 \) with \(A > 1, K > A^{\frac{1}{p}} \) and where \(\phi = \Phi' \). \[\square \]
Remark 17. If (43) holds, then
\[\| M^\pm_p(f) \|_\theta \leq C \| f \|_\theta, \]
where \(\| f \|_\theta \) denotes the Luxemburg norm of \(f \) defined by
\[\| f \|_\theta = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}} \theta \left(\frac{|f(x)|}{\lambda} \right) \, dx \leq 1 \right\}, \]
being \(\theta \) a Young function and \(f \in L^\theta(\mathbb{R}) \).

Proof. The statement follows straightforwardly from Remark 2 in [2]. □

ACKNOWLEDGMENT

The authors would like to thank the referees for their valuable comments and suggestions.

REFERENCES

UNIVERSIDAD NACIONAL DE SAN LUIS, INSTITUTO DE MATEMÁTICA APLICADA SAN LUIS, CONICET AND DEPARTAMENTO DE MATEMÁTICA, (5700) SAN LUIS, ARGENTINA
E-mail: sfavier@unsl.edu.ar

UNIVERSIDAD NACIONAL DE LA PAMPA, DEPARTAMENTO DE MATEMÁTICA DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES, (6300) SANTA ROSA, LA PAMPA, ARGENTINA
E-mail: sonia.acinas@gmail.com