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1.  INTRODUCTION

Microphytobenthic (MPB) communities consist of
photoautotrophic microorganisms, mainly diatoms,
cyanobacteria, flagellates and green algae, that live
in and on subtidal and intertidal sediments where
light reaches the sediment surface (Underwood 2001).

These communities play an important role in key
ecosystem functions, such as primary production,
sediment stabilization and biogeochemical cycling
(Middelburg et al. 2000). MPB cover large areas and
have high areal productivity rates (Heip et al. 1995,
MacIntyre et al. 1996). Indeed, at the top 1−2 mm of
the sediment, benthic microalgae can achieve similar
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areal productivity rates as phytoplankton in the over-
lying water column (Underwood & Kromkamp 1999),
and may contribute up to 50% of estuarine primary
pro duction (e.g. northern Adriatic coasts, Blackford
2002; Colne estuary, UK, Underwood et al. 2005). MPB
stabilize the sediment surface due to the extrusion of
extracellular polymeric substances (Underwood et al.
2005). These molecules form a network that traps
and binds sediment particles, increasing sediment
cohesion and stability (de Brouwer et al. 2002, Stal
2010). MPB can also modulate benthic biogeochemi-
cal processes, such as denitrification, nitrification and
N2 fixation (Sundbäck et al. 2004, Stutes et al. 2006).
These processes are fundamental for intertidal sys-
tem functioning, and in tidal flats their dynamics are
regulated by different attributes of MPB such as com-
position, functional diversity, species richness, abun-
dance and evenness (Thrush et al. 2017).

The composition of phototrophic communities is
determinant for coastal ecosystem dynamics (Duarte
1995). MPB productivity is the consequence of the
different responses to irradiance of its constituent
taxa (Underwood et al. 2005). The exposure to high
irradiance levels can limit MPB productivity (Serôdio
et al. 2008). MPB dominated by diatoms are tolerant
to high light intensities due to physiological strate-
gies (developed by epipsammic and epipelic dia -
toms) and behavioral strategies (developed only by
epipelic diatoms), so photoinhibition is apparently
absent when the biofilm as a whole is measured
(Serôdio 2004), thus ensuring high and constant lev-
els of production (Mouget et al. 2008). As for many
kinds of communities, composition also influences
sediment biogeochemical cycles via species traits
(Tilman 1999). MPB dominated by cyanobacteria
increase sulfide oxidation and nitrogen fixation in the
surrounding environment (e.g. Janousek 2009),
while those dominated by diatoms usually show high
rates of inorganic nitrogen consumption (i.e. ammo-
nia and nitrate) and oxygen production (Nilsson &
Sundbäck 1996). MPB structure is also influenced by
abiotic and biotic interactions (Kristensen 2007). For
example, the microscale distribution of sediment par-
ticles of varying sizes can directly influence diversity
(Paterson & Hagerthey 2001), and factors like tem-
perature, desiccation and salinity also determine
composition, as they differently affect the success of
each taxonomic group (Underwood & Provot 2000).
Herbivory and bioturbation are important biotic fac-
tors that influence MPB growth and development
(Admiraal 1984, Needham et al. 2011). Benthic
macrofauna present a wide range of strategies re -
lated to their movement and feeding behavior, so

their impact on MPB is very variable (Waldbusser et
al. 2004). While some studies have shown that deposit
feeding organisms may decrease MPB abundance
due to grazing, others have shown that sediment
reworking during feeding activities has a positive
effect on MPB (e.g. Armitage et al. 2009, Sandwell et
al. 2009).

Bioturbation by benthic macrofauna is widely rec-
ognized as a key ecological process due to its effect
on ecosystem functioning in coastal and marine habi-
tats (Teal et al. 2013). It is defined as all types of
transport processes carried out by organisms that
directly or indirectly affect sediment matrices, in -
cluding sediment reworking and burrow ventilation
(Kristensen et al. 2012). Bioturbation affects sediment
properties such as sedimentary oxygen concentra-
tion, pH and redox gradients (Daleo et al. 2007,
Queirós et al. 2015), permeability, organic matter
subduction (Lohrer et al. 2004, Fanjul et al. 2015),
NH4

+ release (Emmerson et al. 2001, Biles et al. 2002)
and grain size distribution (Escapa et al. 2007). More-
over, bioturbation can affect macrofaunal community
structure (Volkenborn et al. 2007, Alvarez et al. 2013),
as well as bacterial abundance, composition and
activity (Bertics & Ziebis 2009, Gilbertson et al. 2012).
Bioturbators also regulate carbon (Kristensen 2001)
and nitrogen cycles (Bertics et al. 2010, Fanjul et al.
2011) due to the alteration of the physico–chemical
environment that affects bacterial assemblages
(Laverock et al. 2011). MPB primary production is
favored by the presence of diverse and abundant
macrobenthic bioturbators, indicating complex feed-
backs and interactions (Lohrer et al. 2004, 2010).

Although much information is available about the
role of some bioturbation modes, such as the upward/
downward conveyors and biodiffusers, the role of
regenerative bioturbation remains relatively unex-
plored (but see Escapa et al. 2008, Wang et al. 2010,
Needham et al. 2011, 2013, Alberti et al. 2015, Fanjul
et al. 2015). Regenerative bioturbators dig and con-
tinuously maintain burrows, thereby transferring
large amounts of deep sediment to the surface. Their
burrows also enhance sediment trapping (Botto et al.
2006, Escapa et al. 2008) and are passively irrigated,
which contrasts with the active burrow irrigation that
characterizes other bioturbation modes (Kristensen
et al. 2012). Regenerative bioturbation is typically
exerted by burrowing crustaceans such as burrowing
crabs that inhabit saltmarsh and mangrove sediments
(Kristensen et al. 2012). Their burrowing activities
increase the potential for biological and chemical
exchange by increasing the area of sediment−water/
air interface between 150 and 380% (Kristensen
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2008). New Zealand estuaries, for example, are
inhabited by the regenerative bioturbator crab Aus-
trohelice crassa, a key species in the regulation of
ecosystem functioning (Needham et al. 2013). In Chi-
nese salt marshes, the burrowing crabs Helice tridens
tientsinensis, Sesarma dehaani, S. plicata and Uca
arcuata dominate the macrofauna, constructing bur-
rows with high morphological variation that strongly
affect the flow of energy and materials (Wang et al.
2010). Mangrove sediments also show high rates of
regenerative bioturbation, mainly by sesarmid crabs
(e.g. Neoepisesarma versicolor, S. messa) and fiddler
crabs (e.g. U. pugilator, U. pugnax, U. vocans, U.
annulipes), which affect sediment biogeochemistry
and microbial activity (Kristensen 2008).

The intertidal burrowing crab Neohelice (Chas-
magnathus) granulata (up to 40 mm carapace width)
is one of the most abundant benthic macroinverte-
brates in southwest Atlantic (SWA) protected soft-
bottom intertidal systems (Iribarne et al. 1997). This
crab has long been considered to be an allogenic
ecosystem engineer (sensu Jones et al. 1996) because
it modifies the physical and chemical sedimentary
environment, thus affecting resource availability to
co-inhabitant species (e.g. polychaetes: Escapa et al.
2004; fishes: Martinetto et al. 2005; birds: Iribarne et
al. 2005; plants: Daleo & Iribarne 2009; snails: Al varez
et al. 2013). This species can remove up to 2.4 kg
m−2 d−1 of salt marsh sediment and up to 6 kg m−2 d−1

in mudflats (Iribarne et al. 1997, Botto & Iribarne
2000) as a result of burrow excavation and mainte-
nance, which in cludes sediment removal and trans-
port from depth to the surface and also passive trap-
ping of sediment into open burrows (Botto & Iribarne
2000, Escapa et al. 2008). This crab needs to remove
large amounts of sediment in order to maintain large
burrows (up to 17 cm width and 1 m depth), thus pro-
moting high rates of regenerative bioturbation (sensu
Kristensen et al. 2012). This activity modifies the sed-
imentary matrix through geochemical alterations and
also changes grain size distribution (Escapa et al.
2007), sediment water content (Bortolus & Iribarne
1999), organic matter content and inorganic nutrient
availability (Fanjul et al. 2007, 2011). Given that
these factors are known to affect MPB (Underwood
2001), we ex pect an in direct impact of regenerative
bioturbation on MPB as a result of modifying the
sedimentary environment.

In this study, we investigated the effects of regen-
erative bioturbation by N. granulata on MPB abun-
dance/diversity/composition and the possible impact
on intertidal MPB-mediated ecosystem functions,
such as primary production. Given the high bioturba-

tion intensity of N. granulata, we expected that it
would affect MPB.

2.  MATERIALS AND METHODS

2.1.  Study site

The study was carried out between February 2014
and February 2015 at intertidal mudflats in the Mar
Chiquita coastal lagoon (Argentina, 37° 32’ S, 57° 19’
W). This site is the southernmost in a series of tem-
perate coastal lagoons along the SWA coast (Perillo
1995) and is dominated by a semidiurnal microtidal
regime (tidal amplitude <1 m), with low current
velocities (mean: 5.4 cm s−1; Iribarne & Botto 1998)
and highly variable salinity (from 0.5 to 34; Reta et al.
2001). In this coastal lagoon, the high intertidal zones
are characterized by the presence of salt marshes
vegetated by Sporobolus densiflorus (Spartina densi-
flora), while bare mudflats are found in the lower
intertidal zones (Iribarne et al. 1997), and its sedi-
ments are mostly composed of fine sands, silts and
clays.

Within these sediments, MPB is mainly composed
of diatoms and cyanobacteria, while euglenophytes
and chlorophytes are present in lower proportions
(Alvarez et al. 2013, Alberti et al. 2017). These inter-
tidal flats (i.e. saltmarshes and mudflats) are also
inhabited by the burrowing crab Neohelice granu-
lata (Iribarne et al. 1997, Luppi et al. 2002). This spe-
cies is active year round (primarily from early spring
to late autumn) and can excavate substrates over a
wide range of environmental conditions (e.g. from
hypersaline to brackish water conditions) and sedi-
mentary contexts (from muddy sediments dominated
by silts and clay to sandy and even gravelly sandy
sediments). Thus, N. granulata can withstand a high
range of environmental variability through physio-
logical adaptations and without affecting its burrow-
ing activity (Halperin et al. 2000, Luppi et al. 2013).
Locally, the burrows can be found from the lowest
areas of mudflats to the highest areas of salt
marshes, but crab burrowing activity is concentrated
at marsh−mudflat edges where higher burrow densi-
ties are generally registered (Spivak et al. 1994, Irib-
arne et al. 2005, Mendez Casariego et al. 2011).
When crabs inhabit salt marshes, they behave as her-
bivores, feeding mainly on Sporobolus spp., and their
burrowing activity is facilitated by marsh plants (Bor-
tolus et al. 2002), thus generating areas of high bur-
row density below plant canopies. However, crabs
inhabiting mudflats change their trophic mode to
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deposit feeding (Botto et al. 2005, Alberti et al. 2011),
and their burrowing activity is concentrated in
patches that exhibit high variation both in areal
extent and temporal stability (Botto & Iribarne 1999,
Iribarne et al. 2005). This is partially explained by the
high mobility rate among patches in short periods
(Luppi et al. 2013) and also by the low site fidelity
that this species shows (Nuñez et al. 2018).

2.2.  Sediment characterization and MPB
abundance/diversity/composition in natural

bioturbated and non-bioturbated patches

Directed field sampling was conducted in summer
2014 in order to characterize sediment properties and
MPB abundance/diversity/composition in naturally
occurring bioturbated and non-bioturbated patches
in Mar Chiquita mudflats. Along these mudflats are
highly bioturbated patches that are interspersed with
few or no bioturbated patches, and this feature has
allowed assessing a broad range of ecological pat-
terns (Botto & Iribarne 1999, Escapa et al. 2004, Irib-
arne et al. 2005, Fanjul et al. 2007). To include envi-
ronmental variability, we distributed our sampling
effort in 3 different mudflat areas within the coastal
lagoon, each area consisting of 2 paired patch types:
high bioturbation intensity patches (crab sites) and
nearby patches with low or no bioturbation (no-crab
sites). In these patches, we characterized sediment
physical properties (grain size distribution, water
content and salinity) and MPB abundance/ diversity/
composition and biomass.

In each patch (crab and no-crab sites), we ran-
domly collected sediment samples during low tides,
using corers of different diameter. A first set of sam-
ples (2 cm diameter and 1 cm depth; n = 10 at each
site) was used for determination of sediment physical
parameters. Water content was obtained as the dif-
ference between wet and dry weight (after drying at
60°C to a constant weight). Sediment salt content
was measured in a 1:2 dry-sediment/distilled water
extract. Sediment salinity was then estimated from
salt sediment content and water sediment content
data. Grain size distribution was measured by wet
sieving, using standard mesh size sieves (500, 250,
125, 62 µm). Each retained fraction, as well as the
<62 µm fraction, was dried (60°C to constant weight)
and weighed.

To estimate MPB biomass, a second set of sedi-
ment samples was collected (2.4 cm diameter and
1 cm depth, sample size based on previous studies
by Pan et al. 2013 and Alvarez et al. 2013

conducted in this region) and maintained in dark-
ness and frozen until analysis. Biomass was esti-
mated as total chlorophyll a (chl a) content (Brotas
et al. 1995). Pigments were extracted from sedi-
ment using 90% acetone (Lorenzen 1967). Chl a
and phaeo phytin content were determined using
spectrophotometric analysis (Jeffrey & Humphrey
1975) before and after sample acidification.

A last set of sediment samples (1 cm diameter and
1 cm depth; n = 10 at each site) was used for MPB
parameters (species richness, evenness, total abun-
dance, diversity). Samples were collected and imme-
diately preserved in a mixture of distilled water, alco-
hol and formalin solution (6:3:1; Prescott 1951). To
characterize MPB composition, the abundance of dif-
ferent groups included in MPB (cyanobacteria, chloro -
phytes, euglenophytes and diatoms) was quantified.
MPB was identified to the lowest possible taxonomic
level, following commonly used keys (i.e. cyanobac-
teria, Guarrera et al. 1972, Komárek & Anagnostidis
1985, 1989, 1999, 2005; chlorophytes, Hindák 1990;
euglenophytes, Tell & Conforti 1986; and diatoms,
Cox 1996, Prygiel & Coste 2000). MPB counts were
performed in a 0.5 ml Sedgwick−Rafter chamber
under an optical microscope (McAlice 1971). Species
abundances were expressed as the number of indi-
viduals cm−2 of sediment, considering only those with
chloroplast remains.

2.3.  Effects of regenerative bioturbation by N.
granulata on MPB

In order to evaluate the effect of N. granulata bio-
turbation activity on MPB, a field experiment was
conducted. The experimental site was near sampled
area 2 in a patch with low/no bioturbation. It consisted
of 2 experimental treatments (n = 10 each): (1) ‘crab
exclusion’ and (2) ‘crab inclusion.’ The experimental
plots of each treatment (randomly assigned) were sur-
rounded with plastic mesh (1 cm mesh size) boxes (all
sides 0.6 m long, 0.5 m tall). Crab exclusions were
achieved with a mesh box closed with a mesh lid, and
additional smaller mesh wall (0.1 m tall and 0.1 cm
mesh size) attached to the bottom to prevent the entry
of small crabs. Crab inclusions consisted of mesh
boxes (similar those used for crab exclusion) with a
half lid (to allow free access of crabs and to replicate
the possible shading effect present in crab exclusions),
and with smaller mesh added in 2 of the walls
(to replicate the possible artifact effect on water
flow dynamics). Crab density in crab-inclusion plots
was maintained throughout the experiment, simulat-
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ing the natural densities in the study area (~60 crabs
m−2, Iribarne et al. 1997, Escapa et al. 2004). 

Several previous studies have shown success of
crab-inclusion experiments based on low or no mor-
tality and the normal crab behavior evidenced by bio-
turbation rates similar to those at natural crab sites
(e.g. Fanjul et al. 2007, 2008, 2011, Alberti et al. 2011).
This kind of box design does not significantly affect
flow dynamics or light incidence (Hillebrand & Kahlert
2002, Armitage & Fong 2006, Cheverie et al. 2014)
and thus these boxes do not affect MPB dynamics (Al-
varez et al. 2013). Once installed, the experiment ran
for 60 d (summer 2015), and the experimental plots
were periodically inspected to guarantee the absence
of crabs in crab exclusions; small crabs were manually
removed when necessary. Crab-inclusion plots were
monitored to ensure that crabs were actively con-
structing and maintaining their burrows.

After 60 d, sediment samples were collected from
each plot. A set of samples (2 cm diameter and 1 cm
depth) was used for determination of physico–chemi-
cal parameters (water content, salinity, organic matter
content). Water content and salinity were measured
as detailed in Section 2.2. Organic matter (OM) con-
tent was determined by weight loss upon ignition (5 h
at 550°C). pH was measured in situ in the top centime-
ter of sediment using a hand-held pH meter (FC200,
Hanna Instruments). Oxygen profiles were assessed
in situ by measuring oxygen concentration every
100 µm in the top millimeter; and every 500 µm be-
tween the first and third millimeter of depth. We con-
structed a device that consisted of a micromanipulator
(MM2, Unisense AS) screwed to an iron stick. In each
experimental plot, we first inserted the device into the
sediment and then mounted the oxygen microsensor
(Clark type glass microsensor; 50 µm tip, fast re -
sponse; Unisense) to the micromanipulator. Sensor
current was measured with a picoammeter (PA2000;
Unisense AS) that was placed outside the experimen-
tal boxes. The microelectrode was calibrated with both
air-saturated and oxygen-free N2-saturated water at
the same temperature and salinity as pore water. To
avoid pseudoreplication, we measured oxygen con-
centration within each box at one randomly selected
point, avoiding crab burrows, mounds and other bio-
genic structures. Grain size distribution was not
measured in this experiment because over short time
periods crab bioturbation does not affect mean particle
size (e.g. Needham et al. 2011).

Another set of samples (2.4 cm diameter and 1 cm
depth) was collected for determination of chl a (details
in Section 2.2). The last set of sediment samples (1 cm
diameter and 1 cm depth) was collected for determi-

nation of MPB parameters. Composition was deter-
mined as detailed in Section 2.2. Richness, abundance,
diversity and evenness were calculated using these
data. Gross primary production (GPP) was estimated
by the light−dark shift method inside experimental
plots using the oxygen microsensors described above,
following Revsbech & Jorgensen (1983). Measure-
ments were taken every 100 µm until readings stabi-
lized, up to depths where values were equal to 0. Dark
periods were generated abruptly, covering the whole
equipment with an opaque cover; meanwhile, the
data were being transmitted to a computer in real
time through an A/D C216 USB converter (Sensor-
Trace suite version 1.0; Unisense). GPP was then esti-
mated by integrating data obtained at each depth fol-
lowing Glud et al. (1992). Values obtained in mmol O2

d−1 m−2 were then converted to g C d−1 m−2 using the
photosynthetic quotient (Strickland & Parsons 1972).

2.4.  Data analysis

Differences in physico–chemical parameters (i.e.
sediment salinity, water content, pH, OM), MPB char-
acteristics (i.e. chl a, richness, Shannon index and
evenness) between crab and no-crab sites for the field
sampling data, and also differences in GPP between
crab-inclusion and crab-exclusion treatments for the
field experiment data, were tested using t-tests (Zar
1999). Parametric tests were performed after confirming
normality and homoscedasticity; otherwise, we used a
Wilcoxon test (Conover 1999). Differences in the pro-
portion of grain size fractions were analyzed with per-
mutational ANOVA (PERMANOVA) based on the Eu-
clidean dissimilarity index (Anderson 2001). Differences
in MPB composition between crab and no-crab sites
and between crab-inclusion and -exclusion treatments
were tested using PERMANOVA, based on the Bray-
Curtis dissimilarity index with 9999 permutations
(Anderson 2001). PERMANOVA was used to compare
sediment oxygen profiles between treatments based
on the Euclidean dissimilarity index (Anderson 2001).

3.  RESULTS

3.1.  Sediment characterization and MPB
abundance/diversity/composition in natural

bioturbated and non-bioturbated patches

Sediment salinity was higher at crab sites, with
an average value of 18 (Table 1). Sediment water
content did not differ among sites, presenting an
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average of 38% (Table 1). Grain size distribution
was different among crab and no-crab sites in areas
1 and 3 (F5,24 = 30.08; p = 0.01 and 0.02, respec-
tively), but there were no differences in area 2 (p =
0.18). No-crab sites had higher proportions of fine
sand (125 µm) than crab sites, and both had a
lower proportion of medium and coarse sands than
of fine sand (Table 2).

In terms of MPB, biomass (estimated as chl a con-
tent) presented the highest values at no-crab sites
(Table 1). MPB was composed of a total of 36 taxa (i.e.
each identified species, genus or group listed
in Table 3). At crab sites, a total of 14, 15 and 20 taxa
were identified in areas 1, 2 and 3, respectively, and
19 taxa were identified at no-crab sites (in each of 3
areas; Table 3). These taxa belonged to 4 MPB
groups (i.e. diatoms, cyanobacteria, euglenophytes
and chlorophytes). At crab sites, we found the high-
est abundance, where the mean value reached up to
3.20 × 106 ind. cm−2 (SD: 1.02 × 106; Fig. 1A; observed
t-statistic value [Tobs] = 3.14; p < 0.05). Richness and
Shannon index were higher at no-crab sites
(Fig. 1B; Wilcoxon test: T = 193.5; p < 0.05 & Fig. 1D;
Tobs = −2.65; p < 0.05), with no differences in evenness

between sites (Fig. 1C; Tobs = 0.06; p >
0.05). Dia toms and cyanobacteria were
the most abun dant groups, while eugle -
no phytes and chlorophytes presented
lower  abun dances (Table 3). Epipelic
diatoms (motile taxa) represented 75%
of diatom richness. Diatoms did not
change in relative ab undance be tween
crab and no-crab sites, representing
approximately 50% of the total abun-
dance (Fig. 2B). Relative abundance of
cyanobacteria was 10% higher at crab
sites, and chlorophytes were more

abundant at no-crab sites (Fig. 2B). These differences
in relative abundance of different taxa be tween sites
supported the PERMANOVA re sults, which indicated
that MPB composition differed between sites (Fig. 2A;
F1,58 = 28.32; p < 0.05).

3.2.  Effects of regenerative bioturbation by
Neohelice granulata on MPB

Sediment salinity was similar between treatments
(Table 4). Water content was higher and pH was
lower in crab-exclusion plots (Table 4). OM content
did not differ between treatments, presenting a mean
value of 4.6% (Table 4). Oxygen profiles were differ-
ent between treatments (Fig. 3; F1, 12 = 6.29; p < 0.05):
up to the top millimeter, oxygen concentration was
higher in crab-inclusion plots. The highest oxygen
concentration was found at 0.2 mm depth in crab-
inclusion plots and gradually descended to ~0 µM at
1 mm depth. In crab-exclusion plots, the highest
value was registered at 0.1 mm, and oxygen concen-
tration descended steeply from a depth of 0.3 mm to
0 µM at 1 mm depth.

48

Variable Crab sites   No-crab sites    df      Tobs           p             Test

Water contenta 37.76 (8.07)   38.90 (6.85)     58    −0.79         0.43            t-test
(%)

Salinity 18.01 (7.16)   7.03 (3.49)     58      856     <0.0001*  Wilcoxon
                                                                               test

Chlorophyll a 3.47 (0.83)     4.5 (0.84)       58    −4.76   <0.0001*      t-test
(µg cm−2)

aln(x)-transformed data

Table 1. Summary of statistical tests performed to compare mean (SD) values
of measured variables at crab and no-crab sites. Tobs: observed t-statistic 

value; *significant at p < 0.05

Sediment Crab site Crab site Crab site Average No-crab No-crab No-crab Average
fraction (%) 1 2 3 crab sites site 1 site 2 site 3 No-crab sites

Mud 20.37 (3.02) 19.27 (1.82) 35.24 (4.11) 24.96 (8.54) 15.66 (1.67) 16.47 (2.65) 18.01 (1.78) 16.71 (2.38)
(<62 µ)
Very fine sand 13.62 (2.69) 25.28 (3.29) 43.32 (3.55) 27.41 (11.98) 20.23 (7.21) 16.90 (4.80) 25.21 (4.41) 20.78 (6.17)
(62−125 µ)
Fine sand 32.34 (3.08) 29.48 (2.05) 15.49 (5.07) 25.77 (7.73) 58.84 (8.00) 41.45 (8.77) 38.33 (4.49) 46.21 (10.68)
(125−250 µ)
Medium sand 17.25 (7.19) 13.31 (3.84) 2.72 (0.92) 11.09 (8.87) 1.21 (0.33) 8.63 (4.44) 7.53 (0.31) 5.79 (4.21)
(250−500 µ)
Coarse sand 12.78 (1.52) 12.19 (2.94) 2.36 (1.58) 9.11 (5.22) 4.88 (1.02) 10.28 (2.31) 6.86 (2.68) 7.34 (3.49)
(>500 µ)

Table 2. Sediment fraction characterization at crab sites and no-crab sites with total averages. Values correspond to the median
(SD) fraction proportion 
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MPB biomass (estimated as chl a
content) did not differ between treat-
ments (Fig. 4A; Tobs = −1.17; p > 0.05),
and 14 taxa were identified in the
experimental plots. Total abundance
was higher in crab-exclusion plots
(Fig. 4B; Tobs = −4.53; p < 0.05), and no
differences were found for diversity
parameters between treatments (rich-
ness: Fig. 4C; Wilcoxon test: T = 51.5;
p > 0.05; evenness: Fig. 4D; Tobs =
−0.55; p > 0.05 and Shannon index:
Fig. 4E; Tobs = −0.6; p > 0.05). Diatoms,
composed of 85% epipelic taxa, pre-
sented the highest abundance, fol-
lowed by cyanobacteria, chlorophytes
and euglenophytes (Table 5). Analysis
of composition using PERMANOVA
showed that communities were differ-
ent between treatments (Fig. 5; F1,18 =
6.26; p < 0.05), possibly related to
lower diatom relative abundance and
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Identified taxa                   Crab sites                                                                 No-crab sites
1                         2                         3                              1                       2                       3

Cyanobacteria
Chroococcus sp. 2.49 (2.23)         1.64 (0.71)           2.4 (2.02)                2.15 (1.48)         1.36 (1.7)         0.84 (0.54)
Chroococcal spp. 9.03 (5.29)         4.88 (1.87)          0.81 (0.82)                2.98 (2.5)         3.33 (3.07)          1 (0.75)
Spirulina sp. 1.37 (0.85)        0.42 (0.353)         4.87 (3.69)                4.3 (1.41)           1 (0.53)          2.69 (1.85)
Filamentous cyanobacteriaa 152 (81)           148 (49.51)          52.20 (26)               108 (34.40)     53.30 (16.50)     23.30 (5.62)
Chlorophyta
Schroederia nitzschioides –                         –                 10.30 (8.32)              2.22 (0.78)        0.85 (1.01)       21.6 (11.30)
S. setigera –                         –                  3.63 (3.27)              13.30 (6.27)       2.12 (1.46)        3.36 (1.38)
Ulothrix sp. –                         –                  0.03(0.06)               0.72 (0.72)        0.25 (0.24)        0.07 (0.08)
Unidentified Clorophyte 1.69 (1.43)         3.19 (1.32)          0.58 (1.51)               0.09 (0.09)        0.70 (0.69)                –
Euglenophyta
Euglena sp. 0.81 (0.41)         3.90 (2.55)          2.31 (1.40)               2.55 (0.49)        0.95 (0.32)        0.51 (0.36)
Bacillariophyta
Asterionellopsis sp. 0.08 (0.11)         0.03 (0.09)          0.60 (0.46)               0.02 (0.04)                –                1.36 (0.86)
Entomoneis alata 6.01 (2.45)         5.15 (2.16)          6.50 (3.40)                5.76 (1.2)         7.37 (7.28)         4.39 (2.3)
Melosira moniliformis 1.68 (1.12)         0.32 (0.39)          1.57 (0.97)               0.40 (0.39)        0.13 (0.18)        1.03 (0.85)
Nitzschia filiformis –                 0.27 (0.22)          0.06 (0.08)               0.26 (0.83)        0.05 (0.10)                –
N. longissima var. closterium 0.24 (0.25)         0.08 (0.08)          0.28 (0.16)               0.11 (0.09)        0.12 (0.20)        1.57 (0.96)
Nitzschia sp 1. –                         –                  0.15 (0.49)                      –                0.19 (0.38)        0.02 (0.05)
Nitzschia sp 2. –                         –                          –                              –                        –                0.59 (0.42)
Odontella aurita 0.28 (0.18)         0.27 (0.27)          1.58 (0.52)               0.65 (0.81)        0.10 (0.10)        0.56 (0.34)
Surirella spp. 13.20 (5.84)       14.20 (3.94)          10 (3.48)               17.70 (5.84)      10.70 (6.82)       3.80 (1.79)
Trybionella compressa –                         –                  2.35 (1.31)               3.79 (1.42)        2.34 (1.02)          1.76 (1)
Other pennate diatomsb 171 (34.60)         178 (36.9)          133 (31.70)              154 (34.40)       150 (31.80)       105 (40.30)
Other centric diatomsc 1.33 (0.71)         0.87 (0.56)          3.95 (0.66)               1.54 (0.31)        0.46 (0.21)        3.31 (1.50)

aIncludes Leiblenia epiphytica, Lyngbya aestuarii, Lyngbya sp., Oscillatoria formosa and Oscillatoria sp.; bLength <40 µm.
Includes Amphora sp., Cymbella sp., Navicula criptocephala, Navicula sp., Eunotia sp., and Martyana martyi; cIncludes
Coscinodiscus sp., Cyclotella meneghineana, Actinoptychus splendens and Thalassiosira decipiens

Table 3. Abundance of microphytobenthic taxa found at sites with and without crabs. Values correspond to mean (SD)
ind. × 104 cm−2 of sediment. Dashes indicate taxa not found at the corresponding site
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Fig. 1. Total microphytobenthos (A) abundance, (B) richness, (C) evenness and
(D) Shannon diversity index at crab sites and no-crab sites. Here, and in other
figures, the box represents 25th and 75th quartiles, the median is the line within 

the box, and bars are the maximum and minimum values. *p < 0.05
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higher cyanobacteria relative abundance in crab-
exclusion treatments (Fig. 5B). GPP was higher in
crab-inclusion plots (Fig. 4F; Tobs = −2.39; p < 0.05),
with a mean value of 657.29 mmol O2 d−1 m−2, ap -
proximately double the production observed in crab-
exclusion plots.

4.  DISCUSSION

4.1.  Regenerative bioturbation effects on MPB

In our study site, MPB were dominated by diatoms
(63%) and cyanobacteria (30%), and also contained
euglenophytes and chlorophytes (7%).
Diatoms showed the highest richness
(20 taxa), while the other groups were
less well represented (cyanobacteria =
8; euglenophytes = 1; chlorohytes = 4
taxa). Grain size distribution is a key
factor for classification of benthic envi-
ronments, and our data from the 3
areas showed different grain size dis-
tribution between crab and no-crab
sites in 2 of these areas. The differ-

ences in grain size between crab and no-crab sites
could be related to the changes in MPB composition
that we found between sites. It has been proposed
that cyanobacteria prefer sandy sediments for colo-
nization (Paterson & Hagerthey 2001). Our results
showed that the relative abundance of cyanobacteria
was almost 10% higher at crab sites, where the pro-
portion of medium and coarse sands (250−500 and
>500 µm) is higher than at no-crab sites, which
matches with what was expected. Benthic diatoms
have been conventionally divided into 2 groups with
regard to their structure: epipelon, the free-living
diatoms that usually dominate mud and very fine
sand environments; and epipsammon, the diatoms

Crab site 1

Crab site 2

Crab site 3

No-crab site 1

No-crab site 2

No-crab site 3

A

Cyanobacteria

Chlorophytes

Diatoms B
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Fig. 2. (A) Multi-dimensional scaling plot based on total abundance for each identified microphytobenthic (MPB) taxon at crab sites
(n = 3) and no-crab sites (n = 3). Lines represent the confidence ellipse at the 0.95 level. Stress: 0.09. (B) Relative abundance of

main MPB groups at crab and no-crab sites

Variable Inclusion Exclusion df Tobs p Test

Salinity 12.60 (3.72) 9.20 (4.83) 18 –1.76 0.09 t-test
Water content (%) 40 (9.71) 52.90 (13.44) 18 2.46 0.02* t-test
OM (%) 4.30 (1.07) 4.84 (0.91) 18 1.20 0.24 t-test
pH 7.16 (0.19) 6.60 (0.17) 18 1 <0.01* Wilcoxon

test

Table 4. Summary of statistical tests performed to compare mean values of
measured variables in crab-inclusion and crab-exclusion treatments. Values
correspond to means (SD). Tobs: observed t-statistic value; OM: organic matter; 

*significant at p < 0.05
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attached to sand grains that are commonly found in
sandflats (>500 µm) (e.g. Round 1965, Admiraal
1984). There were no differences when comparing
the relative abundance of diatoms between crab and
no-crab sites; however, if epipelic−epipsammic clas-
sification is considered, we found that some of the
epipelic taxa presented almost the double relative
abundance in no-crab than in crab sites, where the
proportion of fine sands is higher than in crab sites.

Exhaustive analysis of MPB composition showed
that the dissimilarity between crab and no-crab sites
was greater in 2 of the 3 areas that we sampled.
There is an increasing consensus that the effects of
different kinds of bioturbation (like other ecological
processes) depend on the environmental and biolog-
ical context (Needham et al. 2011). The same type of
bioturbation at the same intensity may produce dif-
ferent effects on biogeochemical processes depend-
ing on sedimentary context (e.g. cohesive vs. non-
cohesive sediments; Mermillod-Blondin & Rosenberg
2006). Particularly, the effect of crab bioturbation on
ecosystem processes is highly context dependent
(Fanjul et al. 2011, Needham et al. 2011).

When we manipulated regenerative bioturbation
intensity in experimental plots, we found that crabs
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Fig. 3. Oxygen concentration profile in crab-exclusion and
crab-inclusion treatments from the field experiment. Values

are means ± SE
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Fig. 4. (A) Biomass (measured as chlorophyll a concentration), (B) abundance, (C) richness, (D) evenness, (E) Shannon diver-
sity index and (F) gross primary production (GPP) of microphytobenthos in crab-exclusion and crab-inclusion treatments from

the field experiment. *p < 0.05
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affected MPB composition. These differences in MPB
composition could be attributed to a 50% reduction
in the relative abundance of filamentous cyanobac-
teria in crab-inclusion plots (Fig. 5B). Other taxa like
Schroederia setigera (Chlorophytes) and large dia -
toms like Craticula pampeana and Rhopalodia sp.
also showed a 50% reduction in abundance. The bio-

turbation process could impact MPB composition by
different mechanisms. Filamentous cyanobacteria
form a dense network of entangled trichomes (Stal
1994), which could result in a physically stable sedi-
ment surface. Regenerative bioturbation by Neohe-
lice granulata generates the rupture of the sedimen-
tary matrix as a result of its burrowing activity; this
destabilization could break the cyanobacterial net-
work and prevent new establishment of another cyano -
bacterial network (Barth 2003). This makes cyano-
bacteria susceptible to be more easily re moved (i.e.
resuspended or transported) from bioturbated than
non-bioturbated areas. Thus, the re duction in cyano-
bacterial abundance found in this work could be
related to this physical disturbance. Moreover, the
limited mobility of this group makes it more vulnera-
ble to resuspension by bioturbation (Armitage & Fong
2004) in comparison with epipelic diatoms, which
move through the sediment, possibly giving them the
ability to counteract sediment destabili zation (Con-
salvey et al. 2004). In the same way, it is important to
note that regenerative bioturbation by N. granulata
in cludes the deposition of large amounts of sediment
near burrow entrances. This causes the burial of MPB
near crab burrows, which could differently impact
microalgal groups with different levels of mobility
(Jesus et al. 2005), or groups that react to a stimulus
or disturbance at different times (e.g. changes in
radiation incidence; Mouget et al. 2008, Wulff et al.
2008). Finally, at our study site, the disturbance pro-
duced by N. granulata reduces herbivory pressure by
hydrobioid snails on MPB and also negatively affects
other infaunal or ganisms that graze on MPB (Escapa
et al. 2004, Alvarez et al. 2013). Thus, the process of
regenerative bioturbation could impact MPB not only
directly through physical destabilization and burial,

but also through indirect interactions
with other macrofaunal organisms that
graze on MPB.

4.2.  Bioturbation impact on MPB
primary production

Although MPB primary production
of intertidal systems is widely recog-
nized by its high contribution to total
primary production (e.g. Underwood
et al. 2005), there have been no previ-
ously reported measurements of inter-
tidal MPB primary production on the
SWA temperate coasts. Thus, the MPB
primary production data presented in
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Identified taxa Inclusion Exclusion

Cyanobacteria
Chroococcal spp. 0.52 (0.35) 0.58 (0.37)
Myxosarcina sp. 0.60 (0.43) 0.57 (0.19)
Filamentous Cyanobacteriaa 4.87 (2.7) 17.6 (7.00)
Chlorophyta
Schroederia setigera 3.47 (1.90) 9.28 (4.62)
Euglenophyta
Euglena sp. 0.36 (0.19) 0.51 (0.36)
Bacillariophyta
Craticula pampeana 0.51 (0.17) 1 (0.47)
Melosira moniliformis 0.14 (0.23) 0.08 (0.07)
Nitzschia longissima var. 0.12 (0.14) 0.25 (0.24)
closterium

Nitzschia sp 1. 0.11 (0.20) 0.02 (0.05)
Rhopalodia sp. 0.15 (0.16) 0.28 (0.12)
Surirella brebisonii 0.21 (0.07) 0.32 (0.13)
Trybionella compressa 0.28 (0.16) 0.14 (0.15)
Other pennate diatomsb 16.10 (6.74) 16.90 (3.31)
Other centric diatomsc 0.43 (0.13) 0.57 (0.19)

aIncludes Leiblenia epiphytica, Lyngbya aestuarii, Lyng-
bya sp., Oscillatoria formosa and Oscillatoria sp.

bLength: <40 µm. Includes Amphora sp., Cymbella sp.,
Navicula criptocephala, Navicula sp., Eunotia sp., and
Martyana martyi.

cIncludes Coscinodiscus sp., Cyclotella meneghi neana,
Actinoptychus splendens and Thalassiosira decipiens.

Table 5. Abundance of microphytobenthic taxa found in crab-
inclusion and crab-exclusion treatments. Values correspond

to mean (SD) ind. × 104 cm−2 of sediment

Fig. 5. (A) Multi-dimensional scaling plot based on total abundance for each
identified microphytobenthic (MPB) taxon in crab-exclusion and crab-inclu-
sion treatments from the field experiment. Lines represent the confidence el-
lipse at the 0.95 level. Stress: 0.15. (B) Relative abundance of dominant MPB 

groups in crab-exclusion and crab-inclusion treatments
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this study are the first for this region; however, these
are micro-scale estimates and should be interpreted
with caution since they do not include processes that
operate on a larger scale (e.g. macrofaunal commu-
nity respiration or large-scale environmental hetero-
geneity). Our results show high MPB productivity,
presenting values near the highest registered for
similar systems (median 0.5 g C m−2 d−1; Cebrian
1999). MPB primary production rates are as high as
those for the dominant intertidal vascular plants of
this region. Primary production of Sporobolus densi-
florus in our study region is on average 2.46 g C
m−2 d−1 (González Trilla et al. 2010), which is similar
to the value that we registered for MPB without crabs
(2.38 g C m−2 d−1) and half of the value registered
with crabs (4.07 g C m−2 d−1). Since almost half of
total areal extension corresponding to mudflats at our
study site is highly bioturbated by crabs (Iribarne et
al. 2005), MPB makes a significant contribution to
primary production in this particular zone (i.e. soft-
bottom tidal flats). In addition, the presence of MPB
in marsh and shallow sub-tidal sediments could also
significantly contribute to global productivity (Hughes
1999). In this sense, MPB contribution to global pri-
mary production in our study site is underestimated
because we did not take into account the high MPB
abundance in salt marshes (M. Giorgini unpubl. data).

The importance of bioturbation effects in the func-
tioning of intertidal systems (Teal et al. 2013) and on
MPB productivity (Lohrer et al. 2004) is widely recog-
nized, but there is scarce evidence regarding the role
of regenerative bioturbation on MPB productivity
(but see Needham et a. 2011). Here, we have demon-
strated that the burrowing crab N. granulata en -
hances MPB primary production to levels almost
twice as high as those in areas without bioturbation,
while at the same time reducing MPB total abun-
dance, thus evidencing an increase of biomass-spe-
cific productivity rates. Chl a concentration is often
used as a proxy of MPB biomass. In this sense, we
expected a positive correlation between chl a and
abundance and also between chl a and MPB primary
production. In our experiment, we found the same
concentration of chl a between crab-exclusion and
crab- inclusion treatments. In contrast, we found
higher MPB abundance but lower MPB primary pro-
duction in crab-exclusion plots. This may be due to
the changes observed in MPB composition between
treatments, which could imply shifts for taxa with dif-
ferent pigment production, resulting in a non-linear
relationship between productivity and pigment con-
centration (Falkowski & Kiefer 1985). These results of
primary production enhancement by bioturbation

and uncorrelated chl a and productivity are similar to
results reported for the regenerative bioturbator crab
Austrohelice crassa (Needham et al. 2011), and surfi-
cial biodiffuser urchins of the genus Echinocardium
(Lohrer et al. 2004), which enhance MPB production
up to 35%. 

The enhancement of primary production could be
explained by several factors. First, regenerative bio-
turbation reduces MPB abundance, which could ben-
efit productivity by alleviating competition (Morrisey
1988). Particularly, the reduction in total abundance
of microalgae in our system could be attributed to the
decline in the abundance of cyanobacteria, a group
characterized by a great functional diversity but a
low photosynthetic rate (e.g. Glud et al. 1992). Sec-
ond, in our experiment, oxygen concentration was
higher in bioturbated than in non-bioturbated sedi-
ment, so this kind of reworking is likely to in crease
the supply of resources and oxic layers, probably
stimulating aerobic microbial metabolism (e.g. Fan-
jul et al. 2015). The increase in sediment oxygen con-
centration is usually related to changes in grain size
distribution, but over a short period, grain size is not
affected by regenerative bioturbation (Needham et
al. 2011). Thus, changes in sediment oxygen concen-
tration may be due to an indirect effect of the higher
GPP generated by regenerative bioturbation or by a
direct effect of bioturbation. Since we did not test
these hypotheses, we could not attribute the increase
in oxygen concentration to either of these factors.
Finally, it is known that regenerative bioturbation
can improve ammonia availability in the surface sed-
iment layers (e.g. Fanjul et al. 2011, Needham et al.
2011) where MPB live, and as a consequence MPB
primary productivity increases (Lohrer et al. 2004,
Sandwell et al. 2009). Thus, throughout the enhance-
ment of benthic metabolism and ammonia availabil-
ity, regenerative bioturbators could be stimulating
MPB primary production. At bioturbated sediments,
we found lower water content, which is commonly
expected to cause negative effects on MPB primary
production (Coelho et al. 2009). However, the com-
bined increase in oxygen concentration and ammo-
nia availability could result in in creased MPB pro-
ductivity (Needham et al. 2011), prevailing over the
possible negative effects of low water content. MPB
may also be negatively affected by other kinds of bio-
turbation (e.g. epifaunal biodiffusers; Webb & Eyre
2004) due to different effects on physico–chemical
sedimentary environment and also because biotur-
bators often graze on MPB. Surficial biodiffusers, for
example, can mix the surficial sediment as they move,
and they have little if any effect upon the increase in
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ammonia release (e.g. sea cucumber Australosticho-
pus mollis, sand dollars), and the net result is a nega-
tive effect on primary producer biomass (MacTavish
et al. 2012, Li et al. 2013). Contrary to these kinds of
bioturbation, net effects of regenerative bioturbation
by N. granulata are positive for MPB productivity, so
based on our results we suggest that this crab consti-
tutes an important biological force that enhances pri-
mary production at SWA mudflats.

4.3.  Conclusions

Our results show that the burrowing crab N. granu-
lata affects the abundance, composition and the main
ecosystem functions mediated by MPB at the SWA
mudflats. The decrease in MPB abundance could be
explained by a reduction in cyanobacterial abundance
and, as a consequence, MPB com position is affected.
The modification of MPB com position to gether with
the increased availability of ammonia could explain
the increase in MPB primary production. N. granulata
enhances the productivity of marsh plants (Sporobo-
lus spp.; Daleo et al. 2007), and similarly, regenera-
tive bioturbation by N. granulata in creases MPB pri-
mary production. To our knowledge, this is the first
study where the primary production of MPB was
quantified in this region. The production rate is high
when compared with similar systems and almost equal
to the production of marsh plants that occur in the
upper intertidal levels.
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