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Abstract 

The transient liquid phase bonding (TLPB) process is one of the selected joining 

technologies to replace threaded connections in solid expandable tubulars. In particular, 

for expandable hot-rolled seamless carbon steel tubular products using Ni-based 

amorphous metallic foils as filler material. 

In this work, a comprehensive mechanical properties and microstructural 

characterization was carried out in TLP-bonded bars for this base metal/filler material 

combination. Both the joint and the heat affected zone exhibited a strength which 

compares well with the base metal, and a ductility in accordance with that which is 

typically specified for steel arc-welded joints. A coalesced lath-like bainitic 

microstructure was found at the joint. In addition, and by means of orientation imaging, 

a parent austenite grain - which is shared by the joint and an adjacent ferrite grain from 

the base metal - was found, which demonstrates the epitaxial nature of the TLPB 

solidification process. 

Also, a cell-block-like structure at ferrite grains next to the joint was detected, 

due to the plastic deformation developed in tensile-tested samples at room temperature. 

Keywords 

transient liquid phase bonding; carbon steel; amorphous metallic foil; phase 

transformation; X-ray analysis. 

mailto:ndiluozzo@fi.uba.ar


2 

 

1. Introduction 

Solid expandable tubulars (SETs) are being successfully applied in the oil and 

gas industry [1]. In particular, for reinforcing or repairing existing cased wells, and for 

cladding uncased portions of wells [2]. In general, SETs comprise strings of hot-rolled 

seamless steel tubes joined together by threaded connections (TCs) to attain the desired 

length, whose original inner diameter can be expanded up to 24% [3]. Despite its 

enormous potential of changing drilling and maintenance operations of current and 

future wells, the sealing ability of TCs is often significantly diminished as a result of the 

expansion process. To enhance thread sealing after expansion, ad hoc metal to metal 

seals [4], protective tubular sleeves [5], and even pre-expanded TCs [6] - to reduce its 

expansion ration with respect to the body of SETs - have been proposed. 

The transient liquid phase bonding (TLPB) process [7] is considered as an 

alternative joining technique to TCs for SETs. Its main benefit over TCs is its tightness 

against leakage, with a comparable completion time - which is well below than that of 

conventional arc welding processes. TLPB involves three main steps: liquefaction of the 

interlayer and base metal dissolution, liquid phase isothermal solidification, and solute 

homogenization [8]. Carbon seamless steel SETs were already TLP-bonded using 

amorphous metallic foils - mostly Ni-based - as interlayers in different conditions 

(roughness of the contact surfaces, process temperature (hereafter TP), holding time at 

TP (hereafter tH), protective atmosphere, applied pressure, etc.) [9]
 
[10]. An operating 

window of the main process parameters was defined to obtain specific requirements at 

the joint - the zone where both the microstructure and the chemical composition differ 

from that of the base metal. In particular, for which the tensile strength at the joint 

outperformed that of the base metal after expansion. However, both microstructure 

characterization and its relationship with mechanical properties is still incomplete. 

TLPB was also applied in other types of steel tubular products. Amorphous foils 

of the Fe-Ni-Cr-Si-B system were used as interlayers for bonding hot-rolled seamless 

pipes for boilers [11] and drill pipes [12]. The obtained joints outmatched the tensile 

strength of the base metals and were successfully bend tested - the latter being 

fundamental to quantify the ductility of the joint. However, its microstructural 

characterization was far from being complete, and only limited to show that the 

presence of undesired phases - which may form during TLPB process as a consequence 
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of the reaction between the alloying elements of the filler material and the base metal - 

was negligible. 

Regarding microstructure characterization, TLP-bonded seamless carbon steel 

tubes - both hot-rolled and cold-rolled - were extensively studied for a variety of filler 

materials: Fe-B [13] and Fe-Si-B [14] [15] amorphous metallic foils, and pure Cu foils 

[15]
 
[16]. In addition, tensile tests showed that the joined tubes failed away from the 

joint, attaining almost the ultimate tensile strength (UTS) of the base metal when Fe-Si-

B and Cu foils were used. 

Concerning the solidification of the transient liquid phase during tH, epitaxial 

growth from adjacent grains of the base metal was assumed in all models that describe 

the TLPB process [7]
 
[8]. However, this phenomenon was rarely observed at the joint 

[17]
 
[18]. Therefore, the evidences of epitaxial growth are not conclusive, and other 

solidification processes cannot be discarded (e.g.: constitutional supercooling [19]). 

In the present paper, a comprehensive mechanical properties and microstructural 

characterization of the joint and the adjacent base metal of TLP-bonded hot-rolled 

carbon steel bars using Ni-based foils as filler materials is presented. The obtained 

mechanical properties/microstructure relationship is discussed, for one of the selected 

base metal/filler material combination for TLPB of SETs. In addition, an in-depth 

crystalline orientation analysis was performed to detect evidences of epitaxial growth 

during solidification of the transient liquid phase. 

 

2. Materials and Methods 

TLP-bonded joints were produced using ASTM A 675 Grade 55 hot-rolled 

carbon steel bars as base metal, and METGLAS® MBF-30 amorphous Ni-based foils as 

interlayer (for chemical composition see Table 1). Steel bars had an outside diameter of 

25 mm, while the filler material had a thickness of 25 μm. 

Table 1. Chemical composition (in wt.%) of the base metal and the interlayer. 

 C Mn Cr Mo B P S Si Al Co Ni Fe 

Grad

e 55 

0.11

3 

0.91

0 

0.028

2 

0.005

8 

0.001

3 

0.016

6 

0.011

2 

0.23

9 

0.007

4 

- 0.018

7 

Bal. 
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MBF

-30 

0.00

9 

- 18.81 - 3.006 0.011 0.001

8 

4.37

8 

0.005 0.0

3 

Bal. 0.38

9 

 

The bonding process consisted of aligning the bars to be joined - with their 

abutting surfaces in contact with the interlayer. Before joining, the abutting surfaces 

were polished using silicon carbide abrasive papers up to #600 grit to attain a roughness 

average (Ra) of 0.5 µm or below. The assembly was placed into the coil of an induction 

furnace under a controlled reducing atmosphere (10% H2 + 90% Ar), while a uniaxial 

pressure of 5 MPa was applied (Fig. 1). The temperature at the joint was raised to TP = 

1300 ºC, held constant for tH = 7 min, and then was cooled in still air to room 

temperature. For further details, see Di Luozzo et al [13] [14]. 

 

 

Fig. 1. Schematic illustration of the TLPB process - cutaway perspective view. The 

abutting surfaces of the bars to be joined are in contact with the interlayer. The 

longitudinal direction (LD), radial direction (RD) and circumferential direction (CD) are 

indicated. 
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Both tensile and bend tests were performed to characterize the mechanical 

properties of the joint in the as-welded condition in comparison to the base metal. 

Tensile tests were performed on round specimens in accordance to ASTM E8 [20] (12.5 

mm diameter; 50 mm gauge length). Bend tests were carried out on round specimens in 

accordance to BS EN ISO 7438 (13 mm diameter - d; angle of bend: 180º) [21]. The 

joint was placed at the mid-length of the gauge length and at the mid-point between the 

supports for tensile and bend test, respectively. In particular, for bend tests, the diameter 

of the mandrel (4d: 52 mm) and the distance between supports (6d + 3 mm = 81 mm) 

were selected to give an outer fibre elongation of 20 % - as it is usually specified for 

welded joints carried out using conventional arc welding processes [22]. 

Microstructural characterization was performed by field-emission gun-scanning 

electron microscopy (FEG-SEM; FEI Quanta 250), transmission electron microscopy 

(TEM; Philips CM200 with ultra-twin objective lens), and electron backscatter 

diffraction (EBSD; Zeiss Ultra 55 FEG-SEM equipped with an EBSD detector EDAX 

DigiView III). 

Regarding sample preparation for SEM and EBSD, sections perpendicular to CD 

were analysed. They were grounded and polished with diamond suspension of 6 and 1 

µm. The final polishing varies in each analysis: 0.3 and 0.05 µm alumina suspension 

followed by etching with 2% Nital solution for FEG-SEM, and 0.05 µm colloidal silica 

suspension for EBSD. The working voltage of FEG-SEM and EBSD were 15 and 20 

kV, respectively. 

For EBSD acquisition and analysis, a map step size of 85 nm was used, and data 

was evaluated using the Oxford Instruments CHANNEL 5 software package. It was 

performed on already tensile-tested samples to study whether decohesion at the 

joint/base metal interface had taken place or not. In particular, Euler angles are 

displayed to depict each point of the obtained orientation imaging (OI) maps. The 

Bunge convention is used, representing each of the Euler angles (for cubic symmetry: 0º 

< φ1 < 360º; 0º < ϕ < 90º; 0º < φ2 < 90º) with one of the RGB colour channels 
1
. Euler 

angles describe the orientation of the crystal coordinate system with respect to the 

sample coordinate system. Therefore, Euler colouring of both OI maps and their 

                                                 
1
 Euler space is discontinuous, which can result in small changes in orientation 

producing abrupt changes in the Euler colouring [52]. 



6 

 

associated pole figures enables a direct visual relationship between the position of each 

point and its orientation 
2
. 

TEM samples were sliced from 3-mm-diameter rods, mechanically thinned to 

around 200 μm, and then twin-jet electropolished to perforation by a Struers Tenupol-5 

twin-jet unit using a 95/5 vol.% solution of acetic and perchloric acids at room 

temperature at 40 V. Indexing was carried out using Gatan Microscopy Suite
®

 Software. 

In addition, quantitative chemical composition analysis was performed by 

electron probe microanalysis (EPMA; JEOL JXA 8230), with an operating voltage of 

20 kV. The uncertainties in the measurements were computed according to the 

statistical errors in each point analysis, and they were automatically assessed by the 

acquisition software (JEOL PC-EPMA 1.9.0.3). 

Also, in situ X-ray thermodiffraction (XRTD) was performed to determine the 

austenite transformation temperature range of the present phases at room temperature. 

XRTD measurement was carried out at the X-Ray scattering and thermomechanical 

simulation experimental station (XTMS) at the Brazilian National Synchrotron Source 

(LNLS). The experimental setup consisted of a customized thermal simulator 

(Gleeble™ 3S50), integrated in a synchrotron X-ray diffraction (XRD) beamline. The 

monochromatic beam (12 keV, λ = 1.033 Å) was focused down to a full-width half-

maximum (FWHM) of 375 µm × 950 µm - in the RD and LD, respectively. The 

diffraction intensity was measured by two MYTHEN-1K linear detector modules with 

1280 channels each. The experiment was performed under vacuum (1 × 10
−2

 mbar), and 

the sample was tilted 15º in relation to the incident beam (Fig. 2). 

 

                                                 
2
 Inverse pole figure colouring depicts the projection of a specific sample 

direction (e.g.: ND, RD or TD) into the crystal coordinate system at each point of the 

map. Consequently, its relationship with the pole figure - which represents crystal 

orientations with respect to a fixed coordinate system - is difficult to understand. 
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Fig. 2. In situ XRTD measurement. (a) Schematic illustration of the sample used for the 

experiment - front view, which was cut from the TLP-bonded bar. The dimensions are 

given in millimetres. (b) Experimental setup. The incident beam - already focused and 

monochromatized - is aimed at the joint, which is contained in the RD-CD plane of the 

sample, forming an angle of 15º with respect to RD. 

 

Regarding the thermal cycle, the sample was heated from room temperature to 

975ºC. Then, it was cooled down to room temperature by natural convection inside the 

simulator’s chamber. Both the heating and cooling rates were 1ºC/sec. The diffraction 

data was collected with the sample and linear detectors at a fixed specific position to get 

XRD patterns every 20 sec in the range of 2θ = 27º-48º, and was analysed using IgorPro 

[23] programming suite. Also, before and after the thermal cycle, initial and final XRD 

patterns were collected with an acquisition time of 180 sec, with the aim of defining the 

starting and finishing phases of the analysed region. 
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3. Results 

3.1. Mechanical properties measurement 

Table 2 indicates the measured tensile and bend test data, which are the average 

values of 4 samples from the base metal and TLPB weldments in the as-welded 

condition. In all tensile-tested weldments, failure occurred well away from the joint, at 

the heat affected zone (HAZ). Anyway, the average UTS of the weldments attained 98.5 

% of that of the base metal. It is noteworthy that it is even possible to improve the 

obtained UTS by means of a post-weld heat treatment (e.g.: normalizing). While 

weldments experienced a slight reduction of elongation - due to the coarsened 

microstructure at the HAZ, both the base metal and the HAZ of the welded samples 

attained the same reduction of area. 

Moreover, samples from the base metal and TLPB weldments were bend tested 

through 180° without cracking on the outside of the bent portion. 

Consequently, TLPB joints exhibited a strength that compares well with the base 

metal, and a ductility in accordance with what is typically specified for steel arc-welded 

joints. 

Table 2. Tensile and bend test measurements from the base metal and TLPB samples 
†. 

 
UTS (MPa) 

Elongation 

(%) 

Reduction 

of area (%) 

Cracking on the 

outside of the bent portion 

Base metal 467 (4) 41.5 (2.0) 72 (0.5) No cracks observed 

TLPB 460 (4) 35.6 (2.0) 72 (0.5) No cracks observed 

†
 Values in brackets indicate standard deviations 

3.2. Microstructural analysis 

The microstructure at the joint is composed of grains with a lath-like morphology 

(Fig. 3). Precipitates are observed within most of the laths. However, the size and 

quantity of precipitates is inhomogeneous. Also, finely spaced pearlite is observed 

adjacent to the joint. 

Considering the thickness of the laths - 1-3 microns, this microstructure can 

correspond to coalesced bainite [24] and/or coalesced martensite [25]. This type of 
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microstructure is the result of coalescence of individually nucleated laths with the same 

crystallographic orientation. 

 

 

Fig. 3. (a) SEM micrograph of the joint (triangle mark) and the ferrite grains 

from the base metal adjacent to it (square marks) - in the as-welded condition. Pearlite is 

visible adjacent to the joint. Also, RD and LD are indicated. (b) Close-up view of the 

highlighted area (dotted box) in (a). The inhomogeneity in size and quantity of 

precipitates within laths is shown. 

 

Regarding their precipitates, it is not evident that their longest axes is inclined to a 

specific direction of the ferrite laths 
3
. Also, its length varies in the range from a few 

tenths to several hundreds of nm (hereafter nano-sized and coarse precipitates, 

respectively). TEM images combined with its selected-area electron diffraction (SAED) 

                                                 
3
 For the sake of simplicity, laths - that can be composing bainitic and/or 

martensitic microstructures - are referred as ferrite laths unless otherwise specified. 
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analysis confirm that precipitates are cementite (Fig. 4). The Isaichev orientation 

relationship (OR) [26] was confirmed between cementite and ferrite laths: 

 
3Fe C103 / / (110)     

3Fe C311 0.91º from 111 
    

Since in the proposed microstructures for the joint precipitates are cementite, none 

of them can be discarded. 
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Fig. 4. TEM micrographs of the joint. (a) Coarse precipitates (dark contrast) in a 

ferritic matrix (bright contrast). (b) Nano-sized precipitates (arrow marks) within a 

ferrite lath. (c) SAED pattern corresponding to (b) (zone axis:  
3Fe C311 111 

    ). (d) 

Indexing of the diffraction pattern (open circles: precipitate reflections; solid circles: 

ferrite reflections). The arrow mark indicates  
3Fe C103 / / (110) . 

 

3.3. Chemical analysis 

EPMA chemical composition measurements show a joint enriched with Ni, Cr 

and Si from the filler material (Fig. 5). The composition profiles resemble those at some 

stage of TLPB solute homogenization process [14], very similar to that of planar solid-

state diffusion for a source of limited extent. Likewise, the joint is impoverished in Mn. 

At the joint, the least amount of alloying elements from the filler material are at 

its interface with the base metal: 1.8Ni, 1.2Cr, 0.8Mn, 0.4Si (wt.%) (Fig. 5, dashed 

lines). 
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Fig. 5. EPMA chemical composition profiles across the joint and the adjacent 

base metal. Dashed lines indicate the interfaces between the joint and the base metal 

(error bars are not shown since they are smaller than the data markers). 

 

It is worth noting how Cr diffused deeper into the base metal compared with Ni, 

for the same thermal cycle. This is directly connected with their diffusion in austenite at 

1300 ºC - DCr ≈ 2 x 10
-13

 m
2
/sec [27] and DNi ≈ 2 x 10

-14
 m

2
/sec [28], supporting the 

assumption that isothermal solidification and solute homogenization are controlled by 

solid-state diffusion [8]. 

 

3.4. In situ XRTD 

Fig. 6 shows the obtained initial and final XRD patterns. Regarding the detected 

phases, ferrite is present in both scans. Also, magnetite (Fe3O4) reflections are detected 

(Fig. 6 (b)). This is the result of the thin oxide scale that built up over the sample’s 

surface during XRD thermal cycle. 
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Fig. 6. Initial (a) and final (b) XRD at the joint and its adjacent base metal, 

where in situ XRTD was carried out. Inserts: magnification of {011}α peak. 

 

Ferrite reflections can come from all the observed microstructures: ferrite grains 

and pearlite form the base metal, and ferrite laths from the joint. In order to be able to 

differentiate them, phase transformations from the austenite phase during cooling from 
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975 ºC were studied within 2θ = 29-34º. In this angular range, {011}α and {002}γ peaks 

can be clearly identified. 

During cooling, four stages can be identified (Fig. 7): 

 Between 975 ºC and the start temperature of ferrite formation of the base 

metal (Ar3) - 855 ºC [29]: only {002}γ is observed, with a splitting 

behaviour. This phenomenon was reported in carbon [30] and low-alloy 

steels [23], and Fe-Ni-C alloys [31], indicating the presence of two 

austenite populations (hereafter γ1 and γ2). 

 Between Ar3 and the finish temperature of ferrite formation of the base 

metal (Ar1) - 650 ºC [29]: along with the appearance of {011}α peak, two 

austenite populations are still observed. One is separated from those 

observed in the previous stage - γ ꞌ, vanishing at Ar1. The other one can 

be identified as γ2. 

 Between Ar1 and 405 ºC: together with {011}α , only γ2 persists, which it 

is detected down to a temperature of 405 ºC. 

 Below 405 ºC: only {011}α peak is observed. 

Concerning the inherent instrumental resolution - that is to say, the limiting 

angular separation of diffracted peaks to be separately resolved - is calculated in a 

similar manner as Stone et al [32]. For a given reference phase, FWHM of its peaks are 

determined. And the resolution is taken as one-third of the FWHM of the peak at the 

lowest angle at which diffraction data is acquired. To that end, {011}α reflection 

obtained during the cooling stage was selected as the reference peak and phase. Its 

refinement - compared with the starting ferrite - is evident in Fig. 6. The FWHM of 

{011}α from final XRD is 0.033º. This corresponds to an angular resolution of 0.011º, 

and a resolution in the austenite lattice parameter of 0.0013 Å. 
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Fig. 7. In situ XRTD at the joint and the adjacent base metal. 2θ vs. temperature 

(angular range: 29º to 34º; temperature range: 975 ºC to room temperature). The red 

colour corresponds to higher intensities and blue to lower intensities (background). The 

critical temperatures of the base metal on cooling (Ar3 & Ar1) and the temperature to 

which {002}γ is detected are also indicated. 

 

3.5. Orientation analysis 

Euler-coloured OI maps and their associated pole figures are shown in Fig. 8 and 

Fig. 9, which were carried out at different positions of the joint and the adjacent base 

metal. Considering the observed microstructures by SEM, ferrite was selected to 

perform phase identification. 
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Fig. 8 (a) and (b) show the OI map and its associated {100}α pole figure 

obtained from the joint, together with the adjacent base metal. This OI map was taken 

over a large area (70 x 45 µm
2
) from a sample in the as-welded condition and after 

being tensile tested. Since all samples failed away from the joint under tensile tests, it 

allows the microstructural analyses of the joint after being stressed to the UTS. 

Ferrite laths with close crystallographic orientations are distinguished at the joint 

by means of Euler colouring. However, the orientation of each lath is fairly scattered. 

Consequently, ferrite blocks - aggregations of laths with close crystallographic 

orientations - are not always evident, and its boundaries were even more difficult to 

determine. 

Fig. 8 (c) shows the {100}α pole figure corresponding to the joint region of Fig. 

8 (a), together with the predicted Kurdjumov-Sachs (KS) orientation relationship (OR) 

[33]: 

{111}γ // {011}α   110 γ // 111 α 

leading to 24 crystallographic variants, and Nishiyama-Wassermann (NW) OR [34]: 

{111}γ // {011}α  112 γ // 110 α 

which implies 12 crystallographic variants, from a single crystal (grain) of austenite 
4
. 

Both KS and NW ORs between lath bainite/martensite and austenite are known in 

steels, and its crystallographic variants are numbered according to Kitahara et al 

[33]
,
[34]. Ferrite laths orientations are distributed continuously close to both KS and 

NW variants - usually < 5º, and up to about 10º. It is worth noting that as the austenite is 

not present at room temperature, it is impossible to directly measure the OR between 

ferrite laths and austenite. However, since KS and NW OR are fixed, the misorientation 

between predicted variants can be determined uniquely [35] 
5
. Thus, ferrite laths from 

the joint of the scanned area were formed from a single parent austenite grain. 

                                                 
4
 Crystallographic variant prediction was carried out using PTCLab software 

[53]. 
5
 The misorientation is defined as the difference in orientation between two 

neighbouring points from different crystals. 
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The {100}α poles of one of the coarse neighbouring ferrite grain (Fig. 8 (a), 

square mark) are illustrated in Fig. 8 (d), together with the already predicted KS and 

NW variants for the joint. Despite its strong orientation spread due to plastic 

deformation produced during tensile test, the mean grain orientation is close to KS 

variants 21 and 24 and NW variant 12 of the joint. Since near KS OR were also reported 

for proeutectoid ferrite grains [36], both the joint and this coarse ferrite grain belonged 

to the same parent austenite grain. This highlights the epitaxial nature of the TLPB 

process. 
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Fig. 8. (a) Euler-coloured OI map - together with the colour space used for the 

Euler angle description, overlaid on the band slope map (BS) 
6
. The white dotted lines 

approximately delineate the joint region, while a square mark indicates one of the 

neighbouring coarse ferrite grains. Also, RD and LD are indicated. (b) Euler-coloured 

{100}α pole figure. (c) Euler-coloured {100}α pole figure of ferrite laths at joint, 

together with the predicted KS and NW variants (black and blue dots, respectively). (d) 

Euler-coloured {100}α pole figure of the coarse neighbouring ferrite grain indicated in 

                                                 
6
 BS is an image quality factor which describes the maximum intensity gradient 

at the margins of the Kikuchi bands in an EBSD pattern [54]. 
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(a), together with the predicted KS variants 21 and 24 (black dots) and NW variant 12 

(blue dots). 

 

On the other hand, the coarse ferrite grains of the base metal adjacent to the joint 

seem to be aggregations of numerous subgrains (Fig. 8 (a), square mark). This is also 

illustrated in Fig. 9, which shows another position of the joint and its adjacent coarse 

ferrite grain. This grain is composed of several subgrains, delineated mostly by low 

angle grain boundaries (LAGB) (Fig. 9 (a)). Moreover, {100}α pole figure shows a 

strong and at the same time continuous orientation spread of this grain (Fig. 9 (b)). 

In addition, and despite the abrupt change in microstructure, decohesion of the 

joint/base metal interface is not observed, despite having been tensile-tested. 

 

 

 



20 

 

Fig. 9. (a) Euler-coloured OI map - together with the colour space used for the 

Euler angle description, overlaid on the BS map. The white dotted lines approximately 

delineate the joint region, while a square mark indicates one of the neighbouring coarse 

ferrite grains. The red and black lines denote LAGB (3 < θ < 15, where θ is the 

misorientation angle) and high angle grain boundaries (θ > 15), respectively. Also, RD 

and LD are indicated. (b) Euler-coloured {100}α pole figure of the neighbouring coarse 

ferrite grain indicated in (a). 

 

4. Discussion 

4.1. Joint and base metal contribution to in situ XRTD 

As it is mentioned in section 3.4, different austenite populations are observed in 

the temperature range from Ar1 to 405 ºC. It is of great importance to identify the 

position of each austenite population at the weldment - the joint and/or the base metal. 

To that end, we will determine the relationship between lattice parameter and thermal 

expansion of austenite with temperature and chemical composition. 

If we restrict to the effects of C and Mn, the equation which provides the best fit 

to measured data for the compositional dependence of the austenite lattice parameter at 

room temperature aγ
r
 is given by [37]: 

γ 3.5667 0.033 0.00095r

C Mna X X    (1) 

where aγ
r
 is in Å, and XC and XMn are in wt.%. The influence of other alloying elements 

(e.g.: Ni , Cr, Si, etc.) on aγ
r
 can be neglected [38] 

7
. 

Regarding the thermal expansion of austenite, the relative length change ΔLγ/Lγ
0
 

is calculated with the equation given by van Bohemen [39]: 

                                                 
7
 The reported maximum solubility of B in austenite vary between 80 and 260 

ppm. Since the presence of borides is not observed, it is assumed that B content from 

the filler material are below the above-mentioned range. Thus, the influence of B on the 

lattice parameter of austenite in the range of tens of ppm is assumed to be negligible. 



21 

 

0

γ γ γ

γ γ γ0 0

γ γ γ

Δ
β β Θ exp 1

Θ

D

D

L L L T
T

L L

  
       

   

 (2) 

where Lγ
0
 is defined as the length of a sample with an austenite lattice at 0 K, T is the 

absolute temperature (in K), βγ = 24.8 x 10
-6

 K
-1

, and Θγ
D
 is the Debye temperature of 

austenite (280 K). Since ΔLγ/Lγ
0
 proved to be similar to that of Fe for small additions of 

alloying elements, it is considered compositional independent and the austenite lattice 

parameter aγ can be calculated by: 

γ

γ γ 0

γ

Δ
1r

L
a a

L

 
   

 

 (3) 

Gradients in Mn concentration at the joint and the adjacent base metal were 

measured by EPMA (Fig. 5). Considering the maximum and minimum content of Mn at 

the base metal and the joint (0.92 and 0.64 wt.%, respectively), we obtain from Eq. (1) 

that it represents a change in aγ
r
 of 0.0003 Å. This change in aγ

r
 is well below the 

experiment resolution. Therefore, aγ is given by Eq. (3) assuming that XMn equals that of 

the base metal. 

Regarding C content gradients, its diffusion distance δC is calculated between the 

finish temperature of austenite formation on heating (Ac3) and Ar3 
8
, which is given by 

[40]: 

1/2

δ ( )
/

C C

dT
D T

dT dt

 
  
 
  (4) 

where DC is the C diffusion coefficient in austenite in m
2
/sec, and dT/dt is the rate of 

temperature change in ºC/sec. 

Considering the constant rate of heating to 975ºC and cooling to room 

temperature (1ºC/sec), DC can be expressed as [41]: 

                                                 
8
 At the base metal, only austenite exists in this temperature range. Moreover, 

the joint is enriched in Ni and Cr, which are austenite stabilizers. Thus, the joint is also 

austenized between Ac3 and Ar3. 
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where xC is the atomic fraction of C in austenite. From equations (4) and (5), and for a C 

content equal to that of the base metal (0.113 wt.%), we obtain δC = 45.5 µm. Thus, δC 

compares well with the joint’s width, and a uniform C distribution can be assumed at 

the joint. 

In Fig. 10, the measured aγ are plotted against temperature for each austenite 

population observed in Fig. 7 - from 975 ºC to 405 ºC, from which we can highlight: 

 Above Ar3, γ1 and γ2 come from C-enriched and C-unenriched austenite 

populations - of 0.21 wt.% C and 0.09 wt.% C provided by Eq. (3), respectively. 

It is noteworthy that the mean C concentration of the base metal is almost 

coincident - within the instrument resolution - with that of γ2. Regarding the 

contribution of the base metal to γ1 and γ2, this is the result of an incomplete 

austenization process, which led to a nonhomogeneous distribution of C in the 

austenite phase. The C-enriched and C-unenriched austenite populations were 

formed from pearlite and proeutectoid ferrite [30]. 

 At Ar3, γ ꞌ shows an abrupt change in slope of austenite lattice parameter with 

temperature compared with γ1 and γ2. This phenomenon is due to C enrichment 

of austenite during austenite-to-ferrite transformation of the base metal [42]. At 

Ar1, aγ reaches 3.655 Å, corresponding to XC = 0.96 wt.%. Despite this value is 

above the eutectoid composition of the metastable Fe-C phase diagram - 0.77 

wt.% C [43], concentrations above 1 wt.% C in retained austenite are reported 

elsewhere [37]. However, γ2 is still observed. Consequently, this austenite 

population has an additional contribution: the joint. 

 γ2 starts increasing its C content at 560 ºC, and finally vanishes at 405 ºC. 

Therefore, a C diffusion-controlled austenite transformation at the joint takes 

place in this temperature range. 

By means of microstructural characterization, it was not possible to discern 

between coalesced bainite and coalesced martensite at the joint. However, this can be 
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determined analysing the start temperature of bainite and martensite formation (Bs and 

Ms, respectively). Bs and Ms can be calculated as follows [44]
,
[45]: 

2 2745 110 59 39 68 106 17 6 29S C Mn Ni Cr Mo Mn Ni Cr MoB X X X X X X X X X         (6) 

491.2 302.6 30.6 14.5 16.0 8.9 2.4 8.6S C Mn Si Ni Cr Mo CoM X X X X X X X        (7) 

where BS and MS are in ºC, and Xi are in wt.%. 

Considering the chemical composition gradient at the joint, we proceed as 

follows. Except the slight reduction in Mn, the joint is enriched in austenite stabilizers - 

mainly Ni and Cr, which lower the start temperature of austenite transformation. In 

particular, the least amount of austenite stabilizers takes place at the interface between 

the joint and the base metal - with a mean chemical composition of 0.09C, 1.8Ni, 1.2Cr, 

0.8Mn, 0.4Si (wt.%), as it was pointed out in section 3.3. Therefore, at this position both 

BS and MS are maximum. From Eq. (6) and (7) we obtain BS = 566 ºC and MS = 387 ºC, 

respectively. BS is almost coincident with the observed start temperature of a C 

diffusion-controlled austenite phase transformation, and well above MS. Consequently, 

austenite-to-bainite transformation takes place at the joint - in particular, into coalesced 

bainite. 
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Fig. 10. aγ vs. temperature during cooling. γ1 (square marks) and γ2 (circle 

marks) are shown from 975ºC to Ar3. Below Ar3, γ ꞌ (diamond marks) and γ2 are also 

shown. The dotted and short-dashed lines represent aγ provided by Eq. (3) for 0.09 and 

0.21 wt.% C, respectively. Both Ar1 and Ar3 from the base metal are indicated, in 

addition to the calculated BS at the joint/base metal interface. Error bars show the 

calculated instrument resolution - 0.0013 Å. 

 

4.2. Orientation imaging analysis 

4.2.1. Orientation relationship between bainite laths at the joint 

From Fig. 8 (c), it is evident the orientation spread within each ferrite lath at the 

joint, which includes two coplanar KS variants (that is, with the same {111}γ parent 

austenite plane) with the minimum misorientation - 10.53º around 110 α axis, together 

with the intermediate NW variant (e.g.: KS variants V1-V4 with NW variant V3, 

respectively). In addition, variant selection is not evident since the measured 

orientations are spread over almost all the predicted KS and NW variants. Moreover, the 

deviation of ferrite laths from KS and NW ORs is mostly distributed between 0º and 5º - 
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and up to 10º. Thus, OI characterization is very similar to that reported from 

proeutectoid ferrite [36], lath martensite [35] and bainite [46] in steels, to Fe-Ni alloys 

[34], although in our work the sample had already been tensile tested. 

On the other hand, variant selection between ferrite laths is detected by means of 

the misorientation distribution function (MDF) 
9
. The misorientations with the highest 

frequency were found for angles in the range of 58-60º (Fig. 11): a primary peak at 

111 /60º, together with a much less secondary peak at 101 /60º. Considering that 111

/60º misorientation is only predicted by KS OR [33], it is evident that it better describes 

the measured OR. Morito et al [35] reported 101 /60º as the misorientation with the 

highest frequency for block boundaries for lath martensite in a broad range of C 

concentration. However, in this work MDF includes misorientations between laths, 

blocks and packets - aggregations of blocks with the same {111}γ plane in the parent 

austenite grain. 

Consequently, a near KS OR - with 111 /60º as the misorientation with the 

highest frequency - is more representative than that both the KS and NW ORs are 

obeyed without any variant selection. 

 

                                                 
9
 MDF depicts the frequency of misorientation axis/angle pairs within the 

fundamental zone - i.e.: using the minimum angle/axis pair representation [55]. 
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Fig. 11. Contour plot of the MDF from the joint in Fig. 8. (c), for misorientation 

angles in the range of 58-60º. The value of each contour line is expressed in multiples of 

uniform density. Also, the short and long dashed lines delimit the fundamental zone for 

58 and 60º, respectively. 

 

4.2.2. Epitaxial growth of the transient liquid phase 

As it was shown in Fig. 8, both the joint and one of its neighbouring ferrite 

grains share the same parent austenite grain. This evidences the epitaxial growth during 

the TLPB process. However, the theoretical case in which both solidification fronts 

meet at the mid-thickness of the transient liquid phase at the end of the isothermal 

solidification stage in not taking place. In that case, the joint should be composed of at 

least two different parent austenite grains. Consequently, other approaches should be 

considered, namely: 

 Temperature gradient-TLPB (TG-TLPB) [47]: by means of imposing a 

temperature gradient across the joint in lieu of a constant one, a directionally 

solidified TLPB can be achieved. It is well known that temperature gradients 

take place through induction heating [48]. However, heat input must be carried 

out under specific conditions to obtain the desired temperature gradient (e.g.: 
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along LD) [49]. Consequently, it is very unlikely that TG-TLPB has happened in 

this work. 

 Grain growth during the holding time t at TP: since TLPB process was carried 

out at 1300ºC, prior austenite grain (PAG) growth took place at the joint. This is 

evident in the FWHM of {100}α from coarse ferrite grains of the base metal 

measured by XRTD (Fig. 6 (a)), which were formed from even coarser PAGs. 

PAGs growth during TLPB is described as follows (Fig. 12). Once the transient 

liquid phase has completed its solidification, PAGs are able to grow inside the 

joint without any restriction. At that point, some PAGs will grow at the expense 

of others, allowing portions of the joint to belong to a single parent austenite 

grain, as it was detected by EBSD (Fig. 8 (c) & (d)). 
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Fig. 12. Austenite grain growth during the holding time t at TP. (a) Late stage of 

the isothermal solidification. Most of the transient liquid phase (violet coloured) at the 

joint (light-blue coloured) is penetrating PAG boundaries (arrow marks). PAGs from 

each of the pieces to be joined (star marks) are separated by the transient liquid phase. 

(b) PAGs’ grain growth at the joint, after completion of isothermal solidification. 

Portions of the joint can belong to one PAG (square marks), or more PAGs (triangle 

marks). 

 

4.2.3. Cellular structure of ferrite grains adjacent to the joint 

Fig. 8 & 9 show coarse ferrite grains at each side of the joint, with a strong 

orientation spread. In addition, these grains resemble aggregations of subgrains, with a 

cell-block-like structure. 

This type of structure was already reported when studying recrystallization of 

coarse-grained ferritic steels under a wide range of experimental conditions. For 

example, Oudin et al [50] reported this type of structure in Ti-stabilized interstitial free 

steel under warm deformation using hot torsion - in the ferritic range. Also, Raabe et al 

[51] obtained similar results in cold-rolled Nb-containing ferritic stainless steel. 

However, in this work cell blocks were identified - for the first time - in a ferritic steel 

through a tensile test carried out at room temperature. 
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The observed cellular structure of ferrite grains next to the joint confirms the 

presence of a significant plastic deformation developed during the tensile tests 
10

. 

However, the deviation angle from the predicted near KS OR of bainite laths at the joint 

is within the reported range from undeformed samples. Thus, a distinguishable evidence 

of plastic deformation at the joint was not found due to the tensile test. 

Despite this fact, decohesion of the joint/base metal interface is not detected, 

highlighting the strength and ductility of the bond. 

 

5. Conclusions 

TLPB of carbon steel bars, using Ni-based amorphous metallic foils as filler 

material, was performed. For the first time, its mechanical properties and microstructure 

were simultaneously characterized. The major results - for the selected base metal/filler 

material combination to replace TCs in SETs - are summarized as follows: 

 The strength of the joint is above that of the HAZ, being the latter of at 

least 98.5 % of the UTS of the base metal. In addition, the attained 

ductility is in accordance with what is typically specified for steel arc-

welded joints.  

 A coalesced lath-like microstructure is observed at the joint, contrasting 

from that of the base metal. However, decohesion of the joint/base metal 

interface is not observed. 

 Austenite transformation temperature ranges of all the observed 

microconstituents were measured by in situ XRTD. In particular, to 

determine the presence of coalesced bainite in lieu of martensite at the 

joint. 

 Due to the chemical composition gradient across the joint, an abrupt 

microstructure change is observed. Thus, it renders impossible to 

determine only from visual inspection microconstituents from both the 

joint and the base metal that share the same parent austenite grain. 

However, and for the first time, OI analysis enabled to find definite 

                                                 
10

 Orientation spread can take place in coarse grains, plastically deformed or not. 
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experimental proof of the epitaxial nature of the TLPB process. In 

particular, that portions of the joint and its adjacent base metal can 

belong to a single parent austenite grain due to PAGs growth. This is in 

contrast to the theoretical case, in which the joint must be composed of at 

least two different parent austenite grains. 

 For the first time, and by means of OI, cell block structures were 

identified in ferritic steel samples subjected to tensile test carried out at 

room temperature. 
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Appendix 

The 12 crystallographic variants for the NW orientation relationship [34]. 

Variant Plane Parallel Direction Parallel 

V1 (   )γ // (   )α [2 ̅ ̅]γ // [  ̅ ]α 

V2  [ ̅2 ̅]γ // [  ̅ ]α 

V3  [ ̅ ̅ ]γ // [  ̅ ]α 

V4 ( ̅  )γ // (   )α [ ̅ ̅ ̅]γ // [  ̅ ]α 

V5  [12 ̅]γ // [  ̅ ]α 

V6  [1 ̅ ]γ // [  ̅ ]α 

V7 (  ̅ )γ // (   )α [2  ̅]γ // [  ̅ ]α 

V8  [ ̅ ̅ ̅]γ // [  ̅ ]α 

V9  [ ̅  ]γ // [  ̅ ]α 

V10 ( ̅ ̅ )γ // (   )α [  ̅ ]γ // [  ̅ ]α 

V11  [ ̅  ]γ // [  ̅ ]α 

V12  [ ̅ ̅ ]γ // [  ̅ ]α 
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The 24 crystallographic variants for the KS orientation relationship [33]. 

Variant Plane Parallel Direction Parallel 

V1 (   )γ // (   )α [ ̅  ]γ // [ ̅ ̅ ]α 

V2  [ ̅  ]γ // [ ̅  ̅]α 

V3  [   ̅]γ // [ ̅ ̅ ]α 

V4  [   ̅]γ // [ ̅  ̅]α 

V5  [  ̅ ]γ // [ ̅ ̅ ]α 

V6  [  ̅ ]γ // [ ̅  ̅]α 

V7 (  ̅ )γ // (   )α [   ̅]γ // [ ̅ ̅ ]α 

V8  [   ̅]γ // [ ̅  ̅]α 

V9  [ ̅  ̅]γ // [ ̅ ̅ ]α 

V10  [ ̅  ̅]γ // [ ̅  ̅]α 

V11  [   ]γ // [ ̅ ̅ ]α 

V12  [   ]γ // [ ̅  ̅]α 

V13 ( ̅  )γ // (   )α [  ̅ ]γ // [ ̅ ̅ ]α 

V14  [  ̅ ]γ // [ ̅  ̅]α 

V15  [ ̅  ̅]γ // [ ̅ ̅ ]α 

V16  [ ̅  ̅]γ // [ ̅  ̅]α 

V17  [   ]γ // [ ̅ ̅ ]α 

V18  [   ]γ // [ ̅  ̅]α 

V19 (   ̅)γ // (   )α [ ̅  ]γ // [ ̅ ̅ ]α 

V20  [ ̅  ]γ // [ ̅  ̅]α 

V21  [  ̅ ̅]γ // [ ̅ ̅ ]α 

V22  [  ̅ ̅]γ // [ ̅  ̅]α 

V23  [   ]γ // [ ̅ ̅ ]α 

V24  [   ]γ // [ ̅  ̅]α 

 

 

Data availability 

The raw data required to reproduce these findings are available to download from 

http://dx.doi.org/10.17632/yzzkvw82hc.1. 
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