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We study the diffusion process in binary mixtures using transition probabilities that depend on
a mean-field potential. This approach reproduces the Darken equation, a relationship between the
intrinsic and the tracer diffusion coefficients, DA and D∗

A, through the thermodynamic factor Φ (a
function of the derivative of the activity coefficient against molar fraction). The mean-field approach
allows us to go beyond the Darken equation and separately specify the dependence of DA and D∗

A

on the thermodynamic factor. We obtain that Φ appears in the expression for D∗
A, but the intrinsic

diffusivity DA turns out to be independent of Φ. Experimental results taken from the literature on
diffusion in metal alloys are consistent with this theoretical prediction.
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I. INTRODUCTION

Diffusion in solids is of crucial importance in material
science. It is closely related to the durability of a com-
pound, the conduction and transport properties, and it
is applied to, for example, the design of new materials,
the preparation, processing and subsequent heat treat-
ment for hardening and toughening, etc. The physics of
the diffusion process is complex. It involves many-body
dynamics, intricate interactions between different types
of atoms and holes, and there are a number of differ-
ent aspects that impacts in the diffusion process, such
as the presence of vacancies, impurities, if the alloy is di-
luted or concentrated, the temperature, the pressure, the
melting properties, activation energies, elastic constants,
etc. The detailed effect of each of these ingredients, and
more, can be found in, e.g., Refs. [1–5].

The mean-field approach permits to analyze a complex
dynamic and reduce it to a problem where the analyti-
cal calculations can be attainable and usually complete.
The aim of this work is to find an analytical expression for
the diffusion coefficients in binary mixtures in the frame-
work of mean-field theory, isolating the key ingredients
to reproduce the observed dynamics in metal alloys. The
main purpose is to separately specify the dependence of
the intrinsic and tracer diffusion coefficients on the ther-
modynamic factor.

This article is organized as follows. Firstly, in Sec. II,
we condense the background theory of diffusion intro-
duced initially by Darken. In Sec. III, we present the
details of the mean-field approach and how it is related
to the experimental system of a binary mixture. Sub-
sequently, in Sec. IV, we calculate analytically the re-
lationship between mean-field parameters to ultimately
find their dependence on the physical observables such
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as the thermodynamic factor and the activation energy.
In Sec. V we conclude the theoretical analysis with the
derivation of an expression for the intrinsic diffusivity as
a function of the concentration. Finally, in Sec. VI, we
test this expression fitting experimental data for diffu-
sion in metallic alloys. We close in Sec. VII with the
conclusions and discussion.

II. BASIC THEORY

We briefly summarize the theoretical description of
substitutional diffusion in solid binary alloys, originally
proposed by Darken [6]; see also [1, ch. 10]. Let us call
cA and cB the molar concentrations of species A and B;
the total concentration is cT = cA + cB . For simplic-
ity, we consider spatial variations only along the x axis,
and we write the equations for species A; the correspond-
ing equations for species B are immediately obtained ex-
changing A ↔ B. The diffusion current respect to the
crystalline lattice is

JA = −DA
∂cA
∂x

(1)

where DA is the intrinsic diffusivity for species A. There
could be a net volume flux through a crystalline plane
perpendicular to the x axis. In the laboratory reference
frame (in which the volume current is zero), such plane
moves with the Kirkendall velocity, given by

vK = −νAJA − νBJB , (2)

where νA and νB are the partial molar volumes; the total
molar volume is νm = 1/cT = NAνA + NBνB , where
NA = cA/cT and NB = cB/cT are the mole fractions; we
also have that cAνA+cBνB = 1 and νA dcA+νB dcB = 0.
It can be seen that the current of species A or B in the
laboratory reference frame, JA,lab and JB,lab, have the
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same diffusion coefficient:

JA,lab = JA + cAvK = −D̃ ∂cA
∂x

(3)

where

D̃ = νBcBDA + νAcADB (4)

is the interdiffusion coefficient.
The thermodynamic force that drives the particle cur-

rent is the gradient of the chemical potential µA, and
the linear relationship that connects current and force
is JA = BAcA

∂µA

∂x , where BA is the mobility of species
A. Using the Einstein relation, D∗A = BART , where D∗A
is the tracer diffusion coefficient and R is the ideal gas
constant, we have

JA =
D∗AcA
RT

∂µA
∂x

. (5)

Given the expression of the chemical potential in terms
of activity coefficient γA,

µA = µ0
A +RT ln(NAγA), (6)

the following relationship between intrinsic and tracer
diffusivity is obtained [1, Sec. 10.3]:

DA = D∗A
νm
νB

Φ, (7)

where

Φ = 1 +
∂ ln γA
∂ lnNA

(8)

is the thermodynamic factor. Using the Gibbs-Duhem
relation, it can be shown that the thermodynamic factor
is the same for species A or B. Replacing (7) in (4), we
get the following simple equation for the interdiffusion
coefficient

D̃ = (NAD
∗
B +NBD

∗
A)Φ. (9)

Equations (7) and (9) are called Darken equations. In
his original derivation, Darken assumed constant total
concentration, that means that νm = νA = νB ; in this
particular case, Eq. (7) becomes DA = D∗AΦ.

Substitutional diffusion is not possible without the
presence of vacancies. For small enough vacancy con-
centration, the probability of finding a vacancy can be
taken equal to its mole fraction NV , and the (tracer or
intrinsic) diffusivities should be proportional to NV (see
[2, Sec. 5.3])

III. MEAN FIELD APPROACH

We divide the system in cells of length a. The cell size
should be much smaller than the characteristic length of
the concentration inhomogeneities, so that the cell can be

considered point-like, and, at the same time, much larger
than the lattice spacing. We assume smooth enough spa-
tial and temporal variations, so that the local thermal
equilibrium approximation holds. We can write the tran-
sition probability from the cell with label i to the neigh-
boring cell i+ 1, as

WA
i,i+1 = PA exp

[
−β

2
(ΘA,i+1VA,i+1 + ΘA,iVA,i + ∆VA)

]
(10)

where PA is the jump rate of particles A; VA,i is the
mean-field potential for one particle in cell i; ∆VA =
VA,i+1 − VA,i; and ΘA,i is an interpolation parameter
that determines if WA

i,i+1 depends on the potential in the
origin cell i, on the one in the target cell i + 1, or on a
combination of both. With this definition, we expect Θ
to take values of order 1; but values of Θ that exceed the
range (−1, 1) are not forbidden.

The mean-field potential is a function of the number
of particles nA,i, and VA,i is an abbreviation of VA(nA,i).
Eq. (10) was proposed in [7] as a general form of the Ar-
rhenius formula that satisfies detailed balance. The start-
ing point of the present calculations is the expression for
the transition probability (10). In the next paragraphs,
we reproduce some results of Ref. [8] for completeness.

The particle current of species A for a given config-
uration is given by nAi W

A
i,i+1 − nAi+1W

A
i+1,i. Taking the

average on configurations and the continuous limit we
obtain (see, e.g., Appendix A in Ref. [8] for details)

JA = −∆A e
−βΘAVA

(
βcA

∂VA
∂x

+
∂cA
∂x

)
(11)

where ∆A = PAa
2 has units of diffusion coefficient. Let

us note that ∆A may depend on position or concentra-
tion.

Comparing the zero current equilibrium solution for
the concentration with the expression that comes from
the chemical potential (6):

cA = cT e
(µA−µ0

A−RT ln γA)/RT , (12)

we can obtain a relationship between the mean-field po-
tential and the activity coefficient [8]

βVA = ln
γA cB0

γA0 cT
, (13)

where cB0 is the concentration of pure B, and γA0 is the
activity coefficient for cA → 0. In the limit of small con-
centration, the condition VA → 0 is satisfied. Replacing
(13) in (11), after some algebra (see Appendix A) we get

JA = −∆A e
−βΘAVA Φ

νm
νB

∂cA
∂x

, (14)

where we can identify the intrinsic diffusivity

DA = ∆A e
−βΘAVA Φ

νm
νB

. (15)
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The transition probabilities can also be used to obtain
the tracer diffusion coefficient D∗A through the evaluation
of the mean square displacement in a short time interval
∆t: 〈(∆x)2〉 = 2D∗A ∆t (see Appendix B in Ref. [8]). We
obtain

D∗A = ∆A e
−βΘAVA . (16)

Combining (15) and (16), we recover the Darken equation
(7): DA = D∗A

νm
νB

Φ.
As mentioned in the previous section, both diffusivities

are proportional to the vacancy mole fraction NV for a
substitutional alloy. This dependence is included in ∆A,
since the jump rate PA between cells should also be pro-
portional to NV . The vacancy mole fraction is given by
NV = e−βgV , where gV is the vacancy formation energy.
Besides vacancies, we should also include the effect of the
migration energy gAm for a particle of type A. The diffu-
sivities are proportional to e−βgA , where gA = gV + gAm
is the activation energy (see [2, Sec. 5.3.5]); for a binary
alloy we have that gA (and gV and gAm) is a function of
the molar fraction. We can write

∆A = DA0 e
−β(gA−gA0), (17)

where gA0 and DA0 are, respectively, the activation en-
ergy and the diffusivity when cA → 0. In the limit of
small concentration we have that DA = D∗A = DA0.

IV. THE INTERPOLATION PARAMETER

The analysis of the previous section has some interest
as an alternative procedure to obtain the already known
relationships derived by Darken (for the limits and range
of application of these equations, see, e.g., [1]). Nev-
ertheless, the main purpose of this paper is to further
advance in the description of diffusion in binary alloys
using the mean-field approach. In order to do that, in
this section we obtain an expression of the interpolation
parameter ΘA as a function of the mean-field potential
VA and, using this result, in the next section we demon-
strate that the intrinsic diffusivity does not depend on
the thermodynamic factor. In the rest of this section we
omit subindices A and i to lighten the notation, and as-
sume that we deal with n particles of species A in cell
number i; the cell has volume v.

The first step is to find the connection between the
mean-field potential V and the energy φ of n particles
in a cell. We use the local equilibrium assumption to
consider that the energy is a function only of the number
of particles and the temperature. We can write the grand
partition function of the cell as

Z =

∞∑
n=0

1

n!
e−β[φ(n)−µ̃n], (18)

where µ̃ = µ/NA is the chemical potential per particle
and NA is the Avogadro’s constant. The mean number

of particles is

n̄ =
1

β

∂ lnZ
∂µ̃

=
1

Z
∞∑
n=0

n

n!
e−β[φ(n)−µ̃n]

=
eβµ̃

Z
∞∑
n=1

1

(n− 1)!
e−β[φ(n)−µ̃(n−1)]

=
eβµ̃

Z
∞∑
m=0

1

m!
e−β[φ(m+1)−µ̃m]

=
eβµ̃

Z
∞∑
m=0

1

m!
e−β[φ(m+1)−φ(m)]e−β[φ(m)−µ̃m]

= eβµ̃〈e−β[φ(n+1)−φ(n)]〉, (19)

where, in the third line, we changed the summation in-
dex: m = n − 1. The concentration is c = n̄/v. Using
Eqs. (12) and (13) (with subindex A omitted), we have

n̄ = eβµ̃e−β(V+b) (20)

where b is a constant given by b = µ̃0−kBT ln(cB0v/γ0),
and kB = R/NA is the Boltzmann constant. Comparing
Eqs. (19) and (20), we get

e−β(V+b) = 〈e−β∆φ(n)〉 (21)

with ∆φ(n) = φ(n+ 1)−φ(n), and where V is evaluated
in n̄. As usual in thermodynamics, we treat φ as a con-
tinuous function of n. We use the following notation: φ
without explicit dependence means that it is evaluated
in n̄, and we use prime to represent derivatives respect
to n̄: φ′ = dφ

dn̄ . We can approximate the average of the
previous equation and obtain an expression in terms of
the mean square fluctuations of the number of particles
that, in turn, can be evaluated with the partition func-
tion. The result is (see Appendix B for the details of this
derivation)

φ′ = V + b− 1

2β

d ln(1 + βn̄V ′)

dn̄
. (22)

The next step is to find an equation that connects the
interpolation parameter Θ with V and φ. Let us consider
a process in which one particle jumps from cell number 1
to cell number 2. The rest of the cells remain unchanged,
so we specify the configuration of the system using only
the number of particles in cells 1 and 2. Initially we have
the configuration given by {n1, n2}; after the jump we
have {n1− 1, n2 + 1}. In order to adopt a more compact
notation, we now use Vni

instead of V (ni), and the same
for φ(ni) and Θ(ni). From the exponential in the tran-
sition probability (10), we have the height of the energy
barrier that has to be overcome to perform the jump:

hini =
Θn1 − 1

2
Vn1 +

Θn2
+ 1

2
Vn2 . (23)

If we consider the reverse process {n1 − 1, n2 + 1} →
{n1, n2}, the energy barrier is

hfin =
Θn2+1 − 1

2
Vn2+1 +

Θn1−1 + 1

2
Vn1−1. (24)
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FIG. 1. Diagram of the energy against configuration when a
particle jumps between cells 1 and 2. The initial configuration
corresponds to {n1, n2} and the final configuration to {n1 −
1, n2 + 1}.

From Figure 1 we can see that the energy difference
between configurations is

∆E = Efin − Eini = hini − hfin. (25)

On the other hand, using the function φ for the energy
of a given number of particles in a cell, we have that the
energy difference is

∆E = φn1−1 + φn2+1 − φn1
− φn2

. (26)

Combining the last equations, and rearranging terms, we
have

φn2+1 − φn2
− Vn2+1 + Vn2

2
+

Θn2+1Vn2+1 −Θn2Vn2

2

= φn1
− φn1−1 −

Vn1
+ Vn1−1

2
+

Θn1
Vn1
−Θn1−1Vn1−1

2
.

(27)

Now we perform a series expansion of φ and V around
n̄2 in the left hand side and n̄1 in the right hand side; it
is the same kind of expansion that is used in Appendix
B, where we keep terms up to order v−1 and the volume
v is used as a large parameter. After taking the average
on different realizations, we obtain(

φ′ − V +
1

2

dΘV

dn̄

)
n̄2

=

(
φ′ − V +

1

2

dΘV

dn̄

)
n̄1

. (28)

There is a small and arbitrary concentration difference
between sites 1 and 2, therefore, the previous equation
implies

d

dn̄

(
φ′ − V +

1

2

dΘV

dn̄

)
= 0. (29)

We use Eq. (22) for φ′, cancel constant b and obtain

d2

dn̄2
[βΘV − ln(1 + βn̄V ′)] = 0, (30)

or

βΘV − ln(1 + βn̄V ′) = κ1n̄+ κ2. (31)

Constants κ1 and κ2 are obtained from the following con-
ditions. In the limit of small concentration, n̄ → 0, we
have that V = 0, see Eq. (13). This condition implies
that κ2 = 0. Now, using that limn̄→0 V/n̄ = V ′, we can
write

κ1 = βΘV ′ − 1

n̄
ln(1 + βn̄V ′)

' βΘV ′ − βV ′ (n̄→ 0)

= 0 (32)

where we have used the condition that Θ = 1 for n̄→ 0.
It is deduced from the interpretation of Θ as an interpo-
lation parameter that determines if the transition prob-
ability Wi,i+1 [see Eq. (10)] depends on the potential in
the origin or target cell. For small concentration there
is at most one particle in a cell, and the probability to
jump to a neighboring cell depends on whether it is oc-
cupied or not by another particle, that is, it depends on
the potential in the target cell. This means that in the
limit of small concentration we have Θ = 1.

The final result is

βΘV = ln(1 + βn̄V ′). (33)

For a comparison between the interpolation parame-
ter Θ presented in this paper and the one introduced in
Ref. [8], see Appendix C.

V. DEPENDENCE ON THE
THERMODYNAMIC FACTOR

In this section, we recover the more specific notation
with subindex A to specify the type of component. The
result obtained for ΘA, Eq. (33), is directly related to the
thermodynamic factor. It can be shown that

1 + βn̄AV
′
A = 1 + βcA

∂VA
∂cA

= Φ
νm
νB

, (34)

where cA = n̄A/v, and we have used part of the calcula-
tions presented in Appendix A. Then, using (34) in (33),
we get

e−βΘAVA = Φ−1 νB
νm

, (35)

and using this last result in the equations for the intrinsic
and tracer diffusivities, Eqs. (15) and (16), we finally
obtain:

DA = DA0 e
−β(gA−gA0) (36)

D∗A = DA0 e
−β(gA−gA0) Φ−1 νB

νm
, (37)

where we have used (17) for ∆A.
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The thermodynamic factor Φ depends on the activity
coefficient, that represents the departure from the behav-
ior of an ideal mixture due to interactions between A and
B species. The previous analysis shows that the intrinsic
diffusivity does not depend on the thermodynamic fac-
tor, and it is mainly determined by the activation energy
gA. On the other hand, the tracer diffusivity behaves as
Φ−1.

A first approximation for the mole fraction dependence
of the activation energy is

gA = NAgA1 +NBgA0 − εANANB , (38)

where gA1 and gA0 are the activation energies for NA → 1
and NA → 0, respectively. The first two terms in the
previous equation represent the Vegard’s law. The last
term is a possible departure from Vegard’s law; it has the
same shape as the correction term in the mixing energy
that gives rise to Margules equations (see, e.g., [9, p.
150]). For more elaborate representations of the vacancy
formation energy, included in gA, see, e.g., [10, 11]; for
an introduction to defect-mediated diffusion, see [3, ch.
10]. Now, the intrinsic diffusivity takes the form

DA = DA0 e
−β∆gANA eβεANANB (39)

with ∆gA = gA1 − gA0. Using the value of the intrinsic
diffusivity in the limit of NA → 1, DA1 = DA0 e

−β∆gA ,
we have

DA = DNB

A0 D
NA

A1 e
βεANANB . (40)

VI. EXPERIMENTAL TEST

To test the expression found for the intrinsic diffusiv-
ity in the mean-field theory approach, we gather previous
experimental data and fit them with Eq. (40) for differ-
ent metal alloys. In Fig. 2, we show these results for
Au-Ni [12], Ag-Au [13] and Fe-Pd [14] and in Table I
we present the fitted parameters D0, D1 (diffusivities for
molar fractions in the limits 0 and 1; subindex A is omit-
ted for simplicity), with their respective reference values
for comparison, and βε.

We found that the qualitatively different behaviors
shown in Fig. 2 can be reproduced, with good agreement,
using the expression of Eq. (40), with an appropriate fit
of parameters D0, D1 and βε.

Table I also shows reference values of D0 and D1 taken
from Refs. [12–14]. The agreement with the fitting pa-
rameters that we obtained is good except in cases in
which the diffusivity takes small values and the relative
error is larger. In addition, extra reference values are
presented for D0 and D1. These were calculated using
experimental data from Refs. [5, 15, 16], where differ-
ent contributions to self-diffusion, like monovacancy, di-
vacancy and vacancy migration, are taken into account.
Errors are reported when available.

There is a physical argument to qualitatively under-
stand why the values obtained for ε are positive. As
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FIG. 2. Intrinsic diffusivities as a function of the molar frac-
tion: Experimental data extracted from Refs. [12–14] (circles)
and the Eq. (40) fitted for each set (line). See Table I for the
parameters used in each case.

mentioned in Sect. III, the activation energy is the sum
of the migration energy plus the vacancy formation en-
ergy. The mixture of two species with different properties
in a solid alloy creates disorder in an otherwise ordered
lattice (for a pure material). The disorder favors the
formation of vacancies, therefore the vacancy formation
energy should be smaller than the linear interpolation
represented by the Vegard’s law (as long as the molar
fraction takes values different from 0 or 1). This is re-
flected by the negative nonlinear term in the activation
energy, Eq. (38), i.e., a positive value of ε.

VII. CONCLUSIONS

Starting from the expression of the transition probabil-
ities (10) in terms of the mean-field potential VA and the
interpolation parameter ΘA (introduced in Ref. [7]) we
can obtain an alternative derivation of the Darken equa-
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D0 D1 βε

Our result Ref. value Our result Ref. value

Au 0.022(4) 0.1 [12] 9.1(1) 9 [12] 6.5(3)
0.015 [5] 14.8(6) [5, 15]

Ni 9.01(5) 9 [12] 0.009(1) 0.006 [12] 6.9(2)
8 [5] –

Ag 24(1) 26 [13] 23(1) 21 [13] 0.9(3)
21 [5] 22(3) [5, 15]

Au 8.9(5) 8 [13] 13.6(5) 13.8 [13] 0.5(2)
7.6 [5] 13.5(5) [5, 15]

Fe 0.03(1) 0.27(3) [14] 0.09(2) 0.10(2) [14] 18(1)
0.23 [5] 0.06 [5]

Pd 0.07(2) 0.10(2) [14] 0.03(1) 0.15(2) [14] 16(1)
0.08 [5] 0.15 [5, 16]

TABLE I. Parameters obtained by fitting Eq. (40) for each metal diffusing in their respective alloy. Reference values for D0

and D1 are shown for comparison. These were extracted from Ref. [12] for the Au-Ni alloy, Ref. [13] for Au-Ag and Ref. [14]
for Fe-Pd. Extra reference values were calculated using experimental data from Refs. [5, 15, 16]. Units for D0 and D1 are
10−10cm2/s.

tion (7). More interesting, we obtain separate expressions
for the intrinsic and tracer diffusion coefficients, Eqs. (36)
and (37). The factors that determine the dependence of
the diffusivities on concentration are the thermodynamic
factor Φ and the activation energy gA. We obtained that
the intrinsic diffusivity DA does not depend on Φ.

A more intuitive understanding of the dependence of
diffusion coefficients on the thermodynamic factor may
be obtained analyzing simpler situations. Let us consider
a one dimensional discrete lattice with particles diffusing
and interacting with a hard-core potential. It is known
that a tagged particle has anomalous diffusion in this
case. Allowing multiple occupancy of sites, i.e. soft core,
the self-diffusion is not anomalous, but still strongly de-
pends on the interaction. On the other hand, the collec-
tive behavior of a set of indistinguishable particles is the
same as in the absence of interaction. The process of two
particles with hard core that collide, and remain in their
sites, is indistinguishable from the particles jumping and
interchanging positions. The collective diffusion does not
depend on the interaction, that in the present context is
represented by the thermodynamic factor, while the self-
diffusion does.

A quadratic form for the dependence of gA on the mo-
lar fraction, Eq. (38), was used. The resulting expression
for the intrinsic diffusivity, Eq. (40), has three parame-
ters: the diffusivity in the limits of molar fraction 0 and
1, and the coefficient εA of the quadratic term of the ac-
tivation energy. By fitting these parameters, we show
that Eq. (40) is able to correctly represent experimental
results of the intrinsic diffusivity for three different metal
alloys, see Fig. 2. The available experimental data found
in the literature are consistent with the theory here de-
veloped, and this is a promising result. However, in order
to have a thorough test of the theory it is still necessary,
for example, to have access to accurate experimental val-
ues of the activation energy, or to consider systems with

a concentration dependence of the thermodynamic factor
whose influence can be observed in D∗A and not in DA.
Besides the activation energy and the thermodynamic
factor, there are other elements at stake to be considered
in a more detailed description, and it is experimentally
challenging to discriminate all of them. For example, the
vacancy wind factor or Manning factor, the presence of
impurities, or the impurity vacancy binding energy; see
[17].

APPENDIX A

We present here more details of the derivation of Eq.
(14) from Eq. (11). Let us focus attention on the paren-
thesis in the right hand side of (11), and let us call it X
for further reference:

X = βcA
∂VA
∂x

+
∂cA
∂x

=

(
βcA

∂VA
∂cA

+ 1

)
∂cA
∂x

=

(
cA
∂ ln(γA/cT )

∂cA
+ 1

)
∂cA
∂x

=

(
cA
∂ ln γA
∂NA

dNA
dcA

− cA
cT

dcT
dcA

+ 1

)
∂cA
∂x

(41)

where we have used Eq. (13) for the mean-field potential
VA. For partial molar quantities, as νA and νB , the fol-
lowing relation holds: νA dcA + νB dcB = 0. Then, since
cT = cA + cB , we have

dcT
dcA

= 1− νA
νB

(42)
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and, using that NA = cA/cT = cAνm,

dNA
dcA

= νm −
cA
c2T

dcT
dcA

=
(
νm − cAν2

m(1− νA/νB)
)

= ν2
m(cT − cA + cAνA/νB)

=
ν2
m

νB
(cBνB + cAνA)

=
ν2
m

νB
. (43)

Using (42) and (43) in (41), we have

X =

[
cA
∂ ln γA
∂NA

ν2
m

νB
−NA

(
1− νA

νB

)
+ 1

]
∂cA
∂x

=

(
νm
νB

∂ ln γA
∂ lnNA

+NB +NA
νA
νB

)
∂cA
∂x

=

(
∂ ln γA
∂ lnNA

+ 1

)
νm
νB

∂cA
∂x

= Φ
νm
νB

∂cA
∂x

, (44)

where, in the last step, we have used the definition of the
thermodynamic factor Φ (8). Replacing this expression
for X in (11), we obtain (14).

APPENDIX B

In this appendix, we derive Eq. (22) from Eq. (21).
The relevant values of ∆φ(n), in the average of Eq. (21),
are similar to φ′, so we can approximate

e−β(V+b) = e−βφ
′〈e−β[∆φ(n)−φ′]〉

= e−βφ
′
[1− β〈∆φ(n)− φ′〉

+ β2〈(∆φ(n)− φ′)2〉/2 + · · · ]. (45)

For, for example, φ(n) we can write

φ(n) = φ(n̄+ ∆n) = φ+ φ′∆n+
1

2
φ′′∆n2 + · · · (46)

where ∆n = n−n̄. Using an expansion of ∆φ(n) in terms
of the fluctuation ∆n in Eq. (45), we obtain

e−β(V+b) = e−βφ
′
(1 + βε) (47)

with

ε = −1

2
φ′′ +

1

2
(βφ′′2 − φ′′′)〈∆n2〉. (48)

The mean number of particles n̄ is an extensive quantity,
proportional to the volume v; we have that φ′′ ∼ v−1,
φ′′′ ∼ v−2 and so on, and 〈∆n2〉 ∼ v (we can check
this bellow). It is assumed that the system is far from
a possible phase transition, so that fluctuations remain

bounded. Then, ε is of order v−1 and we have neglected
terms of order v−2 or smaller in (48). Applying logarithm
to Eq. (47) we get

φ′ = V + b+ ε, (49)

and, deriving with respect to n̄,

φ′′ = V ′ +O(v−2) (50)

φ′′′ = V ′′ +O(v−3). (51)

So, we can rewrite ε, keeping the same degree of accuracy,
as

ε = −1

2
V ′ +

1

2
(βV ′2 − V ′′)〈∆n2〉. (52)

We obtain the average of the squared fluctuations from

〈∆n2〉 =
1

β2

∂2 lnZ
∂µ̃2

=
1

β

∂n̄

∂µ̃
. (53)

Let us notice that from this equation we can obtain the
known relationship for the thermodynamic factor against
fluctuations [18, Sec. 2.6]:

νm
νB

Φ = β
∂µ̃

∂ ln cA
= βn̄

∂µ̃

∂n̄
=

n̄

〈∆n2〉 . (54)

Using Eq. (20) to obtain ∂n̄
∂µ̃ , we get

〈∆n2〉 =
n̄

1 + βn̄V ′
(55)

and, replacing in (52), we have

ε = − V ′ + n̄V ′′

2(1 + βn̄V ′)
= − 1

2β

d ln(1 + βn̄V ′)

dn̄
. (56)

Finally, this result for ε gives us Eq. (22).

APPENDIX C

Here, we briefly clarify the difference between the in-
terpolation parameter Θ presented in this paper and the
one introduced in Ref. [8], θ, as they are not the same.
Even though the transition probability that defines our
model is the same for both approaches (Eq. (10) here
and Eq. (3) in Ref. [8]), the main difference is that the
effect of the activation energy was not written explicitly
in Ref. [8] but was implicitly included in the exponen-
tial exp(−βθV ), where V is the mean-field potential (see
Eq. (5) in Ref. [8]). The same factor, in the present work,
is given by exp(−βΘV ) exp[−β(gA − gA0)], where gA is
the activation energy (see Eqs. (16) and (17)). Therefore,
the new results for Θ, Eq.(33), will not coincide with the
numerical values of θ obtained in Ref. [8]

In Fig. 3, we show a plot of Θ against molar fraction
x calculated according to Eq.(33). The evaluation of Θ
requires knowledge of the mean-field potential V and the
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(b)

Θ

x

Al in Al-Cu
Cu in Al-Cu

Au in Au-Ag
Ag in Au-Ag

Θ

x

Au in Au-Ni
Ni in Au-Ni

FIG. 3. Interpolation parameter Θ that characterizes the dif-
fusion process of Al in Al-Cu at T = 1500K (squares), Cu in
Al-Cu at T = 1500K (circles), Au in Au-Ag at T = 1167K
(up-triangles), Ag in Au-Ag at T = 1167K (down-triangles),
Au in Au-Ni at T = 1173K (romboids), and Ni in Au-Ni at
T = 1173K (pentagons) as a function of their respective mo-
lar fraction x (xAl for Al in Al-Cu, etc.). Θ was calculated
using Eq. (33) and data from Refs. [19, 20] (Al-Cu), [13, 20]
(Au-Ag) and [12, 21–23] (Au-Ni).

derivative V ′. The mean-field potential can be obtained
from the activity coefficient and assuming constant total
concentration (see Eq. (13)). We calculated V ′ by per-
forming the discrete derivative using the calculated val-
ues for V . Let us notice that now, by definition, Θ = 1
for small concentration and that Θ takes values of order
1, as expected, for the three mixtures analyzed.
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