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- We analyze the influence of the thermal annealing and irradiation damage in the 

superconducting properties -Mo2N thin films. 

- The superconducting critical temperature in -Mo2N thin films thin films depends on 

the nanoscale disorder and of the nitrogen stoichiometry.  

- The superconducting critical temperature in extremely disordered -Mo2N thin films 

is not affected by irradiation damage. 

 

 

We report on the influence of the disorder and stoichiometry in the resulting 

superconducting critical temperature of -Mo2N thin films. Initially, three films (with Tc 

values of 7.6 K, 6.8 K and 6 K) were grown at room temperature by reactive sputtering, 

on Si (100) using different N2/(Ar+N2) mixtures. The influence of the thermal annealing 

up to 973 K and irradiation damage produced by 1 MeV Zr
+
(fluence up 2x10

14 
cm

-2
) is 

analyzed. The Tc of pristine films remains unchanged for increasing irradiation doses up 

2x10
14 

cm
-2

. The Tc for annealed films decreases close to the value expected for bulk 

samples (5 K) for increasing the annealing temperature. Successive irradiations of the 

annealed films tend to increase their Tc up to its initial values (before annealing). The 

results indicate that the Tc in nanometric grain size -Mo2N thin films is affected by 

both nitrogen stoichiometry and disorder at the atomic scale. 
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1. Introduction 

 

Molybdenum nitrides have attracted much attention as superconducting materials due to 

their potential application in tunnel junctions and radiation detectors [1,2,3].The Mo 

nitrides present several superconducting crystalline phases: -Mo2N (cubic) with 

superconducting critical temperature Tc~5 K [4], -Mo2N (tetragonal) with Tc~5 K [5] 

and -MoN (hexagonal) with Tc~12 K [6,7]. A distinctive property of -Mo2N thin films 

is that its Tc is increased from  5 K to 8 K by disorder [8,9]. This effect may be related 

to variations in the electronic density of states at the Fermi level N(0) [10]. In addition 

to the disorder, the Tc in nanocrystalline -Mo2N1+x(0x0.4) thin films grown by 

reactive sputtering at room temperature drops from 8 K to  5.8 K due to changes in the 

nominal nitrogen stoichiometry [ 11 , 12 ]. Considering that changes in the nitrogen 

content may affect the disorder at the nanoscale (with the coexistence of crystalline and 

amorphous regions), the influence of each mechanism on the Tc is unclear.  

In this work, we analyze the influence of nitrogen stoichiometry and disorder on the Tc 

of Mo2N1+y thin films grown by reactive sputtering on Si (100). The Tc values of films 

grown with three different Ar:N2 mixtures are compared with those obtained after 

thermal annealing at 873 K and 973 K and successive irradiations with 1 MeV Zr ions. 

The zirconium was selected considering that due to its higher charge may produce more 

displacement per atom that other light ions such as protons (for the same doses). The 

results show that the Tc of pristine films (highly disordered) systematically decreases to 

values down below 5 K with thermal annealing. The irradiations have a negligible 

influence on the Tc of pristine films, but for the annealed ones, its value systematically 

increases to the ones observed before the irradiation, for increasing irradiation doses. 
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2. Material and methods 

 

Mo2N1+xfilms were deposited by DC reactive magnetron sputtering on Si (100) [11,12]. 

No intentional heating of the substrate was used. Films were grown from a pure Mo 

target in a N2/(Ar+N2) gas mixture with N2 partial pressure going from 8%, 15% and 

25% of the mixture’s 5 mTorr pressure. The expected nominal chemical composition of 

the films is Mo2N1+y with y= 0.05, 0.15 and 0.33 (increasing N2 in the gas mixture [11]). 

Wherever used, the notation [MoNY] indicates a Mo-N film grown with Y% N2 partial 

pressure. The notation [MoNY]AT, [MoNY]IF and [MoNY]ATIF indicates if the films 

are annealed at T K, irradiated with fluences F = 1 or 2 (see description below), and 

annealed and irradiated, respectively. The film thicknesses (determined from low angle 

X-ray diffraction) were 70 nm, 67 nm, and 66 nm for [MoN8], [MoN15] and [MoN25], 

respectively.  

X-ray (XRD) diffraction data were obtained using a Panalytical Empyrean equipment. 

Irradiation with 1 MeV Zr
+ 

produces mostly Frenkel pairs, i.e. random point defects. 

The irradiation was performed in two sequential steps of 1x10
14

 cm
-2

 (IRR1= 1x10
14

 

cm
-2

 and IRR2= 2x10
14

 cm
-2

). The irradiations were performed with the ion beam 

perpendicular to the surface of the films. The energy of the ions was selected to place 

the Bragg peak inside the substrate (as estimated using the SRIM code [13]). Surface 

composition analysis was performed by means of X-ray photoelectron spectroscopy 

(XPS). The electrical transport measurements were performed using the standard four-

point configuration.  

 

3. Results and discussion 

 

Figures 1a-c shows the XRD patterns for [MoNY], [MoNY]I2 and [MoNY]A973, 

respectively. The 200 reflection corresponding to the cubic -Mo2N phase is observed. 

The peak is systematically shifted to smaller angles when the N2 partial pressure is 
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increased, which is related with a larger a lattice parameter [12]. The films are mainly 

textured along the (100) axis. Small (111) reflections are present in [MoN15] and 

[MoN25] (not shown). The average crystallite size estimated from Scherrer's equation 

(considering separately CuK1 and CuK2) with the [200] reflection is shown in Table 

1. Thermal annealing has a weak influence in the grain size average, which ranges 

between 20 nm and 30 nm. These values are consistent with previously published high-

resolution transmission electron images [11].  

The oxidation state of Mo in pristine, annealed and irradiated films was analyzed by 

XPS measurements. The Mo3d spectrum provides information about the oxidation 

states and chemical composition [14,15,16,17]. Figures 2a-c show the Mo3d spectra for 

[MoN25]A973, [MoN25]I2 and [MoN25], respectively. The curves for [MoN25] and 

[MoN25]I2 correspond to the surface cleaned with Ar
+
 sputtering (2kV), which reduce 

the superficial MoO3 components [11]. Similar spectrums were obtained for [MoN8] 

and [MoN15]. The elemental spectra are composed by two identical peaks that 

correspond to the spin-orbit split 3d5/2 and 3d3/2 for Mo, with relative intensities of 3:2. 

The spectra were fitted using a Voight function for each peak plus a Shirley-type 

background. The spectra display three components: a major component at a binding 

energy of 228.6 eV (related to Mo
+

 (2< 4) [17]) and minor components at higher 

binding energies (related to MoO2 and MoO3, respectively [15,18]). The component 

associated to MoO2 is composed of a screened and an unscreened doublet [19,20]. The 

irradiation produces an increment in the MoO3 peak, which can be related to surface 

modification (activation). The thermal annealing reduces the oxide components at the 

surface and only remains the Mo
+

 doublet. The small shift at the Mo
+ 

component ( 

0.2- 0.3 eV) observed for the pristine and irradiated films can be related to final state 

effects due to the presence of oxides that prevents the fast neutralization of the hole 

created during the photoemission process. No features related to the -MoN component 

are observed in the annealed film [21]. 

Figure 3 shows the normalized resistance versus temperature for the studied films. 

Table 1 shows a summary of the results. The Tc values in pristine films are 7.6 K, 6.8 K 

and 6 K for [MoN8], [MoN15] and [MoN25], respectively. The residual resistivity ratio 

(RRR=R
290K

/R
10K

) in pristine films is smaller than 1 (see table 1), which is signature of 

high disorder with a very short mean free path l. After annealing, [MoN8] displays 

metallic behavior (RRR>1), whereas RRR remains below 1 in [MoN15] and [MoN25]. 
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This indicates that the excess of N respect to Mo2N (related to interstitial doping with 

N) contributes to the disorder at the atomic scale, which is also evidenced in the 

evolution with thermal annealing of the Tc. For [MoN8], the Tc value varies from 7.6 K 

to 4.8 K after annealing at 873 K and 973 K. However for [MoN15] and [MoN25], the 

Tc value shows a gradual reduction to values below 5 K after annealing at 873 K and 

973 K. The irradiations with Zr
+
 ions do not increase Tc for pristine films, but 

systematically increase the Tc of annealed samples to the ones present before the 

thermal annealing. The negligible influence of the irradiation on Tc of pristine samples 

indicates that they are in extremely disordered limit and its Tc value is mainly given by 

changes in the nitrogen stoichiometry [11]. The gradual reduction in Tc to bulk values 

produced by thermal annealing have been related to variations in the electronic density 

of states at the Fermi level N(0) [10]. Studies focused in the correlation between the 

disorder and the band structures are necessaries to understand the changes on the 

superconducting properties of -Mo2N thin films. 

Finally it is important to note that, in the same way than other nanocrystalline metal 

nitrides [ 22 , 23 ], the high tolerance to the irradiation (evidenced in the electrical 

transport of pristine films) enhances its potential applications in electronic devices for 

high-radiation environments.  

 

4. Conclusions  

 

In summary, the effects of thermal annealing and irradiation damage in the 

superconducting critical temperature Tc of nanometric grain size -Mo2N thin films are 

analyzed. Thermal annealing reduces the disorder at the atomic scale shifting the Tc 

values to those typically observed in bulk samples. The irradiation of annealed samples 

tends to recover the Tc displayed by pristine samples, indicating that they are close to an 

extremely disordered limit and the differences in their Tc are given by differences in the 

nitrogen stoichiometry.  
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Table 1. Summary of the superconducting critical temperature (Tc), residual resistivity 

ratio (R
290K

/R
10K

) and grain size D for the studied films (estimated from the (200) 

reflection using the Scherrer equation).  

 

 

Sample Tc[K] RRR D [nm] 

[MoN8] 7.6  0.98 19 (2) 

[MoN8]I2 7.6  0.98 20 (2) 

[MoN8]A873 4.7  1.1 -- 

[MoN8]A973 4.7  -- 32 (2) 

[MoN8]A973I2 6.5 1.01 -- 

[MoN15] 6.8  0.92 22 (2) 

[MoN15]I2 6.8  0.88 -- 

[MoN15]A873 5.3  0.98 20 (2) 

[MoN15]A873I2 6.7  0.85 -- 

[MoN15]A973 4.1  0.98 -- 

[MoN15]A973I2 6.1 0.9  

[MoN25] 6.0 0.88 26 (2) 

[MoN25]I2 6.0 - 26 (2) 

[MoN25]A873 5.2 0.95  

[MoN25]A973 4.9 0.95 26 (2) 

[MoN25]A973I2 6.0 --  
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Figure 1. XRD pattern for pristine, irradiated with 1 MeV Zr (fluence 2x10
14

 cm
-2) 

and 

annealed -Mo2N thin films. Ar: N2 mixture with: a) 8 % N2; b) 15 % N2; c) 25 % N2. 

Figure 2. Mo3d spectra of [MoN25]: a) annealed at 973 K; b) irradiated with 1 MeV Zr 

(fluence 2x10
14

 cm
-2

);
 
and c) pristine at 973 K. 

Figure 3. Electrical transport for a) [MoN8]; b) [MoN15]; and c) [MoN25].  
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