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Liquid crystalline ordering of anisotropic particles in two dimensions is important in many physical and
biological systems and their phase behavior is still a topic of interest. A generalized van der Waals theory is
formulated, accounting for repulsive excluded volume and attractive van der Waals and Maier-Saupe interactions,
for rectangles confined to two dimensions. The phase ordering transitions and equation of state are analyzed
as a function of the model parameters (aspect ratio L/B and isotropic and anisotropic interaction parameters
χ and ν). Different phase transitions are observed: continuous isotropic-nematic (high L/B and ν), first-order
isotropic-nematic (intermediate L/B and small ν), and continuous isotropic-tetratic (small L/B and ν) followed
by a continuous tetratic-nematic transition at higher densities. Increasing L/B decreases the pressure, and this
effect is more pronounced in the nematic than in the isotropic phase. Increasing both interaction parameters
decreases pressure and can lead to phase separation.
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I. INTRODUCTION

The study of ordering transitions in two dimensions is
relevant for many physical systems. Some two-dimensional
(2D) or quasi-2D systems are molecular layers, membranes,
molecules (or particles) adsorbed in a surface, or even strongly
confined thin films. In-plane two-dimensional nematic order
can be found whenever elongated (e.g., fiberlike or rodlike)
particles are confined to a surface, membrane, or layer, with
the long axis parallel to the plane of that surface: that is the
case of macromolecules adsorbed to a surface or interface
[1–4], particles confined in layers [5], or films of anisotropic
bacteria [6], to mention a few examples.

For three-dimensional (3D) nematic ordering, there are two
theoretical approaches than can be considered to be seminal
works: Onsager theory [7], which is based purely in excluded
volume interactions, and Maier-Saupe theory [8,9], which
only accounts for attractive quadrupolar interactions. Onsager
theory was formulated within a second virial approximation,
so it is valid for particles with high aspect ratio (isotropic-
nematic transition at low concentrations). There are, however,
other more accurate approaches to excluded volume interac-
tions, like Parsons-Lee approximation [10,11], that overcome
this limitation. These theories show that nematic ordering
can be induced only by increasing concentration. On the
other hand, the Maier-Saupe approach completely neglects
excluded volume effects so it is (in principle) valid only for
very short rods (with anisotropic attractive interactions), and
it is used to describe thermal transitions. Generalized van der
Waals theories, which combine excluded volume and attrac-
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tive interactions, have been developed as well [12–15] and
used to describe phase transitions as a function of temperature
and density.

Compared to 3D systems, in-plane liquid crystals are
simpler in many aspects due to reduced dimensionality, but
they show a complexity not present in higher dimensions:
strictly speaking, true long-range order does not exist in
two dimensions. Nevertheless, in some cases the difference
between quasi-long-range order (with an algebraic decay in
correlations) and true long-range order is not relevant, and
mean-field theories, which assume true long-range order, pro-
vide a satisfactory description of some aspects of the behavior
of 2D systems [16,17]. In addition, many systems with 2D
order are actually “quasi-2D systems” due to interactions in a
third dimension; that is the case of systems that are in equi-
librium with a solution, the case of strong but not complete
confinement to two dimensions where fluctuations in the third
dimension are possible, or interacting multilayers. Consider-
ing this, mean-field theories for 2D order have been used to
study many physical systems like fiberlike or rodlike particles
or molecules adsorbed to surfaces [18–21], confined systems
[5,22], lipid layers, and biological membranes [23–25], etc.

Monte Carlo simulations by Frenkel and coworkers
[17,26,27] of hard-core 2D systems showed that a quasine-
matic phase with algebraic order exists for large aspect ra-
tios, while for short particles (with aspect ratio L/B < 5)
the ordered phase seems to be crystalline or smectic. In
the former case, the order-disorder transition is continuous,
while in the latter it is first order (as opposed to 3D systems
where the transition is always first order). Different theoretical
mean-field approaches, based in density functional theory
[28], second virial (Onsager) approximation [29], and scaled
particle theory [16], found also a continuous transition. It
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was shown that these mean-field approaches reproduce the
equation of state and the qualitative behavior of the order
parameter fairly well, despite the fact that they assume long-
range order. As expected, the order-disorder transition moves
to higher densities as L/B decreases. Schlacken and Mogel
found that, for very short rods, the transition from isotropic to
nematic (twofold symmetry) phase is replaced by an isotropic
to tetratic (fourfold symmetry) transition [16]. This is to be
expected, considering that for L/B = 1 rectangles become
squares. For intermediate L/B, the isotropic to nematic transi-
tion becomes first order.

In a different approach, particles with attractive directional
interactions but no excluded volume have been considered.
Theory and simulation using a generalized XY model found
that when interactions are “sharp and narrow” (particles inter-
act only when they are highly aligned) the transition is first
order, while for interactions that depend softly on orientation
(like the standard XY model or the Maier-Saupe case) the
transition is continuous [30,31]. Again, nematic order is found
to be algebraic. Geng and Selinger [32] specifically consid-
ered the tetratic phase, by using an interaction of the Maier-
Saupe type, considering terms representing both twofold and
fourfold anisotropic interactions. They calculated phase dia-
grams that showed a low-temperature nematic phase, a high-
temperature isotropic phase, and for a symmetry breaking pa-
rameter (the ratio between fourfold and twofold interactions)
higher than a critical value an intermediate tetratic phase.
For values of the symmetry breaking parameter close to this
critical value, the transition is first order, while it is continuous
for large or small enough values of this parameter.

Both types of interactions (repulsive and attractive) were
considered by Heinemann et al. [33], who performed molecu-
lar dynamics simulations for ellipses with linear quadrupolar
interactions confined to a plane. They found that, for relatively
small aspect ratios, a plethora of ground state crystalline
structures can exist, and they persist to finite temperatures.
They did not, however, focus specifically on liquid-crystalline
phases.

In this paper, a generalized van der Waals theory for liquid
crystalline order in a system of elongated particles confined to
two dimensions is presented. Scaled particle theory is used
for excluded volume repulsive interactions, while attractive
interactions are described by a Maier-Saupe quadrupolar term
and an isotropic van der Waals interaction term. The order-
disorder transition and equation of state are analyzed in
the whole range of geometrical and interaction parameters.
This combines many of the aspects considered in previous
works in a single generalized and relatively simple theoretical
framework, allowing one to assess the relative importance of
excluded volume and attractive interactions.

II. MODEL AND METHODS

A. Free energy

A system of N moles of hard rectangles in a surface of
area A is considered. The free energy F is written in a van
der Waals approach [12–15] by combining scaled particle
[16] theory, which accounts for hard-core interactions, with a
Maier-Saupe (anisotropic) and van der Waals type (isotropic)

of attractive interactions:
F

NRT
= ln φ − ln (1 − φ) + σ + φ

1 − φ
ρ − φar

(
χ ′ + ν ′S2

2

)
,

(1)
where φ is the surface density, ar = BL is the area of the
rectangle, and B and L are the width and length of the rect-
angle. The first four terms (scaled particle theory) are purely
entropic, the first two correspond to translational entropy,
while the third and fourth represent the orientational and
excluded volume free energy and are given by

σ =
∫ π

0
f (θ ) ln π f (θ )dθ, (2)

ρ =
∫ π

0
dθ

∫ π

0
f (θ ) f (θ ′)K (θ − θ ′)dθ ′, (3)

where f is the orientational distribution function. The kernel
K is related to the excluded area between two particles with a
relative orientation γ = θ ′ − θ ′; for hard rectangles it is given
by [16]:

K (γ ) = |cos (γ )| + B2 + L2

2BL
|sin (γ )|. (4)

The last term in Eq. (1) represents the attractive inter-
actions, with two interaction parameters: χ ′ (isotropic) and
ν ′ (nematic). Finally, the orientational order parameters are
defined as

Si =
∫ π

0
cos (iθ ) f (θ )dθ. (5)

The lowest-degree nonzero order parameter defines the
type of phase: in the isotropic phase, where f (θ ) = 1/π , Si =
0 for every i > 0, which also leads to σ = 0 and ρ = 2/π

[1 + 1/2(L/B + B/L)]. The nematic phase is characterized
by S2 > 0 (and in general every Si > 0), while in the tetratic
phase S2 = 0 and S4 > 0 (and in general Si > 0 for i > 4).
Note that in the case under study, where orientations θ and
−θ are indistinguishable, odd-degree order parameters (S1, S3,
etc.) are always zero.

This theory, as it considers both hard-core entropic and
energetic interactions, can account for concentration-induced
(lyotropic) as well as temperature-induced (thermotropic)
phase transitions [note that in Eq. (1) the interaction param-
eters, as defined, should be inversely proportional to temper-
ature]. As positional order is not accounted for in this theory,
the purely orientationally ordered phases analyzed in this
paper may be metastable with respect to crystalline or smectic
order for small L/B or large interactions, where positionally
ordered phases were observed in simulations [17,26,33].

B. Phase ordering

Minimization of the free energy with respect to the orien-
tational distribution function f leads to

ln f (θ ) − ν ′BLφS cos (2θ )

+ 2
φ

1 − φ

∫ π

0
f (θ ′)K (θ − θ ′)dθ ′ = λ, (6)

where λ is a Lagrange multiplier to enforce normalization of
the distribution function.
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Equation (6) is solved by expanding the kernel and the
distribution function in terms of basis functions:

|sin (γ )| = 2

π
− 4

π

∞∑
1

1

(4n2 − 1)
cos(2nγ ), (6a)

|cos (γ )| = 2

π
− 4

π

∞∑
1

(−1)n

4n2 − 1
cos (2nγ ), (6b)

f (θ ) = exp
[∑∞

1 αn cos (2nθ )
]

Z
,

Z =
∫ π

0
exp

[ ∞∑
1

αn cos (2nθ )

]
dθ. (6c)

Considering the trigonometric identity for the cosine of the
difference between two angles,

cos (α − β ) = cos (α) cos (β ) + sin (α) sin (β ), (7)

Eq. (6) reduces to

∞∑
1

αn cos (2nθ ) − ln Z

= λ + ν ′BLφS2 cos (2θ ) − 4

π

φ

1 − φ

∫ π

0
f (θ ′)

×
⎡
⎣1 +

(
B2 + L2

)
2BL

− 2
∞∑
1

⎛
⎝ (−1)n + (B2+L2 )

2BL(
4n2 − 1

)
⎞
⎠

× [cos(2nθ ) cos(2nθ ′) + sin(2nθ ) sin(2nθ ′)]

⎤
⎦dθ ′.

(8)

The last step is to perform the inner product be-
tween Eq. (8) and the basis functions; taking into account

that ∫ π

0
cos (2nθ ) cos (2wθ )dθ = 1

2
πδnw,

∫ π

0
cos (2nθ ) sin (2wθ )dθ = 0, (9)

∫ π

0
cos (2wθ )dθ = 0,

the self-consistency equation for the coefficients of the expan-
sion of f is obtained:

α2n = δn2ν
′BLφS2 + φ

1 − φ

8

π
(
4n2 − 1

) ∫ π

0
f (θ ′)

×
[(

(−1)n + B2 + L2

2BL

)
cos(2nθ ′)

]
dθ ′, (10)

while the odd terms are zero.
The value of the expansion coefficients αn can be calcu-

lated for given values of φ, L/B, and ν = ν ′B2. The infinite
expansions are truncated to a number N of terms that allows
one to represent the orientational distribution function within
a given error tolerance. The value of N was dependent on the
values of ϕ, L/B, and ν, and it was large enough such that
increasing it did not have a significant effect on the results.

C. Equation of state

The pressure P′ can be calculated from the free energy
according to

P′ = ∂F

∂A

∣∣∣∣
T,N

. (11)

Replacing the expression for the free energy and perform-
ing the derivative leads to the following expression for the
dimensionless pressure:

P = B2P′

RT
= B

L

φ

(1 − φ)
+ φ2

(1 − φ)2

B

L
ρ − φ2B2(χ ′ + ν ′S2).

(12)

FIG. 1. Order-disorder transition for an athermal system. (a) Order parameter as a function of the scaled area density, for different values
of L/B = 1.5, 2.5, 4, 6, 9, 14, 20, 40, 100, and 10 000, increasing as indicated by the arrow. The nematic order parameter S2 is indicated with
a full line and, for L/B = 1.5, the tetratic order parameter S4 is indicated with a dashed line. (b) Area density at the order-disorder transition,
φIN, for small values of L/B. Different ordering transitions (full line) are indicated as follows: in region 1, isotropic-tetratic; in region 2,
discontinuous isotropic-nematic; in region 3, continuous isotropic-nematic. Tetratic-nematic transition is indicated with the dashed line. In the
inset, the scaled area density φ∗

IN is shown in the whole range of L/B.
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III. RESULTS AND DISCUSSION

A. Phase ordering

First, the equilibrium orientational distribution functions
are calculated for different values of the model parameters.
As the isotropic interaction, given by χ , does not affect order-
ing, only the rectangle aspect ratio L/B and the quadrupolar
interaction parameter ν are considered in this analysis. Some
results are presented in terms of the scaled area fraction,
φ∗ = φL/B, because in this way the curves converge in the
“Onsager” limit (infinite L/B).

Figure 1 shows the ordering behavior for the athermal
case (ν = 0). In Fig. 1(a) the order parameter as a function
of φ∗ for different values of L/B is shown, while Fig. 1(b)
summarizes the transition points. For very large L/B, the
transition point and the curves of S2 vs φ∗ converge to the
Onsager limit, as mentioned before, becoming independent of
L/B. As this parameter decreases, the transition is displaced
to smaller φ∗ (but larger nonscaled φ, as expected). As it was
discussed in the introduction, except for small values of L/B
the transition is continuous, that is, S2 shows no discontinuity
at the transition, although it is noted that the slope of the
curve at the transition is infinite, so S2 increases quite abruptly
in a very small density range. For small values of L/B, the
behavior of the system is different. In the range 2.18 < L/B <

4.372, the isotropic-nematic transition becomes first order,
and there is a discontinuous jump in S2, from zero to a finite
value, at the transition. As L/B gets even smaller the shape of
the particles approaches a square, which as mentioned in the
introduction cannot form a nematic phase. When L/B < 2.18,
an isotropic to tetratic transition is observed, followed by
another transition to a nematic phase at larger φ. Both of
these transitions are continuous. While, as mentioned before,
the nematic phase does not exist for L/B = 1 (the minimum
density for the existence of a nematic phase approaches 1
as L/B approaches 1), the tetratic phase does exist when the
density is large enough.

Figure 2 shows the behavior when a nonzero quadrupolar
interaction is introduced, for a large (a) and a small (b) value
of L/B. Increasing the quadrupolar interaction favors nematic
ordering and thus displaces the curves to smaller densities.
Figure 3 shows the transition density φIN as a function of v

FIG. 3. Density at the order-disorder transition as a function of
the quadrupolar order parameter, for the same values of L/B as in
Fig. 1. The inset shows the inverse of the quadrupolar interaction
parameter vs scaled density at the transition, for the same values
of L/B as in Fig. 1. Regions 1, 2, and 3 indicate different phase
transitions as in Fig. 1.

where the same is seen. As v goes to infinity, the transition
density approaches zero. The effect of increasing v is stronger
for large L/B, in the sense that a similar relative displacement
of the transition density and the S2 vs φ curves requires a
smaller v for larger L/B, or, in other words, as v decreases
the athermal limit is approached faster when L/B is small.

While the nematic phase is favored by the quadrupolar
interaction, the tetratic phase is not affected. For small L/B
where the tetratic phase is observed in the athermal limit,
attractive interactions displace the tetratic-nematic to smaller
densities and for large enough v the isotropic-tetratic transi-
tion is replaced by an isotropic-nematic one. In this case, the
nematic phase can exist even for the case of squares (L/B =
1). The discontinuous transition observed at intermediate L/B
also becomes continuous for large enough ν, but, curiously,
the increase of S with φ∗ near the transition becomes more
abrupt when ν increases.

FIG. 2. Order parameter as a function of the scaled density, for L/B = 10 000 (a) and 1.5 (b), and the following values of the quadrupolar
order parameter (increasing as indicated by the arrow): (a) 0, 0.0625, 0.175, 0.45, 1.25, 3.75, and 16 and (b) 0, 0.5, 1.2, 2.3, 4.65, 10, and 50.
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FIG. 4. Pressure of the isotropic phase as a function of area
density, for a system with no interaction and the following values
of L/B (increasing in the direction of the arrow): 1, 2, 5, 15, 60, 200,
800, 2500, and 10 000. The inset shows the region of small pressure,
in linear scale.

B. Equation of state

First, the dimensionless pressure of the isotropic phase in
the whole composition range is considered. Although when
the surface density is higher than φIN the ordered phase repre-
sents the equilibrium state, this analysis provides a general
insight and will allow one to distinguish order-dependent

factors that affect the equation of state from order-independent
ones.

The effect of L/B on the equation of state for an athermal
system is shown in Fig. 4. In a system with no interactions,
two terms contribute to the pressure: the first and third terms
of the right-hand side of Eq. (12). As ρ is proportional to
L/B, the third term becomes more important as L/B increases
and all the curves converge in a very large range of φ for
large L/B. In this condition the pressure is quadratic with φ,
except for very large (where it diverges) or small density. As
φ approaches zero, the first term is linear and dominates over
the third one, and the system behaves as an ideal gas in a range
of density that increases as L/B decreases.

Figure 5 shows the effect of interactions on the pressure of
the isotropic phase, for different values of L/B. The quadrupo-
lar parameter ν has, obviously, no effect in this case where
no nematic order is considered. For small enough density, the
first term prevails and the pressure approaches the athermal
behavior; it deviates from this limit at smaller values of φ

as χ increases. Increasing interaction decreases the pressure
(positive χ implies attraction between the particles). Note
that the interaction term in the pressure, which is negative,
is quadratic in φ and does not diverge for φ = 1 so it can
become dominant only in some intermediate range of φ. As
it is very well known in fluid phase equilibria, for large
enough χ the pressure develops a horizontal inflection point,
which corresponds to the critical point (in Fig. 5 the curves

FIG. 5. Surface pressure of the isotropic phase as a function of area density. The insets show the behavior for small pressures, in linear
scale, where ideal behavior is plotted as a dotted line. (a)L/B = 1.5; χ = 0, 0.75, 1.9, 3.2, 3.9, and 4.3. (b) L/B = 6; χ = 0,0.5, 0.975, 1.2,
1.33, and 1.47. (c) L/B = 14; χ = 0, 0.26, 0.52, 0.7, 0.82, and 0.91. (d) L/B = 100; χ = 0, 0.1, 0.2, 0.335, 0.425, and 0.485. For a given
surface density, increasing χ decreases the pressure. The last χ , corresponding to red curves (in the online color version) with the horizontal
inflection point, is the critical χ for each L/B.
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FIG. 6. Surface pressure a function of area density, for a system
with no interaction and the following values of L/B (increasing in
the direction of the arrow): 1.5, 6, 14, and 100. The inset shows the
region of small pressure, in linear scale. The dotted line represents
the metastable isotropic phase in conditions where the order phase is
the equilibrium one.

corresponding to this critical value, χc, are plotted in red
color). When χ is larger than this value, there is a range of
φ where a single isotropic phase is unstable with respect to

phase separation. A detailed study of phase separation is out
of the scope of the present paper and it will be presented in a
future publication.

As both the interaction and excluded volume contributions
have opposite signs and a similar dependence on φ (at least in
some range), they might cancel each other to a certain extent.
This can be easily seen in Eq. (12), where, for the isotropic
phase,

P=
(

L

B

)−1
[

φ

(1−φ)
+

(
1 + 2

(
L
B

)−1+(
L
B

)−2

π (1 − φ)2 −χ

)
L

B
φ2

]
.

(13)
In the insets of Fig. 5, the behavior of ideal gas [only the

first term in Eq. (12) or Eq. (13)] is shown with dotted lines,
and it observed that, indeed, the value of φ at which the system
starts departing from ideality is maximum for a nonzero value
of χ .

Next, the nematic phase is considered in the equation of
state. First, the effect of L/B is considered for an athermal sys-
tem; this is shown in Fig. 6. The pressure of the ordered phase
is smaller than that in the isotropic phase, which is shown
with dotted lines for φ > φIN (in this range the isotropic phase
is metastable). The pressure difference between both phases
increases with L/B. This is because longer particles have
a stronger tendency to form a nematic phase, with a larger
decrease in the free energy. As a consequence of these two

FIG. 7. Surface pressure as a function of area density for systems without isotropic interactions (χ = 0). The insets show the behavior for
small pressures, in linear scale. (a) L/B = 1.5; ν = 0, 0.65, 1.1, 2, 3, 3.9, and 4.65 (note that the first few values are difficult to distinguish
due to the proximity of the different curves, and some are not shown in the inset). (b) L/B = 6; ν = 0, 0.125, 0.25, 0.45, 0.76, 1, and 1.22.
(c) L/B = 14; ν = 0, 0.06, 0.12, 0.185, 0.3, 0.45, and 0.575. (d) L/B = 100; ν = 0, 0.02, 0.033, 0.05, 0.0675, 0.083, and 0.093. Increasing ν

decreases the pressure at constant surface density.
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contributions, the effect of L/B on the pressure of the nematic
phase is stronger than in the isotropic phase.

Figure 7 shows the effect of anisotropic interactions on
the equation of state. For low φ, the system is isotropic and
pressure is obviously not affected; in the ordered phase the
pressure decreases as ν increases. When ν is large enough,
the nematic phase develops an instability, as observed by the
formation of horizontal inflections, and for larger values of ν

there is phase coexistence (which could be isotropic-nematic
or nematic-nematic, to be analyzed in a future publication).
As L/B increases, smaller increases in ν produce a larger
decrease in pressure (same as observed before for the degree
of ordering).

Figure 8 shows the effect of isotropic interaction in the
pressure of the nematic phase. Although, as mentioned before,
χ does not affect the degree of ordering, the pressure in the ne-
matic phase has contributions coming from both the nematic
and the isotropic free energy terms as observed in Eq. (12).
Again, increasing the interaction parameter decreases the
pressure, and the development of an instability leading to
isotropic-nematic or nematic-nematic phase coexistence is
observed. As for the nematic interactions, for larger L/B,
smaller values of χ produce a larger decrease on pressure. It is
interesting to observe that, as L/B increases, the instability in
the nematic phase is developed not only for smaller values of
χ in terms of its absolute value but also for smaller χ/χc (the
largest values of χ/χc considered in Fig. 8 are 1 for L/B = 6,
0.57 for L/B = 14, and 0.2 for L/B = 100). This means that
the effect of χ/χc on the shape of the P vs φ curve in the
nematic phase is dependent on L/B. Curiously, this is not
the case for the isotropic phase, as observed in Fig. 5, where
the shapes of the curves are very similar for different values
of L/B.

IV. CONCLUSIONS

A generalized van der Waals equation for a system of 2D
particles with shape anisotropy, based in scaled particle theory
and considering both isotropic and anisotropic quadrupolar
Maier-Saupe interactions, was developed and solved in the
case of rectangles, considering nematic and tetratic ordering.
Phase transition points, degree of ordering, and equation of
state behavior were analyzed as a function of the model pa-
rameters: aspect ratio L/B, and interaction parameters χ and
ν. Increasing L/B and ν favors the formation of nematic or-
dering, decreasing the surface density for the onset of nematic
ordering, φIN, and increasing the order parameter. For large
L/B, the isotropic-nematic transition is continuous, and as
this parameter approaches infinity the behavior approaches the
“Onsager” case. In an intermediate range of L/B and for small
ν, the nematic isotropic transition becomes discontinuous, and
for small L/B a continuous isotropic to tetratic transition is
observed, followed by a (also continuous) tetratic to nematic
transition as φ is increased.

The pressure of the nematic phase is smaller than that of the
isotropic phase. Increasing L/B decreases pressure; this effect
is stronger in the nematic phase due to the fact that the nematic
contribution to the free energy is proportional to L/B. The
effect of both types of interactions, isotropic and anisotropic,
is to decrease the pressure both in isotropic and in ordered

FIG. 8. Surface pressure as a function of area density for systems
without nematic interactions (ν = 0). The insets show the behavior
for small pressures, in linear scale. (a) L/B = 6; χ = 0, 0.5, 0.825,
1.2, and 1.47. (b) L/B = 14; χ = 0, 0.13, 0.26, 0.4, and 0.52.
(c) L/B = 100; χ = 0, 0.03, 0.06, 0.08, and 0.096. Increasing ν

decreases the pressure at constant surface density. Results for L/B =
1.5 are not shown as the curves are barely distinguishable from the
isotropic case shown in Fig. 5.

phases. Regarding isotropic interactions, it was observed that,
while in the isotropic phase, the qualitative shapes of P vs φ

curves are similar for similar values of χ/χc, which is not true
for the nematic phase.

This relatively simple model allows a complete description
of the equation of state behavior of the system, considering
the particle geometry and two different types of interactions.
In addition, it could be easily extended to account for other
different particle shapes and other types of ordered phases.
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