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Abstract A standard approach to describe an image for
classification and retrieval purposes is to extract a set of local
patch descriptors, encode them into a high dimensional vec-
tor and pool them into an image-level signature. The most
common patch encoding strategy consists in quantizing the
local descriptors into a finite set of prototypical elements.
This leads to the popular Bag-of-Visual words representa-
tion. In this work, we propose to use the Fisher Kernel frame-
work as an alternative patch encoding strategy: we describe
patches by their deviation from an “universal” generative
Gaussian mixture model. This representation, which we call
Fisher vector has many advantages: it is efficient to com-
pute, it leads to excellent results even with efficient linear
classifiers, and it can be compressed with a minimal loss of
accuracy using product quantization. We report experimen-
tal results on five standard datasets—PASCAL VOC 2007,
Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K—
with up to 9M images and 10K classes, showing that the FV
framework is a state-of-the-art patch encoding technique.
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1 Introduction

This article considers the image classification problem: given
an image, we wish to annotate it with one or multiple key-
words corresponding to different semantic classes. We are
especially interested in the large-scale setting where one has
to deal with a large number of images and classes. Large-
scale image classification is a problem which has received
an increasing amount of attention over the past few years
as larger labeled images datasets have become available to
the research community. For instance, as of today, Ima-
geNet1 consists of more than 14M images of 22K concepts
(Deng et al. 2009) and Flickr contains thousands of groups2—
some of which with hundreds of thousands of pictures—
which can be exploited to learn object classifiers (Perronnin
et al. 2010c; Wang et al. 2009).

In this work, we describe an image representation which
yields high classification accuracy and, yet, is sufficiently
efficient for large-scale processing. Here, the term “efficient”
includes the cost of computing the representations, the cost
of learning the classifiers on these representations as well as
the cost of classifying a new image.

By far, the most popular image representation for
classification has been the Bag-of-Visual words (BoV)
(Csurka et al. 2004). In a nutshell, the BoV consists in
extracting a set of local descriptors, such as SIFT descriptors
(Lowe 2004), in an image and in assigning each descriptor

1 http://www.image-net.org
2 http://www.flickr.com/groups
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to the closest entry in a “visual vocabulary”: a codebook
learned offline by clustering a large set of descriptors with
k-means. Averaging the occurrence counts—an operation
which is generally referred to as average pooling—leads to
a histogram of “visual word” occurrences. There have been
several extensions of this popular framework including the
use of better coding techniques based on soft assignment
(Farquhar et al. 2005; Perronnin et al. 2006; VanGemert et
al. 2010; Winn et al. 2005) or sparse coding (Boureau et al.
2010; Wang et al. 2010; Yang et al. 2009b) and the use of
spatial pyramids to take into account some aspects of the
spatial layout of the image (Lazebnik et al. 2006).

The focus in the image classification community was ini-
tially on developing classification systems which would yield
the best possible accuracy fairly independently of their cost as
examplified in the PASCAL VOC competitions (Everingham
et al. 2010). The winners of the 2007 and 2008 competitions
used a similar paradigm: many types of low-level local fea-
tures are extracted (referred to as “channels”), one BoV his-
togram is computed for each channel and non-linear kernel
classifiers such as χ2-kernel SVMs are used to perform clas-
sification (van de Sande et al. 2010; Zhang et al. 2007). The
use of many channels and non-linear SVMs—whose training
cost scales somewhere between quadratically and cubically
in the number of training samples—was made possible by
the modest size of the available databases.

In recent years only the computational cost has become
a central issue in image classification and object detection.
Maji et al. (2008) showed that the runtime cost of an intersec-
tion kernel (IK) SVM could be made independent of the num-
ber of support vectors with a negligible performance degra-
dation. Maji and Berg (2009) and Wang et al. (2009) then
proposed efficient algorithms to learn IKSVMs in a time lin-
ear in the number of training samples. Vedaldi and Zisserman
(2010) and Perronnin et al. (2010b) subsequently generalized
this principle to any additive classifier. Attempts have been
made also to go beyond additive classifiers (Perronnin et al.
2010b; Sreekanth et al. 2010). Another line of research con-
sists in computing BoV representations which are directly
amenable to costless linear classification. Boureau et al.
(2010), Wang et al. (2010) and Yang et al. (2009b) showed
that replacing the average pooling stage in the BoV compu-
tation by a max-pooling yielded excellent results.

We underline that all the previously mentioned methods
are inherently limited by the shortcomings of the BoV. First,
it is unclear why such a histogram representation should be
optimal for our classification problem. Second, the descriptor
quantization is a lossy process as underlined in the work of
Boiman et al. (2008).

In this work, we propose an alternative patch aggrega-
tion mechanism based on the Fisher Kernel (FK) principle
of Jaakkola and Haussler (1998). The FK combines the ben-
efits of generative and discriminative approaches to pattern

classification by deriving a kernel from a generative model of
the data. In a nutshell, it consists in characterizing a sample
by its deviation from the generative model. The deviation
is measured by computing the gradient of the sample log-
likelihood with respect to the model parameters. This leads
to a vectorial representation which we call Fisher vector (FV).
In the image classification case, the samples correspond to
the local patch descriptors and we choose as generative model
a Gaussian mixture model (GMM) which can be understood
as a “probabilistic visual vocabulary”.

The FV representation has many advantages with respect
to the BoV. First, it provides a more general way to define
a kernel from a generative process of the data: we show that
the BoV is a particular case of the FV where the gradient
computation is restricted to the mixture weight parameters
of the GMM. We show experimentally that the additional
gradients incorporated in the FV bring large improvements
in terms of accuracy. A second advantage of the FV is that it
can be computed from much smaller vocabularies and there-
fore at a lower computational cost. A third advantage of the
FV is that it performs well even with simple linear classi-
fiers. A significant benefit of linear classifiers is that they are
very efficient to evaluate and efficient to learn (linear in the
number of training samples) using techniques such as sto-
chastic gradient descent (SGD) (Bottou and Bousquet 2007;
Shalev-Shwartz et al. 2007).

However, the FV suffers from a significant disadvan-
tage with respect to the BoV: while the latter is typically
quite sparse, the FV is almost dense. This leads to stor-
age as well as input/output issues which make it impractical
for large-scale applications as is. We address this problem
using product quantization (PQ) (Gray and Neuhoff 1998)
which has been popularized in the computer vision field by
Jégou et al. (2011) for large-scale nearest neighbor search.
We show theoretically why such a compression scheme
makes sense when learning linear classifiers. We also show
experimentally that FVs can be compressed by a factor of at
least 32 with only very limited impact on the classification
accuracy.

The remainder of this article is organized as follows. In
Sect. 2, we introduce the FK principle and describe its appli-
cation to images. We also introduce a set of normalization
steps which greatly improve the classification performance
of the FV. Finally, we relate the FV to several recent patch
encoding methods and kernels on sets. In Sect. 3, we pro-
vide a first set of experimental results on three small- and
medium-scale datasets—PASCAL VOC 2007 (Everingham
et al. 2007), Caltech 256 (Griffin et al. 2007) and SUN
397 (Xiao et al. 2010)—showing that the FV outperforms
significantly the BoV. In Sect. 4, we present PQ compres-
sion, explain how it can be combined with large-scale SGD
learning and provide a theoretical analysis of why such a
compression algorithm makes sense when learning a linear
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classifier. In Sect. 5, we present results on two large datasets,
namely ILSVRC 2010 (Berg et al. 2010) (1K classes and
approximately 1.4M images) and ImageNet10K (Deng et al.
2010) (approximately 10K classes and 9M images). Finally,
we present our conclusions in Sect. 6.

This paper extends our previous work (Perronnin and
Dance 2007; Perronnin et al. 2010c; Sánchez and Per-
ronnin 2011) with: (1) a more detailed description of the FK
framework and especially of the computation of the Fisher
information matrix (FIM), (2) a more detailed analysis of the
recent related work, (3) a detailed experimental validation of
the proposed normalizations of the FV, (4) more experiments
on several small- and medium-scale datasets with state-of-
the-art results, (5) a theoretical analysis of PQ compression
for linear classifier learning and (6) more detailed experi-
ments on large-scale image classification with, especially,
a comparison to k-NN classification.

2 The Fisher vector

In this section we introduce the FV. We first describe the
underlying principle of the Fisher Kernel (FK) followed by
the adaption of the FK to image classification. We then relate
the FV to several recent patch encoding techniques and ker-
nels on sets.

2.1 The Fisher Kernel

Let X = {xt , t = 1 . . . T } be a sample of T observations
xt ∈ X . Let uλ be a probability density function which
models the generative process of elements in X where λ =
[λ1, . . . , λM ]′ ∈ R

M denotes the vector of M parameters of
uλ. In statistics, the score function is given by the gradient of
the log-likelihood of the data on the model:

G X
λ = ∇λ log uλ(X). (1)

This gradient describes the contribution of the individual
parameters to the generative process. In other words, it
describes how the parameters of the generative model uλ

should be modified to better fit the data X . We note that
G X

λ ∈ R
M , and thus that the dimensionality of G X

λ only
depends on the number of parameters M in λ and not on the
sample size T .

From the theory of information geometry (Amari and
Nagaoka 2000), a parametric family of distributions U =
{uλ, λ ∈ �} can be regarded as a Riemanninan manifold
M� with a local metric given by the FIM Fλ ∈ R

M×M :

Fλ = Ex∼uλ

[
G X

λ G X
λ

′]
. (2)

Following this observation, Jaakkola and Haussler (1998)
proposed to measure the similarity between two samples X

and Y using the FK which is defined as:

K F K (X, Y ) = G X
λ

′
F−1

λ GY
λ . (3)

Since Fλ is positive semi-definite, so is its inverse. Using
the Cholesky decomposition F−1

λ = Lλ
′Lλ, the FK in (3)

can be re-written explicitly as a dot-product:

KF K (X, Y ) = G X
λ

′
G Y

λ , (4)

where

G X
λ = LλG X

λ = Lλ∇λ log uλ(X). (5)

We call this normalized gradient vector the FV of X . The
dimensionality of the FV GX

λ is equal to that of the gradient
vector G X

λ . A non-linear kernel machine using KF K as a
kernel is equivalent to a linear kernel machine using G X

λ as
feature vector. A clear benefit of the explicit formulation is
that, as explained earlier, linear classifiers can be learned very
efficiently.

2.2 Application to Images

Model Let X = {xt , t = 1, . . . , T } be the set of
D-dimensional local descriptors extracted from an image,
e.g. a set of SIFT descriptors (Lowe 2004). Assuming that the
samples are independent, we can rewrite Eq. (5) as follows:

G X
λ =

T∑
t=1

Lλ∇λ log uλ(xt ). (6)

Therefore, under this independence assumption, the FV is a
sum of normalized gradient statistics Lλ∇λ log uλ(xt ) com-
puted for each descriptor. The operation:

xt → ϕF K (xt ) = Lλ∇λ log uλ(xt ) (7)

can be understood as an embedding of the local descriptors
xt in a higher-dimensional space which is more amenable to
linear classification. We note that the independence assump-
tion of patches in an image is generally incorrect, especially
when patches overlap. We will return to this issue in Sect. 2.3
as well as in our small-scale experiments in Sect. 3.

In what follows, we choose uλ to be a GMM as one can
approximate with arbitrary precision any continuous distri-
bution with a GMM (Titterington et al. 1985). In the com-
puter vision literature, a GMM which models the generation
process of local descriptors in any image has been referred to
as a universal (probabilistic) visual vocabulary (Perronnin et
al. 2006; Winn et al. 2005). We denote the parameters of the
K -component GMM by λ = {wk, μk, �k, k = 1, . . . , K },
where wk, μk and �k are respectively the mixture weight,
mean vector and covariance matrix of Gaussian k. We write:

uλ(x) =
K∑

k=1

wkuk(x), (8)
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where uk denotes Gaussian k:

uk(x)= 1

(2π)D/2|�k |1/2 exp

{
−1

2
(x−μk)

′�−1
k (x−μk)

}
,

(9)

and we require:

∀k : wk ≥ 0,

K∑
k=1

wk = 1, (10)

to ensure that uλ(x) is a valid distribution. In what follows,
we assume diagonal covariance matrices which is a stan-
dard assumption and denote by σ 2

k the variance vector, i.e.
the diagonal of �k . We estimate the GMM parameters on a
large training set of local descriptors using the expectation–
maximization (EM) algorithm to optimize a maximum likeli-
hood (ML) criterion. For more details about the GMM imple-
mentation, the reader can refer to Appendix 2.

Gradient Formulas For the weight parameters, we adopt
the soft-max formalism of Krapac et al. (2011) and define

wk = exp(αk)∑K
j=1 exp(α j )

. (11)

The re-parametrization using the αk avoids enforcing explic-
itly the constraints in Eq. (10). The gradients of a sin-
gle descriptor xt w.r.t. the parameters of the GMM model,
λ = {αk, μk, �k, k = 1, . . . , K }, are:

∇αk log uλ(xt ) = γt (k)− wk, (12)

∇μk log uλ(xt ) = γt (k)

(
xt − μk

σ 2
k

)
, (13)

∇σk log uλ(xt ) = γt (k)

[
(xt − μk)

2

σ 3
k

− 1

σk

]
, (14)

where γt (k) is the soft assignment of xt to Gaussian k, which
is also known as the posterior probability or responsibility:

γt (k) = wkuk(xt )∑K
j=1 w j u j (xt )

, (15)

and where the division and exponentiation of vectors should
be understood as term-by-term operations.

Having an expression for the gradients, the remaining
question is how to compute Lλ, which is the square-root
of the inverse of the FIM. In Appendix 1 we show that under
the assumption that the soft assignment distribution γt (i) is
sharply peaked on a single value of i for any patch descriptor
xt (i.e. the assignment is almost hard), the FIM is diagonal.
In Sect. 3.2 we show a measure of the sharpness of γt on
real data to validate this assumption. The diagonal FIM can
be taken into account by a coordinate-wise normalization of
the gradient vectors, which yields the following normalized

gradients:

G X
αk
= 1√

wk

T∑
t=1

(
γt (k)− wk

)
, (16)

G X
μk
= 1√

wk

T∑
t=1

γt (k)

(
xt − μk

σk

)
, (17)

G X
σk
= 1√

wk

T∑
t=1

γt (k)
1√
2

[
(xt − μk)

2

σ 2
k

− 1

]
. (18)

Note that G X
αk

is a scalar while G X
μk

and G X
σk

are D-dimensional
vectors. The final FV is the concatenation of the gradients
G X

αk
,G X

μk
and G X

σk
for k = 1, . . . , K and is therefore of dimen-

sion E = (2D + 1)K .
To avoid the dependence on the sample size (see for

instance the sequence length normalization in Smith and
Gales (2001)), we normalize the resulting FV by the sam-
ple size T , i.e. we perform the following operation:

G X
λ ←

1

T
G X

λ (19)

In practice, T is almost constant in our experiments since we
resize all images to approximately the same number of pixels
(see the experimental setup in Sect. 3.1). Also note that Eqs.
(16)–(18) can be computed in terms of the following zero-
order, first-order and second-order statistics (see Algorithm
1):

S0
k =

T∑
t=1

γt (k) (20)

S1
k =

T∑
t=1

γt (k)xt (21)

S2
k =

T∑
t=1

γt (k)x2
t (22)

where S0
k ∈ R, S1

k ∈ R
D and S2

k ∈ R
D . As before, the square

of a vector must be understood as a term-by-term operation.
Spatial Pyramids The spatial pyramid (SP) was introduced

in Lazebnik et al. (2006) to take into account the rough geom-
etry of a scene. It was shown to be effective both for scene
recognition (Lazebnik et al. 2006) and loosely structured
object recognition as demonstrated during the PASCAL VOC
evaluations (Everingham et al. 2007, 2008). The SP consists
in subdividing an image into a set of regions and pooling
descriptor-level statistics over these regions. Although the
SP was introduced in the framework of the BoV, it can also
be applied to the FV. In such a case, one computes one FV
per image region and concatenates the resulting FVs. If R is
the number of regions per image, then the FV representation
becomes E = (2D + 1)K R dimensional. In this work, we
use a very coarse SP and extract four FVs per image: one FV
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for the whole image and one FV in three horizontal stripes
corresponding to the top, middle and bottom regions of the
image.

We note that more sophisticated models have been pro-
posed to take into account the scene geometry in the FV
framework (Krapac et al. 2011; Sánchez et al. 2012) but we
will not consider such extensions in this work.

2.3 FV Normalization

We now describe two normalization steps which were intro-
duced in Perronnin et al. (2010c) and which were shown to
be necessary to obtain competitive results when the FV is
combined with a linear classifier.

�2-Normalization Perronnin et al. (2010c) proposed to
�2-normalize FVs. We provide two complementary inter-
pretations to explain why such a normalization can lead to
improved results. The first interpretation is specific to the FV
and was first proposed in Perronnin et al. (2010c). The second
interpretation is valid for any high-dimensional vector.

In Perronnin et al. (2010c), the �2-normalization is justi-
fied as a way to cancel-out the fact that different images con-
tain different amounts of background information. Assum-
ing that the descriptors X = {xt , t = 1, . . . , T } of a given
image follow a distribution p and using the i.i.d. image model
defined above, we can write according to the law of large
numbers (convergence of the sample average to the expected
value when T increases):

1

T
G X

λ ≈ ∇λEx∼p log uλ(x) = ∇λ

∫

x

p(x) log uλ(x)dx .(23)

Now let us assume that we can decompose p into a mixture of
two parts: a background image-independent part which fol-
lows uλ and an image-specific part which follows an image-
specific distribution q. Let 0 ≤ ω ≤ 1 be the proportion of
image-specific information contained in the image:

p(x) = ωq(x)+ (1− ω)uλ(x). (24)

We can rewrite:

1

T
G X

λ ≈ ω∇λ

∫

x

q(x) log uλ(x)dx

+(1− ω)∇λ

∫

x

uλ(x) log uλ(x)dx . (25)

If the values of the parameters λ were estimated with a ML
process—i.e. to maximize at least locally and approximately
Ex∼uλ log uλ(x)—then we have:

∇λ

∫

x

uλ(x) log uλ(x)dx = ∇λEx∼uλ log uλ(x) ≈ 0. (26)

Consequently, we have:

1

T
G X

λ ≈ ω∇λ

∫

x

q(x) log uλ(x)dx = ω∇λEx∼q log uλ(x).

(27)

This shows that the image-independent information is approx-
imately discarded from the FV, a desirable property. How-
ever, the FV still depends on the proportion of image-specific
information ω. Consequently, two images containing the
same object but different amounts of background information
(e.g. the same object at different scales) will have different
signatures. Especially, small objects with a small ω value
will be difficult to detect. To remove the dependence on ω,
we can �2-normalize3 the vector G X

λ or G X
λ .

We now propose a second interpretation which is valid for
any high-dimensional vector (including the FV). Let Up,E

denote the uniform distribution on the �p unit sphere in
an E-dim space. If u ∼ Up,E , then a closed form solu-
tion for the marginals over the �p-normalized coordinates
ui = ui/‖u‖p, is given in Song and Gupta (1997):

gp,E (ui )= p(E/p)

2(1/p)((E − 1)/p)

(
1−|ui |p

)(E−1)/p−1(28)

wi th ui ∈ [−1, 1]
For p = 2, as the dimensionality E grows, this distribution
converges to a Gaussian (Spruill 2007). Moreover, Burras-
cano (1991) suggested that the �p metric is a good measure
between data points if they are distributed according to a
generalized Gaussian:

f p(x) = p(1−1/p)

2(1/p)
exp

(
−|x − x0|p

p

)
. (29)

To support this claim Burrascano showed that, for a given
value of the dispersion as measured with the �p-norm, f p is
the distribution which maximizes the entropy and therefore
the amount of information. Note that for p = 2, Eq. (29)
corresponds to a Gaussian distribution. From the above and
after noting that: (a) FVs are high dimensional signatures,
(b) we rely on linear SVMs, where the similarity between
samples is measured using simple dot-products, and that (c)
the dot-product between �2-normalized vectors relates to the
�2-distance as ‖x− y‖22 = 2(1−x ′y), for ‖x‖2 = ‖y‖2 = 1,
it follows that choosing p = 2 for the normalization of the
FV is natural.

Power Normalization In Perronnin et al. (2010c), it was
proposed to perform a power normalization of the form:

z← sign(z)|z|ρ wi th 0 < ρ ≤ 1 (30)

3 Normalizing by any �p-norm would cancel-out the effect of ω. Per-
ronnin et al. (2010c) chose the �2-norm because it is the natural norm
associated with the dot-product. In Sect. 3.2 we experiment with differ-
ent �p-norms.
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to each dimension of the FV. In all our experiments the power
coefficient is set to ρ = 1

2 , which is why we also refer to
this transformation as “signed square-rooting” or more sim-
ply “square-rooting”. The square-rooting operation can be
viewed as an explicit data representation of the Hellinger
or Bhattacharyya kernel, which has also been found effec-
tive for BOV image representations, see e.g. Perronnin et al.
(2010b) or Vedaldi and Zisserman (2010).

Several explanations have been proposed to justify such
a transform. Perronnin et al. (2010c) argued that, as the
number of Gaussian components of the GMM increases,
the FV becomes sparser which negatively impacts the dot-
product. In the case where FVs are extracted from sub-
regions, the “peakiness” effect is even more prominent
as fewer descriptor-level statistics are pooled at a region-
level compared to the image-level. The power normaliza-
tion “unsparsifies” the FV and therefore makes it more suit-
able for comparison with the dot-product. Another interpre-
tation proposed in Perronnin et al. (2010a) is that the power
normalization downplays the influence of descriptors which
happen frequently within a given image (bursty visual fea-
tures) in a manner similar to Jégou et al. (2009). In other
words, the square-rooting corrects for the incorrect inde-
pendence assumption. A more formal justification was pro-
vided in Jégou et al. (2012) as it was shown that FVs can
be viewed as emissions of a compound distribution whose
variance depends on the mean. However, when using met-
rics such as the dot-product or the Euclidean distance, the
implicit assumption is that the variance is stabilized, i.e. that
it does not depend on the mean. It was shown in Jégou et al.
(2012) that the square-rooting had such a stabilization effect.

All of the above papers acknowledge the incorrect patch
independence assumption and try to correct a posteriori for
the negative effects of this assumption. In contrast, Cinbis et
al. (2012) proposed to go beyond this independence assump-
tion by introducing an exchangeable model which ties all
local descriptors together by means of latent variables that
represent the GMM parameters. It was shown that such a
model leads to discounting transformations in the FV similar
to the simpler square-root transform, and with a comparable
positive impact on performance.

We finally note that the use of the square-root transform
is not specific to the FV and is also beneficial to the BoV as
shown for instance by Perronnin et al. (2010b); Vedaldi and
Zisserman (2010); Winn et al. (2005).

2.4 Summary

To summarize the computation of the FV image represen-
tation, we provide an algorithmic description in Algorithm
1. In practice we use SIFT (Lowe 2004) or local color sta-
tistics (Clinchant et al. 2007) as descriptors computed on
a dense multi-scale grid. To simplify the presentation in

Algorithm 1, we have assumed that spatial pyramids (SPs)
are not used. When using SPs, we follow the same algo-
rithm for each region separately and then concatenate the
FVs obtained for each cell in the SP.

Algorithm 1 Compute Fisher vector from local descriptors

Input:

– Local image descriptors X = {xt ∈ R
D, t = 1, . . . , T },

– Gaussian mixture model parameters λ = {wk , μk , σk , k =
1, . . . , K }

Output:

– normalized Fisher Vector representation G X
λ ∈ R

K (2D+1)

1. Compute statistics

– For k = 1, . . . , K initialize accumulators
– S0

k ← 0, S1
k ← 0, S2

k ← 0

– For t = 1, . . . T
– Compute γt (k) using equation (15)
– For k = 1, . . . , K :
• S0

k ← S0
k + γt (k),

• S1
k ← S1

k + γt (k)xt ,
• S2

k ← S2
k + γt (k)x2

t

2. Compute the Fisher vector signature

– For k = 1, . . . , K :

G X
αk
=

(
S0

k − T wk

)
/
√

wk (31)

G X
μk
=

(
S1

k − μk S0
k

)
/
(√

wkσk
)

(32)

G X
σk
=

(
S2

k − 2μk S1
k + (μ2

k − σ 2
k )S0

k

)
/
(√

2wkσ
2
k

)
(33)

– Concatenate all Fisher vector components into one vector

G X
λ =

(
G X

α1
, . . . , G X

αK
, G X

μ1

′
, . . . , G X

μK

′
, G X

σ1

′
, . . . , G X

σK

′)′

3. Apply normalizations

– For i = 1, . . . , K (2D + 1) apply power normalization

–
[
G X

λ

]
i ← sign

([
G X

λ

]
i

) √∣∣[G X
λ

]
i

∣∣
– Apply �2-normalization:

G X
λ = G X

λ /

√
G X

λ

′
G X

λ

2.5 Relationship with Other Patch-Based Approaches

The FV is related to a number of patch-based classification
approaches as we describe below.

Relationship with the BoV First, the FV can be viewed as
a generalization of the BoV framework (Csurka et al. 2004;
Sivic and Zisserman 2003). Indeed, in the soft-BoV (Far-
quhar et al. 2005; Perronnin et al. 2006; VanGemert et al.
2010; Winn et al. 2005), the average number of assignments
to Gaussian k can be computed as:
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1

T

T∑
t=1

γt (k) = S0
k

T
. (34)

This is closely related to the gradient with respect to the
mixture weight G X

ak
in th FV framework, see Eq. (16). The

difference is that G X
ak

is mean-centered and normalized by
the coefficient

√
wk . Hence, for the same visual vocabulary

size K , the FV contains significantly more information by
including the gradients with respect to the means and stan-
dard deviations. Especially, the BoV is only K dimensional
while the dimension of the FV is (2D+1)K . Conversely, we
will show experimentally that, for a given feature dimension-
ality, the FV usually leads to results which are as good—and
sometimes significantly better—than the BoV. However, in
such a case the FV is much faster to compute than the BoV
since it relies on significantly smaller visual vocabularies.
An additional advantage is that the FV is a more principled
approach than the BoV to combine the generative and dis-
criminative worlds. For instance, it was shown in (Jaakkola
and Haussler 1998) (see Theorem 1) that if the classification
label is included as a latent variable of the generative model
uλ, then the FK derived from this model is, asymptotically,
never inferior to the MAP decision rule for this model.

Relationship with GMM-Based Representations Several
works proposed to model an image as a GMM adapted from
a universal (i.e. image-independent) distribution uλ (Liu and
Perronnin 2008; Yan et al. 2008). Initializing the parameters
of the GMM to λ and performing one EM iteration leads to
the following estimates λ̂ for the image GMM parameters:

ŵk =
∑T

t=1 γt (k)+ τ

T + K τ
(35)

μ̂k =
∑T

t=1 γt (k)xt + τμk∑T
t=1 γt (k)+ τ

(36)

σ̂ 2
k =

∑T
t=1 γt (k)x2

t + τ
(
σ 2

k + μ2
k

)
∑T

t=1 γt (k)+ τ
− μ̂2

k (37)

where τ is a parameter which strikes a balance between the
prior “universal” information contained in λ and the image-
specific information contained in X . It is interesting to note
that the FV and the adapted GMM encode essentially the
same information since they both include statistics of order
0, 1 and 2: compare Eqs. (35–37) with (31–33) in Algorithm
1, respectively. A major difference is that the FV provides
a vectorial representation which is more amenable to large-
scale processing than the GMM representation.

Relationship with the Vector of Locally Aggregated
Descriptors (VLAD) The VLAD was proposed in Jégou et al.
(2010). Given a visual codebook learned with k-means, and
a set of descriptors X = {xt , t = 1, . . . , T } the VLAD con-
sists in assigning each descriptor xt to its closest codebook
entry and in summing for each codebook entry the mean-

centered descriptors. It was shown in Jégou et al. (2012) that
the VLAD is a simplified version of the FV under the fol-
lowing approximations: (1) the soft assignment is replaced
by a hard assignment and (2) only the gradient with respect
to the mean is considered. As mentioned in Jégou et al.
(2012), the same normalization steps which were introduced
for the FV—the square-root and �2-normalization—can also
be applied to the VLAD with significant improvements.

Relationship with the Super Vector (SV) The SV was pro-
posed in Zhou et al. (2010) and consists in concatenating in
a weighted fashion a BoV and a VLAD (see Eq. (2) in their
paper). To motivate the SV representation, Zhou et al. used
an argument based on the Taylor expansion of non-linear
functions which is similar to the one offered by Jaakkola
and Haussler (1998) to justify the FK4. A major difference
between the FV and the SV is that the latter one does not
include any second-order statistics while the FV does in the
gradient with respect to the variance. We will show in Sect. 3
that this additional term can bring substantial improvements.

Relationship with the Match Kernel (MK) The MK mea-
sures the similarity between two images as a sum of simi-
larities between the individual descriptors (Haussler 1999).
If X = {xt , t = 1, . . . , T } and Y = {yu, u = 1, . . . , U }
are two sets of descriptors and if k(·, ·) is a “base” kernel
between local descriptors, then the MK between the sets X
and Y is defined as:

KM K (X, Y ) = 1

T U

T∑
t=1

U∑
u=1

k(xt , yu). (38)

The original FK without �2- or power-normalization is a MK
if one chooses the following base kernel:

kF K (xt , yu) = ϕF K (xt )
′ϕF K (yu), (39)

A disadvantage of the MK is that by summing the contribu-
tions of all pairs of descriptors, it tends to overcount multi-
ple matches and therefore it cannot cope with the burstiness
effect. We believe this is one of the reasons for the poor per-
formance of the MK (see the third entry in Table 4 in the
next section). To cope with this effect, alternatives have been
proposed such as the “sum-max” MK of (Wallraven et al.
2003):

KSM (X, Y ) = 1

T

T∑
t=1

U
max
u=1

k(xt , yu)

+ 1

U

U∑
u=1

T
max
t=1

k(xt , yu). (40)

4 See Appendix A.2 in the extended version of Jaakkola and Haussler
(1998) which is available at: http://people.csail.mit.edu/tommi/papers/
gendisc.ps
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or the “power” MK of (Lyu 2005):

K P OW (X, Y ) = 1

T

1

U

T∑
t=1

U∑
u=1

k(xt , yu)ρ. (41)

In the FK case, we addressed the burstiness effect using the
square-root normalization (see Sect. 2.3).

Another issue with the MK is its high computational cost
since, in the general case, the comparison of two images
requires comparing every pair of descriptors. While efficient
approximation exists for the original (poorly performing)
MK of Eq. (38) when there exists an explicit embedding of
the kernel k(·, ·) (Bo and Sminchisescu 2009), such approx-
imations do not exist for kernels such as the one defined in
Lyu (2005) and Wallraven et al. (2003).

3 Small-Scale Experiments

The purpose of this section is to establish the FV as a state-
of-the-art image representation before moving to larger scale
scenarios. We first describe the experimental setup. We then
provide detailed experiments on PASCAL VOC 2007. We
also report results on Caltech256 and SUN397.

3.1 Experimental Setup

Images are resized to 100K pixels if larger. We extract
approximately 10K descriptors per image from 24 × 24
patches on a regular grid every four pixels at five scales. We
consider two types of patch descriptors in this work: the 128-
dim SIFT descriptors of Lowe (2004) and the 96-dim local
color statistic (LCS) descriptors of Clinchant et al. (2007).
In both cases, unless specified otherwise, they are reduced
down to 64-dim using PCA, so as to better fit the diago-
nal covariance matrix assumption. We will see that the PCA
dimensionality reduction is key to make the FV work. We
typically use in the order of 106 descriptors to learn the PCA
projection.

To learn the parameters of the GMM, we optimize a ML
criterion with the EM algorithm, using in the order of 106

(PCA-reduced) descriptors. In Appendix 2 we provide some
details concerning the implementation of the training GMM.

By default, for the FV computation, we compute the gradi-
ents with respect to the mean and standard deviation parame-
ters only (but not the mixture weight parameters). In what fol-
lows, we will compare the FV with the soft-BoV histogram.
For both experiments, we use the exact same GMM pack-
age which makes the comparison completely fair. For the
soft-BoV, we perform a square-rooting of the BoV (which is
identical to the power-normalization of the FV) as this leads
to large improvements at negligible additional computational
cost (Perronnin et al. 2010b; Vedaldi and Zisserman 2010).
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Fig. 1 Influence of the dimensionality reduction of the SIFT descrip-
tors on the FV on PASCAL VOC 2007

For both the soft-BoV and the FV we use the same spatial
pyramids with R = 4 regions (the entire images and three
horizontal stripes) and we �2-normalized the per-region sub-
vectors.

As for learning, we employ linear SVMs and train them
using SGD (Bottou 2011).

3.2 PASCAL VOC 2007

We first report a set of detailed experiments on PASCAL
VOC 2007 (Everingham et al. 2007). Indeed, VOC 2007 is
small enough (20 classes and approximately 10K images) to
enable running a large number of experiments in a reason-
able amount of time but challenging enough (as shown in
(Torralba and Efros 2011)) so that the conclusions we draw
from our experiments extrapolate to other (equally challeng-
ing) datasets. We use the standard protocol which consists in
training and validating on the “train” and “val” sets and test-
ing on the “test” set. We measure accuracy using the standard
measure on this dataset which is the interpolated average pre-
cision (AP). We report the average over 20 categories (mean
AP or mAP) in %. In the following experiments, we use a
GMM with 256 Gaussians, which results in 128K-dim FVs,
unless otherwise specified.

Impact of PCA on Local Descriptors We start by studying
the influence of the PCA dimensionality reduction of the local
descriptors. We report the results in Fig. 1. We first note that
PCA dimensionality reduction is key to obtain good results:
without dimensionality reduction, the accuracy is 54.5 %
while it is above 60 % for 48 PCA dimensions and more.
Second, we note that the accuracy does not seem to be overly
sensitive no the exact number of PCA components. Indeed,
between 64 and 128 dimensions, the accuracy varies by less
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Table 1 Impact of the proposed modifications to the FK on PASCAL
VOC 2007

PN �2 SP SIFT LCS

No No No 49.6 35.2

Yes No No 57.9 (+8.3) 47.0 (+11.8)

No Yes No 54.2 (+4.6) 40.7 (+5.5)

No No Yes 51.5 (+1.9) 35.9 (+0.7)

Yes Yes No 59.6 (+10.0) 49.7 (+14.7)

Yes No Yes 59.8 (+10.2) 50.4 (+15.2)

No Yes Yes 57.3 (+7.7) 46.0 (+10.8)

Yes Yes Yes 61.8 (+12.2) 52.6 (+17.4)

The first line (no modification applied) corresponds to the baseline FK
of Perronnin and Dance (2007). Between parentheses the absolute
improvement with respect to the baseline FK. Accuracy is measured
in terms of AP (in %)
PN power normalization. �2 �2-normalization, SP spatial pyramid

than 0.3 % showing that the FV combined with a linear SVM
is robust to noisy PCA dimensions. In all the following exper-
iments, the PCA dimensionality is fixed to 64.

Impact of Improvements The goal of the next set of
experiments is to evaluate the impact of the improve-
ments over the original FK work of Perronnin and Dance
(2007). This includes the use of the power-normalization, the
�2-normalization, and SPs. We evaluate the impact of each
of these three improvements considered separately, in pairs
or all three together. Results are shown in Table 1 for SIFT
and LCS descriptors separately. The improved performance
compared to the results in Perronnin et al. (2010c), is prob-
ably due to denser sampling and a different layout of the
spatial pyramids.

From the results we conclude the following. The single
most important improvement is the power-normalization:
+8.3 absolute for SIFT and +11.8 for LCS. On the other
hand, the SP has little impact in itself: +1.9 on SIFT and
+0.7 on LCS. Combinations of two improvements generally
increase accuracy over a single one and combining all three
improvements leads to an additional increment. Overall, the
improvement is substantial: +12.2 for SIFT and +17.4 for
LCS.

Approximate FIM Versus Empirical FIM We now com-
pare the impact of using the proposed diagonal closed-form
approximation of the FIM (see Eqs. (16), (17) and (18) as well
as Appendix 1) as opposed to its empirical approximation as
estimated on a training set. We first note that our approxi-
mation is based on the assumption that the distribution of
posterior probabilities γt (k) is sharply peaked. To verify this
hypothesis, we computed on the “train” set of PASCAL VOC
2007 the value γ ∗t = maxk γt (k) for each observation xt and
plotted its cumulated distribution. We can deduce from Fig. 2
that the distribution of the posterior probabilities is quite
sharply peaked. For instance, more than 70 % of the local
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Fig. 2 Cumulative distribution of the max of the posterior probability
γ ∗t = maxk γt (k) on PASCAL VOC 2007 for SIFT descriptors

Table 2 Impact of the patch extraction step-size on PASCAL VOC
2007

Step size 24 12 8 4
Patches per image 250 1,000 2,300 9,200

SIFT

PN: no 51.1 55.8 57.0 57.3

PN: yes 52.9 58.1 60.3 61.8

Δ abs. 1.8 2.3 3.3 4.5

Δ rel. 3.5 4.1 5.8 7.9

LCS

PN: no 42.9 45.8 46.2 46.0

PN: yes 46.7 50.4 51.2 52.6

Δ abs. 3.8 4.6 5.0 6.6

Δ rel. 8.9 10.0 10.8 14.3

The patch size is 24 × 24. Hence, when the step-size is 24, there is
no overlap between patches. We also indicate the approximate number
of patches per image for each step size. “PN” stands for Power Nor-
malization. � abs. and � rel. are respectively the absolute and relative
differences between using PN and not using PN. Accuracy is measured
in terms of mAP (in %)

descriptors have a γ ∗t ≥ 0.5, i.e. the majority of the poste-
rior is concentrated in a single Gaussian. However this is still
far from the γ ∗t = 1 assumption we made for the approxi-
mated FIM. Nevertheless, in practice, this seems to have little
impact on the accuracy: using the diagonal approximation of
the FIM we get 61.8 % accuracy while we get 60.6 % with the
empirical diagonal estimation. Note that we do not claim that
this difference is significant nor that the closed-form approx-
imation is superior to the empirical one in general. Finally,
the FIM could be approximated by the identity matrix, as
originally proposed in Jaakkola and Haussler (1998). Using
the identity matrix, we observe a decrease of the performance
to 59.8 %.
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Impact of Patch Density In Sect. 2.3, it was hypothe-
sized that the power-norm counterbalanced the effect of the
incorrect patch independence assumption. The goal of the
following experiment is to validate this claim by studying
the influence of the patch density on the classification accu-
racy. Indeed, patches which are extracted more densely over-
lap more and are therefore more correlated. Conversely, if
patches are extracted less densely, then the patch indepen-
dence assumption is more correct. We vary the patch extrac-
tion step size from four pixels to 24 pixels. Since the size of
our patches is 24 × 24, this means that we vary the overlap
between two neighboring patches between more than 80 %
down to 0 %. Results are shown in Table 2 for SIFT and LCS
descriptors separately. As the step-size decreases, i.e. as the
independence assumption gets more and more violated, the
impact of the power-norm increases. We believe that this
observation validates our hypothesis: the power-norm is a
simple way to correct for the independence assumption

Impact of Cropping In Sect. 2.3, we proposed to �2-
normalize FVs and we provided two possible arguments. The
first one hypothesized that the �2-normization is a way to
counterbalance the influence of variable amounts of “infor-
mative patches” in an image where a patch is considered
non-informative if it appears frequently (in any image). The
second argument hypothesized that the �2 normalization of
high-dimensional vectors is always beneficial when used in
combination with linear classifiers.

The goal of the following experiment is to validate (or
invalidate) the first hypothesis: we study the influence of the
�2-norm when focusing on informative patches. One practi-
cal difficulty is the choice of informative patches. As shown in
Uijlings et al. (2009), foreground patches (i.e. object patches)
are more informative than background object patches. There-
fore, we carried-out experiments on cropped object images
as a proxy to informative patches. We cropped the PASCAL
VOC images to a single object (drawn randomly from the
ground-truth bounding box annotations) to avoid the bias
toward images which contain many objects. When using all
improvements of the FV, we obtain an accuracy of 64.4 %
which is somewhat better than the 61.8 % we report on full
images. If we do not use the �2-normalization of the FVs,
then we obtain an accuracy of 57.2 %. This shows that the
�2-normalization still has a significant impact on cropped
objects which seems to go against our first argument and to
favor the second one.

Impact of p in �p -norm In Sect. 2.3, we proposed to use
the �2-norm as opposed to any �p-norm because it was more
consistent with our choice of a linear classifier. We now study
the influence of this parameter p. Results are shown in Fig. 3.
We see that the �p-normalization improves over no normal-
ization over a wide range of values of p and that the highest
accuracy is achieved with a p close to two. In all the following
experiments, we set p = 2.
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Fig. 3 Influence of the parameter p of the �p-norm on the FV on
PASCAL VOC 2007
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Fig. 4 Accuracy of the FV as a function of the number of Gaussians
on PASCAL VOC 2007 with SIFT descriptors only. w gradient with
respect to mixture weights, μ gradient with respect to means and σ

gradient with respect to standard deviations. (we do not show wμ,wσ

and wμσ for clarity as there is little difference respectively with μ, σ

and μσ )

Impact of Different Fisher Vector Components We now
evaluate the impact of the different components when com-
puting the FV. We recall that the gradient with respect to the
mixture weights, mean and standard deviation correspond
respectively to zero-order, first-order and second-order sta-
tistics and that the gradient with respect to the mixture weight
corresponds to the soft-BoV. We see in Fig. 4 that there is
an increase in performance from zero-order (BoV) to the
combination of zero-order and first-order statistics (similar
to the statistics used in the SV (Zhou et al. 2010)), and even
further when the first-order and second-order statistics are
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Fig. 5 Accuracy of the soft-BoV and the FV as a function of the number of Gaussians (left) and feature dimensionality (right) on PASCAL VOC
2007 with SIFT descriptors only

combined. We also observe that the zero-order statistics add
little discriminative information on top of the first-order and
second-order statistics. We also can see that the second-order
statistics seem to bring more information than the first-order
statistics for a small number of Gaussians but that both seem
to carry similar information for a larger number of Gaussians.

Comparison with the Soft-BoV We now compare the FV to
the soft-BoV. We believe this comparison to be completely
fair, since we use the same low-level SIFT features and the
same GMM implementation for both encoding methods. We
show the results in Fig. 5 both as a function of the number
of Gaussians of the GMM and as a function of the feature
dimensionality (note that the SP increases the dimensional-
ity for both FV and BoV by a factor 4). The conclusions
are the following ones. For a given number of Gaussians,
the FV always significantly outperforms the BoV. This is
not surprising since, for a given number of Gaussians, the
dimensionality of the FV is much higher than that of the
BoV. The difference is particularly impressive for a small
number of Gaussians. For instance for 16 Gaussians, the
BoV obtains 31.8 while the FV gets 56.5. For a given num-
ber of dimensions, the BoV performs slightly better for a
small number of dimensions (512) but the FV performs bet-
ter for a large number of dimensions. Our best results with
the BoV is 56.7 % with 32K Gaussians while the FV gets
61.8 % with 256 Gaussians. With these parameters, the FV
is approximately 128 times faster to compute since, by far,
the most computationally intensive step for both the BoV and
the GMM is the cost of computing the assignments γk(x).
We note that our soft-BoV baseline is quite strong since it
outperforms the soft-BoV results in the recent benchmark
of Chatfield et al. (2011), and performs on par with the best
sparse coding results in this benchmark. Indeed, Chatfield et
al. report 56.3 % for soft-BoV and 57.6 % for sparse coding
with a slightly different setting.

Table 3 Comparison with the state-of-the-art on PASCAL VOC 2007

Algorithm MAP (in %)

Challenge winners 59.4

Uijlings et al. (2009) 59.4

VanGemert et al. (2010) 60.5

Yang et al. (2009) 62.2

Harzallah et al. (2009) 63.5

Zhou et al. (2010) 64.0

Guillaumin et al. (2010) 66.7

FV (SIFT) 61.8

FV (LCS) 52.6

FV (SIFT + LCS) 63.9

Comparison with the State-of-the-Art We now compare
our results to some of the best published results on PASCAL
VOC 2007. The comparison is provided in Table 3. For the
FV, we considered results with SIFT only and with a late
fusion of SIFT + LCS. In the latter case, we trained two
separate classifiers, one using SIFT FVs and one using LCS
FVs. Given an image, we compute the two scores and average
them in a weighted fashion. The weight was cross-validated
on the validation data and the optimal combination was found
to be 0.6× SI FT + 0.4×LC S. The late fusion of the SIFT
and LCS FVs yields a performance of 63.9 %, using only the
SIFT features obtains 61.8 %. We now provide more details
on the performance of the other published methods.

The challenge winners obtained 59.4 % accuracy by com-
bining many different channels corresponding to different
feature detectors and descriptors. The idea of combining
multiple channels on PASCAL VOC 2007 has been exten-
sively used by others. For instance, VanGemert et al. (2010)
reports 60.5 % with a soft-BoV representation and several
color descriptors and Yang et al. (2009) reports 62.2 % using
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Fig. 6 Breakdown of the computational cost of our pipeline on PAS-
CAL VOC 2007. The whole pipeline takes approximately 2 h on a
single processor, and is divided into: (1) learning the PCA on the SIFT
descriptors and the GMM with 256 Gaussians (unsupervised learning).
(2) Computing the dense SIFT descriptors for the 10K images and pro-
jecting them to 64 dimensions (SIFT + PCA). (3) Encoding and aggre-
gating the low-level descriptors into FVs for the 10K images (FV). (4)
Learning the 20 SVM classifiers using SGD (supervised learning). The
testing time—i.e. the time to classify the 5K test FVs—is not shown as
it represents only 0.1 % of the total computational cost

a group sensitive form of Multiple Kernel Learning (MKL).
Uijlings et al. (2009) reports 59.4 % using a BoV represen-
tation and a single channel but assuming that one has access
to the ground-truth object bounding box annotations at both
training and test time (which they use to crop the image to
the rectangles that contain the objects, and thus suppress the
background to a large extent). This is a restrictive setting
that cannot be followed in most practical image classifica-
tion problems. Harzallah et al. (2009) reports 63.5 % using a
standard classification pipeline in combination with an image
detector. We note that the cost of running one detector per
category is quite high: from several seconds to several tens of
seconds per image. Zhou et al. (2010) reports 64.0 % with SV
representations. However, with our own re-implementation,
we obtained only 58.1 % (this corresponds to the line wμ in
the table in Fig. 4. The same issue was noted in Chatfield et
al. (2011). Finally, Guillaumin et al. (2010) reports 66.7 %
but assuming that one has access to the image tags. With-
out access to such information, their BoV results dropped to
53.1 %.

Computational Cost We now provide an analysis of the
computational cost of our pipeline on PASCAL VOC 2007.
We focus on our “default” system with SIFT descriptors only
and 256 Gaussians (128 K-dim FVs). Training and testing
the whole pipeline from scratch on a Linux server with an

Intel Xeon E5-2470 Processor @2.30 GHz and 128 GBs of
RAM takes approximately 2 h using a single processor. The
repartition of the cost is shown in Fig. 6. From this breakdown
we observe that 2

3 of the time is spent on computing the low-
level descriptors for the train, val and test sets. Encoding
the low-level descriptors into image signatures costs about
25 % of the time, while learning the PCA and the parameters
of the GMM takes about 8 %. Finally learning the 20 SVM
classifiers using the SGD training takes about 2 % of the time
and classification of the test images is in the order of seconds
(0.1 % of the total computational cost).

3.3 Caltech 256

We now report results on Caltech 256 which contains approx-
imately 30K images of 256 categories. As is standard prac-
tice, we run experiments with different numbers of train-
ing images per category: 5, 10, 15, . . . , 60. The remainder
of the images is used for testing. To cross-validate the para-
meters, we use half of the training data for training, the
other half for validation and then we retrain with the optimal
parameters on the full training data. We repeat the experi-
ments ten times. We measure top-1 accuracy for each class
and report the average as well as the SD. In Fig. 7a, we
compare a soft-BoV baseline with the FV (using only SIFT
descriptors) as a function of the number of training samples.
For the soft-BoV, we use 32K Gaussians and for the FV 256
Gaussians. Hence both the BoV and FV representations are
128K-dimensional. We can see that the FV always outper-
forms the BoV.

We also report results in Table 4 and compare with the
state-of-the-art. We consider both the case where we use
only SIFT descriptors and the case where we use both SIFT
and LCS descriptors (again with a simple weighted linear
combination). We now provide more details about the dif-
ferent techniques. The baseline of Griffin et al. (2007) is a
reimplementation of the spatial pyramid BoV of Lazebnik
et al. (2006). Several systems are based on the combination
of multiple channels corresponding to many different fea-
tures including Bergamo and Torresani (2012), Boiman et al.
(2008), Gehler and Nowozin (2009) and VanGemert et al.
(2010). Other works, considered a single type of descriptors,
typically SIFT descriptors (Lowe 2004). Bo and Sminchis-
escu (2009) make use of the Efficient Match Kernel (EMK)
framework which embeds patches in a higher-dimensional
space in a non-linear fashion (see also Sect. 2.5). Wang et
al. (2010) and Yang et al. (2009b) considered different vari-
ants of sparse coding and Boureau et al. (2011); Feng et al.
(2011) different spatial pooling strategies. Kulkarni and Li
(2011) extracts on the order of a million patches per image by
computing SIFT descriptors from several affine transforms
of the original image and uses sparse coding in combination
with Adaboost. Finally, the best results we are aware of are
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Fig. 7 Comparison of the soft-BoV and the FV on Caltech256 (left) and SUN 397 (right) as a function of the number of training samples. We
only use SIFT descriptors and report the mean and three times the average deviation

Table 4 Comparison of the FV
with the state-of-the-art on
Caltech 256

Method ntrain=15 ntrain=30 ntrain=45 ntrain=60

Griffin et al. (2007) – 34.1 (0.2) – –

Boiman et al. (2008) – 42.7 (–) – –

Bo and Sminchisescu (2009) 23.2 (0.6) 30.5 (0.4) 34.4 (0.4) 37.6 (0.5)

Yang et al. (2009b) 27.7 (0.5) 34.0 (0.4) 37.5 (0.6) 40.1 (0.9)

Gehler and Nowozin (2009) 34.2 (–) 45.8 (–) – –

VanGemert et al. (2010) – 27.2 (0.4) – –

Wang et al. (2010) 34.4 (–) 41.2 (–) 45.3 (–) 47.7 (–)

Boureau et al. (2011) – 41.7 (0.8) – –

Feng et al. (2011) 35.8 (–) 43.2 (–) 47.3 (–) –

Kulkarni and Li (2011) 39.4 (–) 45.8 (–) 49.3 (–) 51.4 (–)

Bergamo and Torresani (2012) 39.5 (–) 45.8 (–) – –

Bo et al. (2012) 40.5 (0.4) 48.0 (0.2) 51.9 (0.2) 55.2 (0.3)

FV(SIFT) 38.5 (0.2) 47.4 (0.1) 52.1 (0.4) 54.8 (0.4)

FV(SIFT+LCS) 41.0 (0.3) 49.4 (0.2) 54.3 (0.3) 57.3 (0.2)

those of Bo et al. (2012) which uses a deep architecture which
stacks three layers, each one consisting of three steps: cod-
ing, pooling and contrast normalization. Note that the deep
architecture of Bo et al. (2012) makes use of color informa-
tion. Our FV which combines the SIFT and LCS descriptors,
outperform all other methods using any number of training
samples. Also the SIFT only FV is among the best perform-
ing descriptors.

3.4 SUN 397

We now report results on the SUN 397 dataset (Xiao et al.
2010) which contains approximately 100K images of 397
categories. Following the protocol of Xiao et al. (2010), we
used 5, 10, 20 or 50 training samples per class and 50 samples
per class for testing. To cross-validate the classifier parame-
ters, we use half of the training data for training, the other

half for validation and then we retrain with the optimal para-
meters on the full training data5. We repeat the experiments
ten times using the partitions provided at the website of the
dataset.6 We measure top-1 accuracy for each class and report
the average as well as the standard deviation. As was the
case for Caltech 256, we first compare in Fig. 7b, a soft-BoV
baseline with 32K Gaussians and the FV with 256 Gaussians
using only SIFT descriptors. Hence both the BoV and FV
representations have the same dimensionality: 128 K-dim.
As was the case on the PASCAL VOC and Caltech datasets,
the FV consistently outperforms the BoV and the perfor-

5 Xiao et al. (2010) also report results with one training sample per
class. However, a single sample does not provide any way to perform
cross-validation which is the reason why we do not report results in this
setting.
6 See http://people.csail.mit.edu/jxiao/SUN/

123

http://people.csail.mit.edu/jxiao/SUN/


Int J Comput Vis (2013) 105:222–245 235

Table 5 Comparison of the FV with the state-of-the-art on SUN 397

Method ntrain=5 ntrain=10 ntrain=20 ntrain=50

Xiao et al. (2010) 14.5 20.9 28.1 38.0

FV (SIFT) 19.2 (0.4) 26.6 (0.4) 34.2 (0.3) 43.3 (0.2)

FV (SIFT + LCS) 21.1 (0.3) 29.1 (0.3) 37.4 (0.3) 47.2 (0.2)

mance difference increases when more training samples are
available.

The only other results we are aware of on this dataset
are those of its authors whose system combined 12 fea-
ture types (Xiao et al. 2010). The comparison is reported
in Table 5. We observe that the proposed FV performs sig-
nificantly better than the baseline of Xiao et al. (2010), even
when using only SIFT descriptors.

4 Fisher Vector Compression with PQ Codes

Having now established that the FV is a competitive image
representation, at least for small- to medium-scale problems,
we now turn to the large-scale challenge.

One of the major issues to address when scaling the FV
to large amounts of data is the memory usage. As an exam-
ple, in Sánchez and Perronnin (2011) we used FV represen-
tations with up to 512K dimensions. Using a 4 byte float-
ing point representation, a single signature requires 2MB of
storage. Storing the signatures for the approximately 1.4M
images of the ILSVRC 2010 dataset (Berg et al. 2010) would
take almost 3TBs, and storing the signatures for the approx-
imately 14M of the full ImageNet dataset (Deng et al. 2009)
around 27TBs. We underline that this is not purely a stor-
age problem. Handling TBs of data makes experimentation
very difficult if not impractical. Indeed, much more time can
be spent writing/reading data on disk than performing any
useful calculation.

In what follows, we first introduce PQ as an efficient and
effective approach to perform lossy compression of FVs. We
then describe a complementary lossless compression scheme
based on sparsity encoding. Subsequently, we explain how
PQ encoding/decoding can be combined with SGD learning
for large-scale optimization. Finally, we provide a theoretical
analysis of the effect of lossy quantization on the learning
objective function.

4.1 Vector Quantization and Product Quantization

Vector Quantization (VQ) A vector quantizer q : �E →
C maps a vector v ∈ �E to a codeword ck ∈ �E in the
codebook C = {ck, k = 1, . . . , K } (Gray and Neuhoff
1998). The cardinality K of the set C , known as the codebook

size, defines the compression level of the VQ as �log2 K �
bits are needed to identify the K codeword indices. If one
considers the mean-squared error (MSE) as the distortion
measure then the Lloyd optimality conditions lead to k-means
training of the VQ. The MSE for a quantizer q is given as the
expected squared error between v ∈ �E and its reproduction
value q(v) ∈ C (Jégou et al. 2011):

M SE(q) =
∫

p(v)‖q(v)− v‖2dv, (42)

where p is a density function defined over the input vector
space.

If we use on average b bits per dimension to encode a
given image signature (b might be a fractional value), then
the cardinality of the codebook is 2bE . However, for E =
O(105), even for a small number of bits (e.g. our target in this
work is typically b = 1), the cost of learning and storing such
a codebook—in O(E2bE )—would be incommensurable.

Product Quantization (PQ) A solution is to use product
quantizers which were introduced as a principled way to
deal with high dimensional input spaces (see e.g. Jégou et
al. (2011) for an excellent introduction to the topic). A PQ
q : �E → C splits a vector v into a set of M distinct
sub-vectors of size G = E/M , i.e. v = [v1, . . . , vM ]. M
sub-quantizers {qm, m = 1 . . . M} operate independently
on each of the sub-vectors. If Cm is the codebook associated
with qm , then C is the Cartesian product C = C1× . . .×CM

and q(v) is the concatenation of the qm(vm)’s.
The vm’s being the orthogonal projections of v onto dis-

joint groups of dimensions, the MSE for PQ takes the form:

M SE pq(q) =
∑

m

M SE(qm)

=
∑

m

∫
pm(vm)‖q(vm)− vm‖2dvm, (43)

which can be equivalently rewritten as:

M SE pq(q)=
∫ (∏

m′
pm′(vm′)

) ∑
m

‖q(vm)−vm‖2dv. (44)

The sum within the integral corresponds to the squared dis-
tortion for q. The term between parentheses can be seen as
an approximation to the underlying distribution:

p(v) ≈
∏

k

pk(vk). (45)

When M = E , i.e. G = 1, the above approximation cor-
responds to a naive Bayes model where all dimensions are
assumed to be independent, leading to a simple scalar quan-
tizer. When M = 1, i.e. G = E , we are back to (42), i.e. to
the original VQ problem on the full vector. Choosing differ-
ent values for M impose different independence assumptions
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on p. Particularly, for groups m and m′ we have:

Cov(vm, vm′) = 0G×G , ∀m �= m′ (46)

where 0G×G denotes the G × G matrix of zeros. Using a
PQ with M groups can be seen as restricting the covariance
structure of the original space to a block diagonal form.

In the FV case, we would expect this structure to be diago-
nal since the FIM is just the covariance of the score. However:
(i) the normalization by the inverse of the FIM is only approx-
imate; (ii) the �2-normalization (Sect. 2.3) induces dependen-
cies between dimensions, and (iii) the diagonal covariance
matrix assumption in the model is probably incorrect. All
these factors introduce dependencies among the FV dimen-
sions. Allowing the quantizer to model some correlations
between groups of dimensions, in particular those that cor-
respond to the same Gaussian, can at least partially account
for the dependencies in the FV.

Let b be the average number of bits per dimension (assum-
ing that the bits are equally distributed across the codebooks
Cm) . The codebook size of C is K = (2bG)M = 2bE

which is unchanged with respect to the standard VQ. How-
ever the costs of learning and storing the codebook are now
in O(E2bG).

The choice of the parameters b and G should be moti-
vated by the balance we wish to strike between three con-
flicting factors: (1) the quantization loss, (2) the quantization
speed and (3) the memory/storage usage. We use the fol-
lowing approach to make this choice in a principled way.
Given a memory/storage target, we choose the highest possi-
ble number of bits per dimension b we can afford (constraint
3). To keep the quantization cost reasonable we have to cap
the value bG. In practice we choose G such that bG ≤ 8
which ensures that (at least in our implementation) the cost
of encoding a FV is not higher than the cost of extracting
the FV itself (constraint 2). Obviously, different applications
might have different constraints.

4.2 FV Sparsity Encoding

We mentioned earlier that the FV is dense: on average, only
approximately 50 % of the dimensions are zero (see also the
paragraph “posterior thresholding” in Appendix B). Gener-
ally speaking, this does not lead to any gain in storage as
encoding the index and the value for each dimension would
take as much space (or close to). However, we can leverage
the fact that the zeros are not randomly distributed in the FV
but appear in a structure. Indeed, if no patch was assigned to
Gaussian i (i.e. ∀t, γt (i) = 0), then in Eqs. (17) and (18) all
the gradients are zero. Hence, we can encode the sparsity on
a per-Gaussian level instead of doing so per dimension.

The sparsity encoding works as follows. We add one bit
per Gaussian. This bit is set to zero if no low-level feature
is assigned to the Gaussian, and one if at least one low-level

feature is assigned to the Gaussian (with non-negligible prob-
ability). If this bit is zero for a given Gaussian, then we know
that all the gradients for this Gaussian are exactly zero and
therefore we do not need to encode the codewords for the sub-
vectors of this Gaussian. If the bit is one, then we encode the
2D mean and SD gradient values of this Gaussian using PQ.

Note that adding this per Gaussian bit can be viewed
as a first step towards gain/shape coding (Sabin and Gray
1984), i.e. encoding separately the norm and direction of the
gradient vectors. We experimented with a more principled
approach to gain/shape coding but did not observe any sub-
stantial improvement in terms of storage reduction.

4.3 SGD Learning with Quantization

We propose to learn the linear classifiers directly in the
uncompressed high-dimensional space rather than in the
space of codebook indices. We therefore integrate the decom-
pression algorithm in the SGD training code. All compressed
signatures are kept in RAM if possible. When a signature is
passed to the SGD algorithm, it is decompressed on the fly.
This is an efficient operation since it only requires look-up
table accesses. Once it has been processed, the decompressed
version of the sample is discarded. Hence, only one decom-
pressed sample at a time is kept in RAM. This makes our
learning scheme both efficient and scalable.

While the proposed approach combines on-the-fly decom-
pression with SGD learning, an alternative has been recently
proposed by Vedaldi and Zisserman (2012) which avoids
the decompression step and which leverages bundle methods
with a non-isotropic regularizer. The latter method, however,
is a batch solver that accesses all data for every update of the
weight vector, and is therefore less suitable for large scale
problems. The major advantage of our SGD-based approach
is that we decompress only one sample at a time, and typi-
cally do not even need to access the complete dataset to obtain
good results. Especially, we can sample only a fraction of the
negatives and still converge to a reasonably accurate solution.
This proves to be a crucial property when handling very large
datasets such as ImageNet10K, see Sect. 5.

4.4 Analysis of the Effect of Quantization on Learning

We now analyze the influence of the quantization on the clas-
sifier learning. We will first focus on the case of VQ and then
turn to PQ.

Let f (x;w) : R
D → R be the prediction function. In

what follows, we will focus on the linear case, i.e. f (x;w) =
w′x . We assume that, given a sample (x, y) with x ∈ R

D and
y ∈ {−1,+1}, we incur a loss:

�(y f (x;w)) = �(yw′x). (47)
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We assume that the training data is generated from a distri-
bution p. In the case of an unregularized formulation, we
typically seek w that minimizes the following expected loss:

L(w) =
∫

x,y

�(yw′x)p(x, y)dxdy. (48)

Underlying the k-means algorithm used in VQ (and PQ) is
the assumption that the data was generated by a GMM with
equal mixture weights and isotropic covariance matrices, i.e.
covariance matrices which can be written as σ 2 I where I
is the identity matrix.7 If we make this assumption, we can
write (approximately) a random variable x ∼ p as the sum
of two independent random variables: x ≈ q + ε where q
draws values in the finite set of codebook entries C with
equal probabilities and ε ∼ N (0, σ 2 I ) is a white Gaussian
noise. We can therefore approximate the objective function
(48) as8:

L(w) ≈
∫

q,ε,y

�(yw′(q + ε))p(q, ε, y)dqdεdy (49)

We further assume that the loss function �(u) is twice
differentiable. While this is not true of the hinge loss in the
SVM case, this assumption is verified for other popular losses
such as the quadratic loss or the log loss. If σ 2 is small, we
can approximate �(yw′(q + ε)) by its second order Taylor
expansion around q:

�(yw′(q + ε))

≈ �(yw′q)+ ε′∇q�(yw′q)+ 1

2
ε′∇2

q�(yw′q)ε

= �(yw′q)+ ε′yw�′(yw′q)+ 1

2
ε′ww′ε�′′(yw′q). (50)

where �′(u) = ∂�(u)/∂u and �′′(u) = ∂2�(u)/(∂u)2 and we
have used the fact that y2 = 1. Note that this expansion is
exact for the quadratic loss.

In what follows, we further make the assumption that
the label y is independent of the noise ε knowing q, i.e.
p(y|q, ε) = p(y|q). This means that the label y of a sample
x is fully determined by its quantization q and that ε can be
viewed as a noise. For instance, in the case where σ → 0—
i.e. the soft assignment becomes hard and each codeword is
associated with a Voronoi region—this conditional indepen-
dence means that (the distribution on) the label is constant
over each Voronoi region. In such a case, using also the inde-
pendence of q and ε, i.e. the fact that p(q, ε) = p(q)p(ε),

7 Actually, any continuous distribution can be approximated with arbi-
trary precision by a GMM with isotropic covariance matrices.
8 Note that since q draws values in a finite set, we could replace the

∫
q

by
∑

q in the following equations but we will keep the integral notation
for simplicity.

it is easily shown that:

p(q, ε, y) = p(q, y)p(ε). (51)

If we inject (50) and (51) in (49), we obtain:

L(w) ≈
∫

q,ε,y

�(yw′q)p(q, y)dqdy

+
∫

ε

ε′ p(ε)dε

∫

q,y

yw�′(yw′q)p(q, y)dqdy (52)

+1

2
w′

⎛
⎝

∫

ε

εε′ p(ε)dε

⎞
⎠ w

∫

q
�′′(yw′q)p(q)dq.

Since ε ∼ N (0, σ 2 I ), we have:
∫

ε

ε′ p(ε)dε = 0 (53)

∫

ε

εε′ p(ε)dε = σ 2 I. (54)

Therefore, we can rewrite:

L(w) ≈
∫

q,y

�(yw′q)p(q, y)dqdy

+σ 2

2
||w||2

∫

q

�′′(yw′q)p(q)dq (55)

The first term corresponds to the expected loss in the case
where we replace each training sample by its quantized ver-
sion. Hence, the previous approximation tells us that, up
to the first order, the expected losses in the quantized and
unquantized cases are approximately equal. This provides
a strong justification for using k-means quantization when
training linear classifiers. If we go to the second order, a sec-
ond term appears. We now study its influence for two stan-
dard twice-differentiable losses: the quadratic and log losses
respectively.

– In the case of the quadratic loss, we have �(u) = (1−u)2

and �′′(u) = 2. and the regularization simplifies to
σ 2||w2||, i.e. a standard regularizer. This result is in line
with Bishop (1995) which shows that adding Gaussian
noise can be a way to perform regularization for the
quadratic loss. Here, we show that quantization actually
has an “unregularization” effect since the loss in quan-
tized case can be written approximately as the loss in the
unquantized case minus a regularization term. Note that
this unregularization effect could be counter-balanced in
theory by cross-validating the regularization parameter
λ.

– In the case of the log loss, we have �(u) = − log σ(u) =
log(1 + e−u), where σ(·) is the sigmoid function, and
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Fig. 8 Compression results on ILSVRC 2010 with 4K-dim FVs (left) and 64K-dim FVs (right) when varying the number of bits per dimension b
and the sub-vector dimensionality G

�′′(z) = σ(u)σ (−u) which only depends on the absolute
value of u. Therefore, the second term of (55) can be
written as:

σ 2

2
||w||2

∫

q

σ(w′q)σ (−w′q)p(q)dq (56)

which depends on the data distribution p(q) but does not
depend on the label distribution p(y|q). We can observe
two conflicting effects in (56). Indeed, as the norm
||w|| increases, the value of the term σ(w′q)σ (−w′q)

decreases. Hence, it is unclear whether this term acts
as a regularizer or an “unregularizer”. Again, this might
depend on the data distribution. We will study empirically
its effect in Sect. 5.1.

To summarize, we have made three approximations: (1) p
can be approximated by a mixture of isotropic Gaussians, (2)
� can be approximated by its second order Taylor expansion
and (3) y is independent of ε knowing q. We note that these
three approximations become more and more exact as the
number of codebook entries K increases, i.e. as the variance
σ 2 of the noise decreases.

We underline that the previous analysis remains valid in
the PQ case since the codebook is a Cartesian product of
codebooks. Actually, PQ is an efficient way to increase the
codebook size (and therefore reduce σ 2) at an affordable cost.
Also, the previous analysis remains valid beyond Gaussian
noise, as long as ε is independent of q and has zero mean.
Finally, although we typically train SVM classifiers, i.e. we
use a hinge loss, we believe that the intuitions gained from
the twice differentiable losses are still valid, especially those
drawn from the log-loss whose shape is similar.

5 Large-Scale Experiments

We now report results on the large-scale ILSVRC 2010 and
ImageNet10K datasets. The FV computation settings are
almost identical to those of the small-scale experiments. The
only two differences are the following ones. First, we do not
make use of SPs and extract the FVs on the whole images to
reduce the signature dimensionality and therefore speed-up
the processing. Second, because of implementation issues,
we found it easier to extract one SIFT FV and one LCS FV
per image and to concatenate them using an early fusion strat-
egy before feeding them to the SVM classifiers (while in our
previous experiments, we trained two classifiers separately
and peformed late fusion of the classifier scores).

As for the SVM training, we also use SGD to train one-vs-
rest linear SVM classifiers. Given the size of these datasets,
at each pass of the SGD routine we sample all positives but
only a random subset of negatives (Perronnin et al. 2012;
Sánchez and Perronnin 2011).

5.1 ILSVRC 2010

ILSVRC 2010 (Berg et al. 2010) contains approximately
1.4M images of 1K classes. We use the standard protocol
which consists in training on the “train” set (1.2M images),
validating on the “val” set (50K images) and testing on the
“test” set (150K) images. We report the top-5 classification
accuracy (in %) as is standard practice on this dataset.

Impact of Compression Parameters We first study the
impact of the compression parameters on the accuracy. We
can vary the average number of bits per dimension b and the
group size G. We show results on 4K-dim and 64K-dim FV
features in Fig. 8 (using respectively a GMM with 16 and
256 Gaussians). Only the training samples are compressed,
not the test samples. In the case of the 4K FVs, we were
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Table 6 Memory required to store the ILSVRC 2010 training set using
4K-dim or 64K-dim FVs

Uncompressed (GBs) PQ PQ + sparsity

4K-dim FV 19.0 610 MBs 540 MBs

64K-dim FV 310 9.6 GBs 6.3 GBs

For PQ, we used b = 1 and G = 8

able to run the uncompressed baseline as the uncompressed
training set (approximately 19 GBs) could fit in the RAM of
our servers. However, this was not possible in the case of the
64K-dim FVs (approximately 310 GBs). As expected, the
accuracy increases with b: more bits per dimension lead to a
better preservation of the information for a given G. Also, as
expected, the accuracy increases with G: taking into account
the correlation between the dimensions also leads to less loss
of information for a given b. Note that by using b = 1 and
G = 8, we reduce the storage by a factor 32 with a very
limited loss of accuracy. For instance, for 4K-dim FVs, the
drop with respect to the uncompressed baseline is only 2.1 %
(from 64.2 to 62.1).

We underline that the previous results only make use of
PQ compression but do not include the sparsity compression
described in Sect. 4.2. We report in Table 6 the compression
gains with and without sparsity compression for b = 1 and
G = 8. We note that the impact of the sparsity compression
is limited for 4K-dim FVs: around 10 % savings. This is to
be expected given the very tiny number of visual words in
the GMM vocabulary in such a case (only 16). In the case of
64K-dim FVs, the gain from the sparsity encoding is more
substantial: around 30 %. This gain increases with the GMM
vocabulary size and it would be also larger if we made use
of spatial pyramids (this was verified experimentally through
preliminary experiments). In what follows, except where the
contrary is specified, we use as default compression parame-
ters b =1 and G =8.

Compression and Regularization We now evaluate how
compression impacts regularization, i.e. whether the optimal
regularization parameter changes with compression. Since
we want to compare systems with compressed and uncom-
pressed features, we focus on the 4K-dim FVs. Results are
shown in Fig. 9 for three losses: the quadratic and log losses
which are twice differentiable and which are discussed in
Sect. 4.4 and the hinge loss which corresponds to the SVM
classifier but to which our theoretical analysis is not applica-
ble. We also test two compression settings: our default setting
with G =8 and b =1 and a lower-performing scalar quanti-
zation setting with G = 1 and b = 1. We can see that for all
three losses the optimal regularization parameter is the same
or very similar with and without compression. Especially, in
the quadratic case, as opposed to what is suggested by our
analysis, we do not manage to improve the accuracy with

compressed features by cross-validating the regularization
parameter. This might indicate that our analysis is too sim-
ple to represent real-world datasets and that we need to take
into account more complex phenomena, e.g. by considering
a more elaborate noise model or by including higher orders
in the Taylor expansion.

K-Nearest Neighbors Search with PQ Compression We
now compare the effect of PQ compression on the linear SVM
classifier to its effect on a k-nearest neighbors (k-NN) clas-
sifier. For this evaluation we use the 4K- and 64K-dim FVs.
We experiment with two compression settings: a “strong”
compression with b = 1 bit per dimension and G = 8 (com-
pression factor 32, our default setting) and and a “weak”
compression with b = 4 bits per dimension and G = 2
(compression factor 8).

We follow the asymmetric testing strategy, where only
the training images are PQ encoded and the test images are
uncompressed. This has also been used for nearest neighbor
image retrieval using an PQ encoded dataset and uncom-
pressed query images (Jégou et al. 2011). We compare three
versions of the k-NN classifier. The first directly uses the
PQ-encoded Fisher vectors. Note that since the PQ compres-
sion is lossy, the norm of the reconstructed vectors is gener-
ally not preserved. Since we use �2 normalized signatures,
however, we can correct the norms after decompression. In
the second version we re-normalize the decompressed vec-
tors to have unit �2 norm on both parts corresponding to the
SIFT and the LCS color descriptors. Finally, we consider a
third variant that simply re-normalizes the complete vector,
without taking into account that it consists of two subvectors
that should have unit norm each.

Because of the cost of running k-NN classification, we
used only a subset of 5K test images to evaluate accuracy.
In preliminary experiments on the 4K features, the differ-
ence in performance between running the test on the full
150K images and the subset of 5K was small: we observed
differences in the order of 0.5 %. Hence, we believe this sub-
set of 5K images to be representative of the full set. Note
that we could not run uncompressed experiments in a rea-
sonable amount of time with the 64K-dim features, even on
this reduced test set. For the SVM, although running exper-
iments on the full test set is possible, we report here results
on the same subset of 5K test images for a fair compari-
son.

For all k-NN experiments we select the best parameter
k on the test set for simplicity. Typically for the 4K-dim
features and Euclidean distance around 100 neighbors are
used, while for the 64K-dim features around 200 neigh-
bors are used. When using the re-normalization the optimal
number of neighbors is reduced by a factor two, for both
4K and 64K dimensional features. In either case, the per-
formance is stable over a reasonably large range of values
for k.
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Fig. 9 Impact of the regularization on uncompressed and compressed
features for the quadratic loss (left), the log loss (middle) and the hinge
loss (right). Results on ILSVRC 2010 with 4K-dim FVs. We experi-

mented with two compression settings: our default setting (G = 8 and
b = 1) and a degraded setting corresponding to scalar quantization
(G = 1 and b = 1)

Table 7 Comparison of top-5 accuracy of SVM and k-NN classification
without compression (“exact”), with “weak” PQ compression (b = 4)
and “strong” compression (b = 1)

4K-dimFV 64K-dimFV

Exact Weak Strong Weak Strong

k-NN, direct 44.3 44.2 42.3 42.7 37.8

k-NN, re-normalization 44.2 42.7 47.0 45.3

SVM 64.1 63.3 61.7 73.3 71.6

In Table 7 we show the results of our comparison, using
the first and second variants. We make the following observa-
tions. First the performance of the k-NN classifier is always
significantly inferior to that of the SVM classifier. Second,
when no re-normalization is used, we observe a decrease
in accuracy with the k-NN classifier when going from 4 to
64K dimensional FVs. When using re-normalization, how-
ever, the performance does improve from 4 to 64K features.
The normalization per FV (SIFT and LCS) is also impor-
tant; when only a single re-normalization is applied to the
complete vector an accuracy of 45.9 is obtained for the 64K-
dim feature in the weak compression setting, compared to
47.0 when both FVs are used separately. Third, the mod-
est improvement of around 3 absolute points when going
from 4 to 64K-dim features for the k-NN classifier might
be explained because the k-NN classifier is not appropriate
for high-dimensional features since all points are approxi-
mately at the same distance. In such a case, it can be benefi-
cial to employ metric learning techniques, see e.g. Mensink
et al. (2012). However, this is outside the scope of the current
paper.

Finally, to obtain a better insight on the influence of the
re-normalization, we analyze its impact on which images
are selected as nearest neighbors. In Fig. 10, we show for
different settings the distribution of how often images are
selected as one of the 200 nearest neighbors for the 5K
queries. In particular, for each train image we count how
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Fig. 10 Impact of the re-normalization on the frequencies of how often
an image is selected as neighbor. We analyze the 200 nearest neighbors
from the 5K queries, for the 4 and 64K dimensional FV with strong
compression and the exact non-compressed 4K FVs

often it is referenced as a neighbor, then sort these counts in
decreasing order, and plot these curves on log–log axes. We
compare the distributions for strongly compressed 4K and
64K FVs, with and without re-normalization. Moreover, we
also include the distribution for the exact (non-compressed)
4K features. Since there are 5K test images, each of which
has 200 neighbors, and about 1M training images, a uni-
form distribution over the neighbor selection would roughly
select each training image once. We observe that without
re-normalization, however, a few images are selected very
often. For example, for the 64K features there are images
that are referenced as a neighbor for more than 4,500 queries.
When using the re-normalization the neighbor frequencies
are more well behaved, resulting in better classification per-
formance, see Table 7. In this case, for the 64K features the
most frequent neighbor is referenced less that 150 times: a
reduction by a factor 30 as compared to the maximum fre-
quency without re-normalization. For the 4K features the
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correction of the neighbor frequencies is even more striking:
with re-normalization the neighbor frequencies essentially
match those of the exact (non-compressed) features.

Comparison with the State-of-the-Art We now compare
our results with the state-of-the-art. Using 64K-dim FVs and
the “weak” compression setting described earlier, we achieve
73.1 % top-5 accuracy. Using our default compression set-
ting, we achieve 72.0 %. This is to be compared with the
winning NEC-UIUC-Rutgers system which obtained 71.8 %
accuracy during the challenge (Berg et al. 2010), see also
Lin et al. (2011). Their system combined six sub-systems
with different patch descriptors, patch encoding schemes
and spatial pyramids. (Sánchez and Perronnin 2011) reported
slightly better results—74.5 % top-5 accuracy—using 1M-
dim FVs (with more Gaussians and SPs) but such high-
dimensional features are significantly more costly than the
64K-dim features we used in the present paper. In a very
recent work, Krizhevsky et al. (2012) reported significantly
better results using a deep learning network. They achieved
an 83.0 % top-5 accuracy using a network with eight layers.
We note that to increase the size of the training set—which
was found to be necessary to train their large network—they
used different data augmentation strategies (random crop-
ping of sub-images and random perturbations of the illumi-
nation) which we did not use.

We can also compare our results to those of Bergamo and
Torresani (2012) whose purpose was not to obtain the best
possible results at any cost but the best possible results for a
given storage budget. Using a 15,458-dim binary represen-
tation based on meta-class features, Bergamo and Torresani
(2012) manage to compress the training set to 2.16 GBs and
report a top-1 classification accuracy of 36.0 %. Using 4K-
dim FVs, our top-1 accuracy is 39.7 % while our storage
requirements are four times smaller, see Table 6. We under-
line that the FV representation and the metaclass features of
Bergamo and Torresani (2012) are not exclusive but comple-
mentary. Indeed, the metaclass features could be computed
over FV representations, thus leading to potential improve-
ments.

5.2 ImageNet10K

ImageNet10K Deng et al. (2010) is a subset of ImageNet
which contains approximately 9M images corresponding to
roughly 10K classes.

For these experiments, we used the exact same setting as
for our ILSVRC 2010 experiments: we do not use spatial
pyramids and the SIFT- and LCS-FVs are concatenated to
obtain either a 4K-dim of a 64K-dim FV. For the compres-
sion, we use the default setting (b = 1 bit per dimension and
G = 8). To train the one-vs-rest linear SVMs, we also follow
Perronnin et al. (2012) and subsample the negatives. At test

time, we also compress FVs because of the large of number
of test images to store on disk (4.5M).

In our experiments, we follow the protocol of Sánchez and
Perronnin (2011) and use half of the images for training, 50K
for validation and the rest for testing. We compute the top-1
classification accuracy for each class and report the average
per-class acuracy as is standard on this dataset (Deng et al.
2010; Sánchez and Perronnin 2011). Using the 4K-dim FVs,
we achieve a top-1 accuracy of 14.0 % and using the 64K-dim
FVs 21.9 %.

Comparison with the State-of-the-Art Deng et al. (2010)
achive 6.4 % accuracy using a BoV representation and the
fast Intesection kernel SVM (IKSVM) technique of Maji
and Berg (2009). Our compressed FV results are more than
three times higher. Sánchez and Perronnin (2011) reported
a 16.7 % accuracy using FVs but without color informa-
tion. Using similar features Perronnin et al. (2012) improved
these results to 19.1 % by carefully cross-validating the bal-
ance between the positive and negative samples, a good prac-
tice we also used in the current work. (Mensink et al. 2012)
obtained 13.9 % using the same features and PQ compression
as we used in this paper, but with a nearest mean classifier
which only requires a fraction of the training time.

Le et al. (2012) and Krizhevsky et al. (2012) also report
results on the same subset of 10K classes using deep archi-
tectures. Both networks have nine layers but they are quite
different. In (Le et al. 2012), the features are learned using a
deep autoencoder which is constructed by replicating three
times the same three layers—made of local filtering, local
pooling and contrast normalization. Classification is then per-
formed using linear classifiers (trained with a logistic loss).
In (Krizhevsky et al. 2012) the network consists of six convo-
lutional layers plus three fully connected layers. The output
of the last fully connected layer is fed to a softmax which
produces a distribution over the class labels. Le et al. (2012)
reports a top-1 per-image accuracy of 19.2 % and Krizhevsky
et al. (2012) of 32.6 %.9

6 Conclusion

In this work, we proposed the Fisher Vector representation as
an alternative to the popular BoV encoding technique com-
monly adopted in the image classification and retrieval lit-
erature. Within the FV framework, images are characterized

9 While it is standard practice to report per-class accuracy on this
dataset (see Deng et al. 2010; Sánchez and Perronnin 2011), Krizhevsky
et al. (2012); Le et al. (2012) report a per-image accuracy. This results in
a more optimistic number since those classes which are over-represented
in the test data also have more training samples and therefore have
(on average) a higher accuracy than those classes which are under-
represented. This was clarified through a personal correspondence with
the first authors of Krizhevsky et al. (2012) and Le et al. (2012).
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by first extracting a set of low-level patch descriptors and
then computing their deviations from a “universal” gener-
ative model, i.e. a probabilistic visual vocabulary learned
offline from a large set of samples. This characterization is
given as a gradient vector w.r.t. the parameters of the model,
which we choose to be a Gaussian mixture with diagonal
covariances.

Compared to the BoV, the FV offers a more complete
representation of the sample set, as it encodes not only the
(probabilistic) count of occurrences but also higher order
statistics related to its distribution w.r.t. the words in the
vocabulary. The better use of the information provided by
the model translates also into a more efficient representa-
tion, since much smaller vocabularies are required in order
to achieve a given performance. We showed experimentally
on three challenging small and medium-scale datasets that
this additional information brings large improvements in
terms of classification accuracy and, importantly, that state-
of-the-art performances can be achieved with efficient lin-
ear classifiers. This makes the FV well suited for large-scale
classification.

However, being very high-dimensional and dense, the FV
becomes impractical for large-scale applications due to stor-
age limitations. We addressed this problem by using PQ,
which enables balancing accuracy, CPU cost, and memory
usage. We provided a theoretical analysis of the influence of
PQ on the classifier learning. For the linear case, we showed
that compression using quantization has an “unregulariza-
tion” effect when learning the classifiers.

Finally, we reported results on two large-scale datasets—
including up to 9M images and 10K classes—and performed
a detailed comparison with k-NN classification. We showed
that FVs can be compressed by a factor of 32 with a very
little impact on classification accuracy.

Appendix 1 : An Approximation of the Fisher
Information Matrix

In this appendix we show that, under the assumption that
the posterior distribution γx (k) = wkuk(x)/uλ(x) is sharply
peaked, the normalization with the FIM takes a diagonal
form. Throughout this appendix we assume the data x to
be one dimensional. The extension to the multidimensional
data case is immediate for the mixtures of Gaussians with
diagonal covariance matrices that we are interested in.

Under some mild regularity conditions on uλ(x), the
entries of the FIM can be expressed as:

[Fλ]i, j = E

[
−∂2 log uλ(x)

∂λi∂λ j

]
. (57)

First, let us consider the partial derivatives of the posteri-
ors w.r.t. the mean and variance parameters. If we use θs to

denote one such parameter associated with us(x), i.e. mixture
component number s, then:

∂γx (k)

∂θs
= γx (k)

∂ log γx (k)

∂θs
(58)

= γx (k)
∂

∂θs

[
log wk + log uk(x)− log uλ(x)

]
(59)

= γx (k)

[
[[k = s]]∂ log us(x)

∂θs
− ∂ log uλ(x)

∂θs

]
(60)

= γx (k)

[
[[k = s]]∂ log us(x)

∂θs
− γx (s)

∂ log us(x)

∂θs

]
(61)

= γx (k)
(
[[k = s]] − γx (s)

)∂ log us(x)

∂θs
≈ 0, (62)

where [[·]] is the Iverson bracket notation which equals one
if the argument is true, and zero otherwise. It is easy to ver-
ify that the assumption that the posterior is sharply peaked
implies that the partial derivative is approximately zero, since
the assumption implies that (i) γx (k)γx (s) ≈ 0 if k �= s and
(ii) γx (k) ≈ γx (k)γx (s) if k = s.

From this result and Eqs. (12), (13), and (14), it is then
easy to see that second order derivatives are zero if (i) they
involve mean or variance parameters corresponding to dif-
ferent mixture components (k �= s), or if (ii) they involve a
mixing weight parameter and a mean or variance parameter
(possibly from the same component).

To see that the cross terms for mean and variance of the
same mixture component are zero, we again rely on the obser-
vation that ∂γx (k)/∂θs ≈ 0 to obtain:

∂2 log uλ(x)

∂σk∂μk
≈ γx (k)(x − μk)

∂σ−2
k

∂σk

= −2σ−3
k γx (k)(x − μk) (63)

Then by integration we obtain:

[Fλ]σk ,μk = −
∫

x

uλ(x)
∂2 log uλ(x)

∂σk∂μk
dx (64)

≈ 2σ−3
k

∫

x

uλ(x)γx (k)(x − μk)dx (65)

= 2σ−3
k wk

∫

x

uk(x)(x − μk)dx = 0 (66)

We now compute the second order derivatives w.r.t. the
means:

∂2 log uλ(x)

(∂μk)2 ≈ σ−2
k γx (k)

∂(x − μk)

∂μk
= −σ−2

k γx (k) (67)

Integration then gives:

[Fλ]μk ,μk = −
∫
x

uλ(x)
∂2 log uλ(x)

(∂μk )2 dx ≈ σ−2
k

∫
x

uλ(x)γx (k)dx (68)

= σ−2
k wk

∫
x

uk(x)dx = σ−2
k wk , (69)
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and the corresponding entry in Lλ equals σk/
√

wk . This
leads to the normalized gradients as presented in (17).

Similarly, for the variance parameters we obtain:

∂2 log uλ(x)

(∂σk)2 ≈ σ−2
k γx (k)

(
1− 3(x − μk)

2/σ 2
k

)
(70)

Integration then gives:

[Fλ]σk ,σk

≈ σ−2
k

∫

x

uλ(x)γx (k)
(

3(x − μk)
2/σ 2

k − 1
)

dx (71)

= σ−2
k wk

∫

x

uk(x)
(

3(x − μk)
2/σ 2

k − 1
)

dx = 2σ−2
k wk,

(72)

which leads to a corresponding entry in Lλ of σk/
√

2wk . This
leads to the normalized gradients as presented in (18).

Finally, the computation of the normalization coefficients
for the mixing weights is somewhat more involved. To com-
pute the second order derivatives involving mixing weight
parameters only, we will make use of the partial derivative
of the posterior probabilities γx (k):

∂γx (k)

∂αs
= γx (k)

(
[[k = s]] − γx (s)

)
≈ 0, (73)

where the approximation follows from the same observations
as used in (62). Using this approximation, the second order
derivatives w.r.t. mixing weights are:

∂2 log uλ(x)

∂αs∂αk
= ∂γx (k)

∂αs
− ∂wk

∂αs
≈ −∂wk

∂αs

= wk
([[k = s]] − ws

)
(74)

Since this result is independent of x , the corresponding block
of the FIM is simply obtained by collecting the negative sec-
ond order gradients in matrix form:

[Fλ]α,α = ww′ − diag(w), (75)

where we used w and α to denote the vector of all mixing
weights, and mixing weight parameters respectively.

Since the mixing weights sum to one, it is easy to show
that this matrix is non-invertible by verifying that the con-
stant vector is an eigenvector of this matrix with associated
eigenvalue zero. In fact, since there are only K−1 degrees of
freedom in the mixing weights, we can fix αK = 0 without
loss of generality, and work with a reduced set of K −1 mix-
ing weight parameters. Now, let us make the following defin-
itions: let α̃ = (α1, . . . , αK−1)

T denote the vector of the first
K − 1 mixing weight parameters, let Gx

α̃
denote the gradient

vector with respect to these, and Fα̃ the corresponding matrix
of second order derivatives. Using this definition Fα̃ is invert-
ible, and using Woodburry’s matrix inversion lemma, we can
show that

Gx
α̃ F−1

α̃
G y

α̃
=

K∑
k=1

(γx (k)− wk)(γy(k)− wk)/wk . (76)

The last form shows that the inner product, normalized by the
inverse of the non-diagonal K−1 dimensional square matrix
Fα̃ , can in fact be obtained as a simple inner product between
the normalized version of the K dimensional gradient vectors
as defined in (12), i.e. with entries

(
γx (k)−wk

)
/
√

wk . This
leads to the normalized gradients as presented in (16).

Note also that, if we consider the complete data likelihood:

p(x, z|λ) = uλ(x)p(z|x, λ) (77)

the Fisher information decomposes as:

Fc = Fλ + Fr , (78)

where Fc, Fλ and Fr denote the FIM of the complete, mar-
ginal (observed) and conditional terms. Using the 1-of-K
formulation for z, it can be shown that Fc has a diagonal
form with entries given by (68), (71) and (76), respectively.
Therefore, Fr can be seen as the amount of “information”
lost by not knowing the true mixture component generating
each of the x’s Titterington et al. (1985). By requiring the dis-
tribution of the γx (k) to be “sharply peaked” we are making
the approximation zk ≈ γx (k).

From this derivation we conclude that the assumption of
sharply peaked posteriors leads to a diagonal approximation
of the FIM, which can therefore be taken into account by a
coordinate-wise normalization of the gradient vectors.

Appendix 2 : Good Practices for Gaussian Mixture Mod-
eling

We now provide some good practices for GMM. For a public
GMM implementation and for more details on how to train
and test GMMs, we refer the reader to the excellent HMM
ToolKit (HTK) Young et al. (2002)10.

Computation in the Log Domain We first describe how
to compute in practice the likelihood (8) and the soft-
assignment (15). Since the low-level descriptors are quite
high-dimensional (typically D = 64 in our experiments), the
likelihood values uk(x) for each Gaussian can be extremely
small (and even fall below machine precision if using float-
ing point values) because of the exp of Eq. (9). Hence, for a
stable implementation, it is of utmost importance to perform

10 Available at: http://htk.eng.cam.ac.uk/.
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all computations in the log domain. In practice, for descriptor
x , one never computes uk(x) but

log uk(x)

= −1

2

D∑
d=1

[
log(2π)+ log(σ 2

kd)+ (xd − μkd)2)

σ 2
kd

]
(79)

where the subscript d denotes the d-th dimension of a vec-
tor. To compute the log-likelihood log uλ(x) = log

∑K
k=1

wkuk(x), one does so incrementally by writing log uλ(x) =
log

(
w1u1(x) +∑K

k=2 wkuk(x)
)

and by using the fact that
log(a + b) = log(a) + log (1+ exp(log(b)− log(a)) to
remain in the log domain.

Similarly, to compute the posterior probability (15), one
writes γk = exp

[
log(wkuk(x))− log(uλ(x))

]
to operate in

the log domain.
Variance Flooring Because the variance σ 2

k appears in a
log and as a denominator in Eq. (79), too small values of the
variance can lead to instabilities in the Gaussian computa-
tions. In our case, this is even more likely to happen since
we extract patches densely and we do not discard uniform
patches. In our experience, such patches tend to cluster in a
Gaussian mixture component with a tiny variance. To avoid
this issue, we use variance flooring: we compute the global
covariance matrix over all our training set and we enforce the
variance of each Gaussian to be no smaller than a constant α

times the global variance. Such an operation is referred to as
variance flooring. HTK suggest a value α = 0.01.

Posterior Thresholding To reduce the cost of training
GMMs as well as the cost of computing FVs, we assume
that all the posteriors γ (k) which are below a given thresh-
old θ are equal to exactly zero. In practice, we use a quite
conservative threshold θ = 10−4 and for a GMM with 256
Gaussians, 5–10 Gaussians maximum exceed this threshold.
After discarding some of the γ (k) values, we renormalize
the γ ′s to ensure that we still have

∑K
k=1 γ (k) = 1.

Note that this operation does not only reduce the compu-
tational cost, it also sparsifies the FV (see Sect. 4.2). With-
out such a posterior thresholding, the FV (or the soft-BOV)
would be completely dense.

Incremental Training It is well known that the ML esti-
mation of a GMM is a non-convex optimization problem
for more than one Gaussian. Hence, different initializations
might lead to different solutions. While in our experience,
we have never observed a drastic influence of the initial-
ization on the end result, we strongly advise the use of an
iterative process as suggested for instance in Young et al.
(2002). This iterative procedure consists in starting with a
single Gaussian (for which a closed-form formula exists),
splitting all Gaussians by slightly perturbing the mean and
then re-estimating the GMM parameters with EM. This iter-
ative splitting-training strategy enables cross-validating and

monitoring the influence of the number of Gaussians K in a
consistent way.
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