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Abstract Polycyclic aromatic hydrocarbons (PAHs) are pol-
lutants that are potentially carcinogenic, are widely distributed
in the environment, and accumulate in soils. The
peroxydisulfate anion strategy for the remediation of PAH-
contaminated soils has attracted widespread interest, despite
its negative effects on soil microbial activity as a result of
oxidative stress and a decrease in pH of the soil caused by the
treatment. The acidification caused by the process can itself
affect the growth of the normal flora, regardless of the pres-
ence of PAHs. For this reason, it is necessary to identify
microorganisms that are capable of developing in acidic envi-
ronments and are sensitive to the presence of PAHs. The
objective of the present study was to identify native
acidophilic/acid-tolerant algae isolated from the Agrio River-
Lake Caviahue system, Argentina, that could possibly be used
as bioindicators of soil PAH contamination. Two of the three
acidophilic species assayed were identified as potential
bioindicator species. Cyanidium caldarium and Euglena
mutabilis were responsive to PAH contamination in the tested
soils, while the response of Keratococcus rhaphidioides was
dependent on the type of soil. The use of acidophilic and
cosmopolitan species, such as C. caldarium and
E. mutabilis, as bioindicators is a promising first step for
assays of PAH contamination in soils.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pol-
lutants that can enter the environment through the incomplete
combustion of organic matter (such as wood) and fossil fuels
(such as oil and coal). PAHs are hydrophobic compounds that
are slightly soluble in water and have a high bioconcentration
factor. PAHs have proven toxic, mutagenic, and carcinogenic
properties (Moretto et al. 2005; Técher et al. 2012; Gonzalez-
Paredes et al. 2013). These features are related to their
molecule structure, and the risk associated with compounds
increases as the molecular weight increases (IARC 1998;
Upham et al. 1998). An increase in molecule size is associated
with an increase in hydrophobicity and electrochemical sta-
bility, two main factors that contribute to the persistence of
PAHs in the environment (Cerniglia 1992; Kanaly and
Harayama 2000).

It has been estimated that over 90 % of total PAHs released
to the environment accumulate in soil (Wild and Jones 1995).
Remediation strategies for contaminated sites have become a
thoroughly investigated research field (Aprill and Sims 1990;
Baud-Grasset et al. 1993; Bennett 1995; Gerhardt et al. 2009;
Germida et al. 2002). In situ chemical oxidation processes
consist of the injection of oxidants into both soils and super-
ficial or groundwater of the contaminated area. Among in situ
remediation techniques, the use of peroxydisulfate (PS) anion
has attracted great interest, since this compound is stable
enough not to react with the organic matter of the soil and is
not significantly involved in sorption reactions; thus, it can
persist for weeks in underground layers. It can be injected in
high concentrations, transported through porous media, and is
capable of being moved by diffusion or density difference
toward low permeability materials (Huling and Pivetz 2000).
PS treatment produces sulfate ions and H' as final products
(Maurino et al. 1997). Sulfate is practically inert, and it is not
considered a pollutant. The increase in H" concentration
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causes acidification of the environment (Huang et al. 2005;
Liang et al. 2004), leading to a decrease in pH values as the
concentration of persulfate increases (Tsitonaki et al. 2008).

Treatments with high PS concentrations have negative
effects on the microbial activity of the system. The treatment
itself exposes microorganisms to oxidative stress (Tsitonaki
etal. 2008); however, the persistence of PS is limited (Johnson
et al. 2008), and its concentration is depleted over time until
no PS remains; thus, the effect is temporary. The treatment is
also associated with a decrease in pH, which has a direct
impact on microbial growth if the buffering capacity of the
system is inadequate. This acidification persists even after the
oxidative treatment is finished.

Given the toxicity of PAHs, microorganisms that exist
naturally in the studied environment may be useful as biolog-
ical indicators of degradation treatment efficiency. If the pro-
cess is effective, it is expected that PAHs will be degraded to
non-toxic levels, thereby enabling microorganisms to develop
as they would in a non-contaminated site. Conversely, if the
treatment is not effective, the presence of residual PAHs will
result in the reduction of the natural microorganism popula-
tion. With PS treatments, the acidification caused by the
process can itself affect the growth of the normal flora, re-
gardless of the presence of PAHs. For this reason, it is neces-
sary to identify microorganisms that are capable of developing
in acidic environments and that are also sensitive to PAH
toxicity.

Phenanthrene has been used as a model compound for the
study of the biodegradation of PAHs because (i) it is found in
high concentrations in PAH-contaminated environmental
samples; (i) many PAHs containing a phenanthrene moiety
are carcinogenic; and (iii) the regiospecificity and
stereoselectivity of oxygenases can be determined in metabol-
ic studies because phenanthrene is the smallest PAH to have
both a “bay-region” and a “K-region” (Bezalel et al. 1996).

The Agrio River-Lake Caviahue system is a naturally
acidified system located in Copahue-Caviahue Provincial
Park (37° 53 S; 71° 02 W), in the Andean area of province
of Neuquén, Argentina. The sources of the river are located
near the crater of the active volcano Copahue; the acidic fluids
of Copahue are responsible for the extreme acidity of the river
(pH <2, Baffico et al. 2004) and of the lake that it is fed by the
river (pH <3, Pedrozo etal. 2001). Acidophilic or acid-tolerant
algae have been observed in the system (Baffico et al. 2004;
Pedrozo et al. 2001), and they are potential candidates for
bioindicators in acidic conditions. Cyanidium caldarium
(Tilden) Geitler (Rhodophyta) and Euglena mutabilis
Schmitz (Euglenophyta), both present in the Agrio River, have
frequently been reported to inhabit extremely acidic and often
metal-polluted sites (Nakatsu and Hutchinson 1988; Toplin
et al. 2008). The effects of acidity and metal tolerance have
been studied for both species (Nagasaka et al. 2004; Olaveson
and Nalewajko 2000). Keratococcus rhaphidiodes (Hansgirg)
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Pascher (Chlorophyta) is the main species present in Lake
Caviahue and has not been as widely studied as the above
species (Beamud et al. 2007, 2010).

The objective of the present study was to search for native
acidophilic/acid-tolerant algae in the Agrio River-Lake
Caviahue system that are suitable for use as bioindicators of
soil PAH contamination.

Materials and methods
Soil sampling and processing

Soil samples were taken from the littoral zone of Lake
Caviahue at two sampling points (soil 1, 37° 51'48.1" S, 71°
02'34.1" Wand soil 2,37° 53"37.1" S, 71° 01’ 28.6" W) with
a shovel and were bagged until further processing at the
laboratory.

Soil humidity was determined as follows: 5 g of each soil
sample was weighed and placed in a watch glass in the oven at
105 (£5)°C. Each sample was weighed until a constant weight
was reached. Soil pH and electrical conductivity (EC) were
measured according to EPA methods 9045D and 9050A,
respectively: In a 50-mL glass container, 5 g of the soil sample
was mixed with 25 mL of ultrapure water; the solution was
then shaken for 5 min, and the soil pH and EC were measured.

Soil samples were dried in a furnace at 60 °C. A fraction of
each sample was intended for texture analysis, which was
performed using a set of sieves (Standard Series Sieves,
USA), of three different mesh sizes: 2, 1, and 0.25 mm. The
following fractions were determined according to the
Wentworth scale, modified by Friedman et al. (1992):
coarse/thick sand (<2 mm), medium sand (2—1 mm), fine sand
(1-0.25 mm), and very fine sand (0.25-0.05 mm). The mate-
rial obtained after sieving was used to determine the fractions
of silt (0.05-0.002 mm) and clay (>0.002 mm) by the
densimeter method (Forsythe 1985). On the remaining dried
and sieved soil samples, total phosphorus (TP), total carbon
(TC), and total nitrogen (TN) were measured. For the mea-
surement of TP, a portion of sediment was digested with
sulfuric acid and 30 % hydrogen peroxide (Carter 1993),
and after digestion, the dissolved P content was determined
according to Murphy and Riley (1962). TC and TN were
determined using an automatic analyzer Thermo FlashEA
1112 (Thermo Fisher Scientific, USA).

Both soils, sieved through 2-mm mesh, were placed, sep-
arately, in a glass container. They were contaminated with
3,337+70 mg of phenanthrene kg™ ' of dry soil.
Phenanthrene was delivered in an acetone solution and
mixed manually into the soil with a spatula, in accordance
with the methods of Kulik et al. (2006). The organic solvent
was removed by evaporation before inoculation.
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Organisms and culture

Algae species were collected from the Agrio River and Lake
Caviahue and were isolated and cultivated in the laboratory.
C. caldarium and E. mutabilis were grown in a Satake medi-
um (Satake and Saijo 1974), while Keratococcus
rhaphidioides was grown in an “A” medium (modified from
Hill 1980). Monospecific cultures were maintained in
Erlenmeyer flasks at a pH of 3 and a constant temperature of
20 °C under continuous light with cool-white fluorescent

illumination of 150 umol photons m* s .

Experiment

For three algae species and two soil samples, control and
treatment triplicates were incubated for 20 days under the
lab conditions indicated above in 50-mL angled-neck flasks
(Nunclon, Denmark). Control flasks contained 0.5 g of soil,
20 mL of filtered Lake Caviahue water (0.22-um pore size,
cellulose acetate membrane filters, Schleider and Schuell,
Germany), and 5 mL of algal inoculum. Treatment flasks
contained 0.5 g of phenanthrene- contaminated soil, 20 mL
of filtered lake water, and 5 mL of algal inoculum. At the end
of the incubation, each treatment was filtered by glass micro-
fiber filters (MG-F, Munktell, USA), and algal biomass was
estimated by the concentration of chlorophyll a, determined
by 90 % acetone extraction, and a spectrophotometer after
correction for phaeophytin (APHA 1985).

Statistics

Data presented are the mean of three independent experi-
ments, each consisting of two soils run in parallel for each
species of alga. Treatments were compared by two-way
ANOVA with soil (soil 1 and soil 2) and treatment (control
and PAH contamination) as factors. The confidence level was
set at 5 %.

Results

The characteristics of the soil samples are shown in Table 1.
Soil 1 had higher conductivity and higher carbon content than
soil 2, while pH values were similar between the two samples.
Both soils are classified as sandy-loam. In both soils, the clay
and silt fractions represented less than 0.4 % of the total
sample, and sand was the most abundant fraction. Despite
these similarities, the soils were not identical. Thick sand
made up an important fraction of soil 1 (28.03 %), in contrast
with soil 2 (7.52 %). In addition, the content of very fine sand
was five times higher in soil 2 (8.46 %) than in soil 1 (1.67 %).

After 20 days of incubation, the three assayed species
showed substantial growth under the experimental conditions,
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Table 1 Characteristics
of the soil samples used Soil 1 Soil 2
in the study
pH 44 4.6
EC (uS cm™) 109.0  30.1
Humidity (%) 9 6.6
P(ugL™h 3454 4445
N n.d. n.d.
C (%) 0.154  0.113
Texture
Thick sand (%) 28.03 7.52
Medium sand (%) 23.70 23.83
Fine sand (%) 46.60 59.82
Very fine sand (%) 1.67 8.46
Silt (%) 0.00 0.01
Clay (%) 0.00 0.36

n.d. not detectable

and the average biomass (estimated as the concentration of
chlorophyll a) was different for each species (Fig. 1).
E. mutabilis growing in uncontaminated soils (control)
reached the highest biomass in both soils, followed by
K. rhaphidioides (only soil 1) and C. caldarium. In soils
contaminated with PAH, the final biomass was lower than
the respective control for all three species; K. rhaphidioides
had the lowest biomass followed by C. caldarium and
E. mutabilis. ANOVA analysis of the biomass of
C. caldarium and E. mutabilis showed no interaction between
factors and no significant difference between soil types; how-
ever, there was a significant difference between the treatments
(Table 2). In the K. rhaphidioides experiment, there was a
significant interaction between soil and treatment, suggesting
that the response of the species is dependent on the soil type
(Table 2).

Discussion

The toxic potential of soils before, during, and after remedia-
tion processes is determined primarily by chemical techniques
such as HPLC and GC/MS (N’Guessan et al. 2004; Flotron
et al. 2005). The size of a particle is related to some soil
properties; therefore, it is important to determine and compare
soil properties, such as the capacity of the soil to absorb
pollutants, which increases as particle size decreases
(Temporetti et al. 2013). However, several factors are not
assessed by these chemical procedures: the mobility of pol-
lutants in the soil matrix, metabolizing reactions within the
soils, and the bioavailability of the compounds (both the initial
contaminant and the intermediate products). Because organ-
isms are affected by all these factors and are capable of
reacting to them, a bioindicator may give more comprehensive
information about the fate of pollutants, their by-products, and
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Fig.1 Average biomass (indicated by the concentration of chlorophyll @) of the three acidophilic algae growing in soils contaminated with PAH. Error

bars represent standard deviation (n=3)

the effectiveness of decontamination methods than does a
chemical analysis. Employing several commonly used aquatic
test organisms (Scenedesmus subspicatus, Daphnia magna,
Vibrio fischeri, and Pseudomonas putida), Maxam et al.
(2000) checked their applicability as indicators of soil samples
contaminated with different organic and inorganic substances.
The authors concluded that not all organisms are equally
useful as bioindicators because of the differential level of
response to contaminants. Nevertheless, organisms were use-
ful as indicators of toxicity in the extracted soil water.

In the particular case of PS treatment, the pronounced
decrease in pH negatively impacts the growth of native or-
ganisms or organisms usually assessed in tests (Baker et al.
1982); thus, it is necessary to have an acidophilic organism
that is sensitive to the tested pollutant. Two of the three
acidophilic species assayed in the present study were suitable
as potential indicators of PAH contamination in soils.
C. caldarium and E. mutabilis were responsive to the treat-
ment in the tested soils, while the response of K. rhaphidioides
was dependent on the type of soil. C. caldarium and
E. mutabilis are very well-known cosmopolitan species, found
in highly acidic environments (Whitton and Diaz 1981;
Johnson 1998), with a high tolerance to metal toxicity
(Nakatsu and Hutchinson 1988; Nagasaka et al. 2004). For
these reasons, they are capable of growing in contaminated
soils despite their reduced growth in treatment soils, as com-
pared with the control soils. K. rhaphidioides showed a

Table 2 Results of multifactor ANOVA for biomass of the three acido-
philic species

C. caldarium E. mutabilis K. rhaphidioides
p p p
soil 0.124 0.526 1.00 E-07
treatment 0.046 0.003 2.11 E-08
soil x treatment 0.594 0.122 4.24 E-08

Probabilities (p) and numbers in bold type denote a significant effect of
the corresponding factor (95 % of confidence)
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growth response dependent on the type of soil; for this reason,
it would not be a good bioindicator of PAH contamination in
soil. This acidophilic species is not common in other acidic
environments, and the information about its physiological
requirements is poorly known. In addition to this,
K. rhaphidioides belongs to the planktonic community of
Lake Caviahue (Pedrozo et al. 2001), and the interaction of
this species with the soil particles may negatively affect its
growth, resulting in a non-responsive species.

In summary, the use of acidophilic and cosmopolitan spe-
cies, such as C. caldarium and E. mutabilis, as bioindicators is
a promising first step for assays of PAH contamination in soils.
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