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A B S T R A C T

A new microextraction methodology, called reverse ultrasound-assisted emulsification-microextraction (R-
USAEME) was developed to extract Tilmicosin (TILM) and Tylosin (TYL) from chicken fat samples, prior to their
determination by capillary electrophoresis with UV-detection. The R-USAEME was based on the use of an
aqueous ionic liquid ([Bmim]Cl) solution with sodium tartrate and sodium phosphate as extractant, applying an
ultrasound probe (91W; 7.5 min). A good linearity was obtained in a range from 35 to 200 μg kg−1 with relative
standard deviations (RSDs) lower than 13% using matrix-matched calibration on five chicken fat samples. The
quantification limits (LOQs), ranged from 17.4 to 55.0 μg kg−1 and from 22.1 to 47.0 μg kg−1 for TILM and TYL
respectively. The obtained recoveries were between 73 and 117%. The analytical parameters clearly showed the
applicability of the method for the extraction and quantification of macrolides in this complex biological sample.

1. Introduction

In the last decades, there has been a significant increase in the use of
antibiotics in veterinary with therapeutic and prophylactic purposes or
as growth promoters. The improper use of these drugs in different
treatments for animals can leave residues in tissues or food products
causing allergic reactions in some hypersensitive individuals and bac-
terial resistance (Lozano & Trujillo, 2012; McEvoy, 2002; J.; Wang,
2008). Macrolides are used against a wide variety of Gram-positive and
Gram-negative bacteria (Tao et al., 2012) in the treatment of re-
spiratory diseases, and to prevent microbial infections in cattle, sheep
and poultry. Macrolides are lipophilic molecules, consisting of macro-
cyclic lactone rings with 14–16 carbons linked to carbohydrate mole-
cules.

Two of the most prevalent macrolides used in veterinary are Tylosin
(TYL) and Tilmicosin (TILM). TYL is produced by the microorganism
Streptomyces fradiae while TILM is a semi-synthetic compound obtained
from TYL (Katz & Baltz, 2016). The presence of these analyte residues in
food products derived from animals has a significant impact on human
health. Therefore, maximum residue limits (MRLs) for macrolides are
established for each animal tissue. According to the Commission Reg-
ulation (EU), these limits for TYL and TILM in poultry are: 100 μg kg−1

and 75 μg kg−1 for skin and fat, 100 μg kg−1 and 1000 μg kg−1 for liver,
respectively (The European Commission, 2010). For the Codex

Alimentarius Commission, these MRLs are 100 μg kg−1 (fat and skin)
and 100 μg kg−1 (liver) for TYL and for TILM are 250 μg kg−1,
2400 μg kg−1 (FAO & WHO, 2015, p. 41).

Separation techniques, as liquid chromatography (LC) or capillary
electrophoresis (CE) with ultraviolet detection, have been used to de-
termine macrolides in different matrices (Blackwell et al., 2004; García-
Mayor, Gallego-Picó, Garcinuño, Fernández-Hernando, & Durand-
Alegría, 2012). Nowadays, the LC coupled to mass spectrometry in
single or tandem mode (LC-MS, LC-MS/MS) is the most common
technique used for macrolides determination in samples such as milk,
muscle (Jank et al., 2015), honey (Jin et al., 2017), eggs (K. Wang, Lin,
Huang, & Chen, 2017), kidney and liver (Rizzetti, de Souza, Prestes,
Adaime, & Zanella, 2016).

The most difficult step in the analysis of these biological samples is
the pretreatment, which involves the extraction/preconcentration of
macrolides. Common procedures used for this are liquid-liquid extrac-
tion (LLE) (Patyra, Nebot, Gavilán, Cepeda, & Kwiatek, 2018), solid-
phase extraction (SPE) (Feng et al., 2016) and dispersive solid-phase
extraction (Boscher, Guignard, Pellet, Hoffmann, & Bohn, 2010),
among others. However, these procedures are tedious, time-consuming
and use a large volume of toxic organic solvents.

In this context, new microextraction methods, like liquid phase
microextraction (LPME), have appeared as they are easier, faster and
ecofriendlier sample pretreatment procedures. One of the most used
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ones is the dispersive liquid-liquid microextraction (DLLME) presented
by Assadi and co-workers (Rezaee et al., 2006). Even though DLLME is
a low-cost simple method which generally uses small amounts of or-
ganic solvents as extractant and/or dispersant, these solvents are still
highly toxic. In order to solve this problem, the use of environmentally
friendly extraction solvents, such as ionic liquids (ILs) and the re-
placement of the dispersive solvents by ultrasound energy, vortex,
temperature, among others, are a good solution (Barfi, Rajabi, &
Asghari, 2015).

ILs are organic salts consisting of a combination of organic or in-
organic anions and organic cations. The ILs have many characteristic
properties such as a wide liquid range, low volatility, good thermal
stability and low toxicity (Pavlović, Babić, Horvat, & Kaštelan-Macan,
2007), making possible their use as extraction solvent for a wide array
of analytes.

On the other hand, the use of ultrasound energy instead of disper-
sion solvents improves the performance of DLLME; being this energy an
excellent tool to generate fine emulsions from two immiscible liquids
with an increased analyte transfer between the two phases. This pro-
cedure is called ultrasound-assisted emulsification microextraction
(USAEME) (Regueiro, Llompart, Garcia-Jares, Garcia-Monteagudo, &
Cela, 2008). In the last ten years, the reverse phase extraction mode,
which uses an aqueous solution as extractant, has emerged as an at-
tractive alternative to the traditional extraction processes, mainly to
avoid the use of organic solvents (Fernández, Vidal, & Canals, 2018;
Hashemi, Raeisi, Ghiasvand, & Rahimi, 2010).

In this work, a new methodology based on reverse phase micro-
extraction mode assisted by ultrasound energy was developed to de-
termine TYL and TILM in chicken fat samples. Detection was performed
by capillary electrophoresis system equipped with a diode array de-
tector. In the ME method, a small volume of IL, used as extractant, and a
hydrophobic sample were employed, giving way to a water-in-oil (W/
O) emulsion. The new procedure was named reverse ultrasound-as-
sisted emulsification-microextraction (R-USAEME). The extraction
process was improved by adding salts (sodium tartrate and sodium
phosphate) to an IL aqueous solution and using the ultrasound probe to
accelerate the emulsion formation.

It is important to point out that, to the best of our knowledge, this is
the first time that an extraction methodology has been developed to
extract TYL and TILM from chicken fat samples.

2. Material and methods

2.1. Reagents and solutions

All reagents used were from analytical grade. TILM and TYL stan-
dards were acquired from Sigma–Aldrich (Buenos Aires, Argentina).
Individual standard solutions (1000mg L−1) were prepared in me-
thanol (Merck, Buenos Aires, Argentina) and kept in the dark at −18 °C
maintaining their stability for at least one month. The standard working
solutions were daily prepared by appropriate dilutions of stock solu-
tions with methanol.

Both ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]
BF4) and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), as well as
sodium monobasic phosphate, sodium tartrate and sodium hydroxide
were purchased from Merck (Darmstadt, Germany).

The electrophoretic buffer solution was daily prepared dissolving
the appropriate amount of sodium dibasic phosphate and phosphoric
acid in ultrapure water (18mΩ) provided by Milli-Q system (Millipore,
Bedford, USA).

2.2. Instrumentation

Ultrasound-assisted extractions were carried out using a Sonics
Vibra cell, VCX130 with a titanium probe tip (9.5 mm diameter, 130W
nominal power, 20 kHz frequency). A Rolco centrifuge was employed to

separate the emulsified samples.
A Beckman Coulter CE instrument MDQ equipped with a diode

array detector was used. The capillaries were also from Beckman
Coulter. Control and data processing were carried out using a 32 Karat
software.

2.3. Samples

With the aim of assessing the applicability of the proposed method,
five chicken fat samples from different origins were analyzed. The first
and second (A and B) were purchased in retail markets and the third (C)
in a supermarket. In order to ensure the absence of antibiotics, the last
two samples (D and E) came from ecologic farms of the zone of Bahía
Blanca city, Buenos Aires province. All samples were from Argentina
and they were acquired during 2017.

2.4. Sample preparation and microextraction procedure

The solid chicken fat was heated at 75±1 °C on a hot plate. The
liquid fat was filtered under vacuum through a 22 μm paper filter
(Fig. 1 a). 5 g of the filtered sample were introduced in a centrifuge tube
and 500 μL of extraction solvent ([Bmim]Cl, sodium tartrate and so-
dium phosphate) were added. The ultrasound probe was immersed in
the tube containing the mixture and then it was placed in an ice bath.
The microextractions were performed at 91W for 7.5min applying
ultrasonic cycles of 40 s (on)/20 s (off). As a result, water-in-oil (W/O)
emulsion was formed (Fig. 1 b). Then, by centrifugation at 2500 rpm for
5min, the emulsion was disrupted and the aqueous phase was sedi-
mented at the bottom of the conical tube (Fig. 1 c). After the oil phase
was discarded, the aqueous phase was cleaned through a nylon syringe
filter (Gamafil, Buenos Aires, Argentina) and collected in a CE vial for
the subsequent detection step. All analytical process is illustrated in
Fig. 2.

2.5. CE analysis

The separation was carried out in a fused-silica capillary (62 cm
effective length, 50 μm id) with a separation voltage of 22.5 kV at 25 °C.
All solutions were filtered through a 0.22 μm filter (Gamafil, Buenos
Aires, Argentina) before being introduced into the electrophoretic
system. Then, a mixture of 50 mmolL−1 sodium dibasic phosphate and
phosphoric acid at pH 4.50 was used as background electrolyte. The

Fig. 1. Different extraction process steps applying the proposed method.
a) 5.0 g of liquid fat sample, heated at 75 ± 1 °C on a hot plate, before ex-
traction.
b) Emulsified sample after adding 500 μL of extractant solvent (2.5 mmolL−1

[Bmim]Cl, 0.00625 mmolL−1 sodium tartrate and 0.00625 mmolL−1 sodium
phosphate) and applying ultrasonic cycles of 40 s (on)/20 s (off) at 91W of
power for 7.5 min.
c) The two phases as the result of centrifugation at 2500 rpm for 5min.
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capillary was conditioned by flushing 0.1mol L−1 HCl for 5min, ul-
trapure water for 3min, and finally by buffer solution for 5min be-
tween runs. This sequence improved the reproducibility of separation
when fat samples were analyzed. A hydrodynamic injection mode was
used applying 0.8 psi for 10 s. The TILM and TYL electropherograms
were recorded at 290 nm.

2.6. Statistical data analysis

Every parameter of the calibration curves has been calculated with
ULC 2.0 (Univariate Linear Calibration) computer software. Additional
statistical calculations were performed using Microsoft Office Excel ®

2010 (Microsoft, Redmond, WA, USA).

3. Results and discussion

3.1. Optimization of R-USAEME variables

The variables of the R-USAEME procedure were optimized taking
into account the CE separation and using a univariate method. This
study was carried out at 290 nm with spiked samples at MRL for TILM
(75 μg kg−1) and TYL (100 μg kg−1) allowing for a fast, simple and
environmentally friendly methodology. The fortification was performed
adding the suitable amount of each analyte to the filtered sample. This
mixture was then homogenized for 1min using a vortex, kept at room
temperature and applied to real chicken samples in order to demon-
strate the applicability of the new method.

3.1.1. Extraction solvent
In order to develop an efficient extraction, the selection of the ex-

tractant is one of the most important parameters. Factors such as: low
solubility in the oily phase, high affinity for the target analytes, easy
dispersion in oil during sonication process and, in this case, compat-
ibility with CE were considered.

In other extraction procedures of macrolides from biological

samples, solvents such as methanol, methanol/water, McIlvaine buffer
solution, and acetonitrile/water were successfully used (Carmona,
Andreu, & Picó, 2017; Jank et al., 2015; Jin et al., 2017). Preliminary
tests were performed to assess the above mentioned solvents without
achieving good results.

Due to the fact that ILs have a high ability to extract lipophilic
molecules (Flieger, Czajkowska-zelazko, Rzadkowska, Szacoń, &
Matosiuk, 2012), [Bmim]BF4 and [Bmim]Cl were tested. Since the
obtained recoveries (between 49.2 and 74.8%) were not satisfactory, an
extraction process using both ILs assisted by an ultrasound probe was
carried out. However, low recovery values were obtained again.

According to the literature, TYL and TILM increase their water so-
lubility in salt form and, being tartrates and phosphates their most
soluble ones (Chen et al., 2014; Hamscher, Limsuwan, Tansakul, &
Kietzmann, 2006), the addition of sodium tartrate and sodium phos-
phate to both IL solutions was tested. The recovery values showed
notorious improvement, especially when [Bmim]Cl was used.

An IL aqueous solution with sodium tartrate and sodium phosphate
assisted with ultrasound energy, was finally selected as the most ap-
propriate extraction method. This can be explained because a new in-
terphase is created when the cation of the IL undergo adsorption on the
hydrophobic surface as a lipophilic specie (Flieger et al., 2012). Besides,
the major solubility of TYL and TILM salts favors their extraction from
fat samples, and as [Bmim]Cl is less chaotropic (water-destructuring/
more hydrated) (Wu, Zhang, & Wang, 2008) than BF4−, its contact with
the oily phase enhances the extraction process.

The IL and both salt concentrations were optimized and the studied
ranges and their optimal values are shown in Table 1. Also, the effect of
the extraction solvent volume on macrolide recoveries was evaluated.
For that, different volumes of the mixture of IL and salts were tested.
The results showed that by increasing the volume better recoveries
were obtained, however, higher volumes than 500 μL produced a di-
lution effect (see Table 1).

3.1.2. Ultrasound
On the other hand, the ultrasonic probe variables were also tested. It

was observed that working at high power and/or continuous sonica-
tion, the temperature in the sample exceeded the allowed one by the
ultrasound manufacturer, causing an interruption in the sonication
process. Therefore, different ultrasonic cycles were evaluated, taking
into account that an ultrasonic cycle is determined as the sonication
time (on) and the intermittent time (off). Because the temperature was
still high, an ice bath was used to keep the temperature constant. By
working with low power and/or short time, the emulsification was in-
complete because the contact between both immiscible liquids was not
reached. This can be due to the fact that oil viscosity hinders the process
of dispersion (López-García, Vicente-Martínez, & Hernández-Córdoba,
2014). In conclusion, to obtain the best emulsion formation, the studied

Fig. 2. The analytical process to determine TILM and TYL, including extraction, preconcentration and detection steps.

Table 1
Optimization study: assessed ranges and their optimal values.

Variable Studied range Optimum value

Ionic liquid [mmolL−1] 0–10 2.5
Salts [molL−1] 0–0.05 0.00625
Extractant volume [μL] 200–600 500
Cycles [s]
- on 20–60 40
- off 5–40 20

Time (on + off) [min] 1–10 7.5
Power [W] 52–117 91
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ranges and optimal values for ultrasonic probe variables are shown in
Table 1.

3.2. Optimization of capillary electrophoresis analysis

The electrophoretic analysis was done using the CZE mode. The pH
buffer solution and its concentration were tested taking into account the
extraction step. Since the pH of the extractant was around 5.00, a pH
background electrolyte solution was tested at 2.50, 4.50 and 7.50 using
sodium dibasic phosphate and phosphoric acid mixture. At pH 2.50, the
peak areas were higher but the time of analysis was too long. When pH
7.50 was used, the peaks of analytes were overlapped with the elec-
troosmotic flow signal. Even though, the peak areas of the analytes
were slightly lower at pH 4.50, the time of analysis was reduced from
22min to 14min, so this pH value was selected. Then, other buffer
solutions at this pH were tested (citric acid-citrate, acetic acid-acetate)
and taking into account the reproducibility of the signals, the best re-
sults were obtained using phosphoric acid-phosphate buffer solution.

The buffer ionic strength was also evaluated changing the con-
centration of the sodium dibasic phosphate solution from 20 to 100
mmolL−1. The best results in terms of selectivity and sensitivity were
obtained working with 50 mmolL−1.

The optimization of instrumental variables was performed varying
the applied voltage (range: 15–25 kV) and injection time (5, 10 and
15 s) at 0.8 psi to evaluate their effects on time and resolution of the
analyte peaks. As is well known, the resolution was better with lower
voltages and the time of migration were lower with higher voltage.
When 22.5 kV were applied, a better compromise between both para-
meters was obtained. Regarding the injection time, it was noted that
after 10 s, the peaks in the electropherograms were flattened and the
migration time were longer. Therefore, this value was selected as op-
timum, in hydrodynamic mode. The migration time for TILM and TYL
were 8.5 min and 14.1min respectively, taking into account the optimal
values of each variable.

3.3. Analytical parameters and analysis of real samples

As it can be seen in Section 2.3, five different chicken fat samples
were analyzed. After applying the whole proposed method no analytes
were found.

Since the samples presented a complex matrix, it was necessary to
evaluate its effect. For this purpose, a comparison between the slopes of
the calibration curves, obtained using standard solutions prepared in
extraction solvent and the ones obtained with matrix–matched stan-
dards, was carried out working at the same linear ranges. The residual
variances of both linear regressions were statistically comparable
(comparison performed by means of an F test), so a t-test was carried
out by using the following equation:
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tcalculated value for TILM in sample C was 12,454 which was much
greater than ttabulated (0.025; 6) value (2.44). Therefore, the quantification
of the analytes was performed by using matrix-matched standard so-
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Massart, D. L., Vandeginste, B. G., Buydens, L. M. C., De Jong, S., Lewi,
P. J., Smeyers-Verbeke, J., & Mann, 1998) and preparing each con-
centration level by triplicate. In all cases homoscedasticity was not
fulfilled. As an example, the values obtained for TILM in sample C were
Fcalculated= S2major/S2minor= 40.32 and Fcritic(0.05;2;2) = 39.00. Since the
calculated F value was much greater than Fcritic, the variances presented
statistically significant differences. Thus, a weighted least-squares re-
gression was used for quantification purpose instead of ordinary least-
squares applying the following equation:

=
∑ − −

∑ −
b

w x x y y
x x

( ( ¯ ). ( ¯ ))
( ¯ )

i i w i w

i w
2

= −a y bx¯ ¯w w

where = = =∑
∑

∑
∑Wi x y, ¯ , ¯S w

w x
w w

w y
w

1
y

i i
i

i i
i2 , xi and yi re-

present the components of each point in the calibration curve.
In addition to the selectivity assessment (in terms of matrix effects),

the whole validation method was performed by evaluating the fol-
lowing analytical parameters: linearity, LOD, LOQ, trueness and pre-
cision in terms of repeatability.

Linearity was investigated with replicates of matrix-matched stan-
dard solutions (n=3), in the range from 35 to 200 μg kg−1 for both
analytes (p < 0.05 for linearity test).

The detection and quantification limits (LODs and LOQs) were both
calculated from weighted least-squares regression data (Miller & Miller,
1993). The obtained LOD values were ranged from 5.2 to 18.9 μg kg−1

and from 6.6 to 12.8 μg kg−1 for TILM and TYL respectively. Regarding
the LOQ values, they were ranged from 17.4 to 55.0 μg kg−1 and from
22.1 to 47.0 μg kg−1 for TILM and TYL respectively. It is important to
point out that all LOQ values were much lower than the MRL ones.

Trueness was assessed from recovery studies. Thus, the fortified
samples were prepared taking into account the MRL values for TILM
(75 μg kg−1) and TYL (100 μg kg−1). The added concentrations for this
study were 0.5 MRL, MRL and 1.5 MRL of each analyte. The obtained
values are reported in Table 2, for the five analyzed samples and the
two analytes. As it can be seen, satisfactory recoveries between 73 and
117% (calculated as (Valuefound*100%)/Valueadded) were obtained,
considering the recommendation criterion (European Commission,
2000), except for the sample E in the TILM determination. In this case,
the recovery values were too high at the three concentration levels,
probably due to the interaction of TILM with some components of the
sample which were co-extracted. Thus, TILM was not determined in this
sample.

The repeatability of the method was also evaluated by analyzing 3
replicates of the matrix-matched calibration solutions at the three
concentration levels for both analytes. Table 2 shows that the obtained
values were lower than 20% (European Commission, 2000). The good
results obtained demonstrated the applicability of the method in the
determination of TYL and TILM in chicken fat samples.

Table 3 includes different characteristics of previously described
analytical methods, highlighting the extraction step in the determina-
tion of macrolide antibiotics. It is of utter importance to mention that
most of them use large volumes of organic solvents in comparison with
the proposed method that utilizes the lowest solvent volume. This can
be explained because it takes advantage not only of the ability of water-
soluble tartrates and phosphates, but also it is the only one that uses IL
and ultrasound energy as strategy for extraction.

4. Conclusion

A new analytical method for the determination of TILM and TYL in
chicken fat samples was developed. The extraction as well as the pre-
concentration of the analytes using an IL aqueous solution as extractant
and an oily sample, was achieved with a new methodology called re-
verse ultrasound-assisted emulsification-microextraction (R-USAEME).
This procedure takes just 12.5 min in the extraction process and

without the use any toxic organic solvent. The extractant is directly
injected into the CE equipment, taking just 15min to complete the
analysis. The obtained RSD% values were satisfactory (lower than
12.4%) and the LOQs were lower than MRLs established by European
Legislation and Codex Alimentarius Commission.

Therefore, we have achieved a simple, fast, low cost and en-
vironmentally friendly methodology to detect TILM and TYL in chicken
fat samples.

This new procedure is a promising approach which opens the doors
to new protocols that may include other lipophilic antibiotics as well as
fat from other sources. In this way, it contributes to the monitoring of
products of animal origin with the premise of improving their quality as
food for human consumption.
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