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Evolution of instabilities in filament buckling processes
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In this work we study the dynamical buckling process of a thin filament immersed in a highly viscous
medium. We perform an experimental study to track the shape evolution of the filament during a constant
velocity compression. Numerical simulations reproduce the dynamical features observed from the experimental
data and allow quantifying the filament’s load. We observe that both the filament’s load and the wave number
evolve in a stepwise manner. In order to achieve a physical insight of the process, we apply a theoretical
model to describe the buckling of a filament in a viscous medium. We solve a hydrodynamic equation in
terms of normal modes for clamped-clamped boundary conditions and constant applied load. We find a good
agreement between experimental data and simulations, suggesting that the proposed mechanistic model captures
the essential features underlying the dynamical buckling process.
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I. INTRODUCTION

The buckling of filaments under compression in highly
viscous media is a phenomenon of interest in numerous ap-
plications in physics, biology, medicine, and engineering and
involves a wide range of spatial and temporal scales. Exam-
ples include the manufacturing of fiber-reinforced composites
[1,2], the mechanics of biological polymers [3–5], the motility
of microorganisms [6,7], and the movement of cytoskeleton’s
microtubules [8]. Polymeric solutions allow us to improve
the displacement in enhanced oil recovery [9] and fibers are
used to prevent proppant flow back in hydraulic fracturing
[10] in the oil industry, whereas optical fibers are employed
as sensors for measurements in groundwater [11]. In all these
processes, the movement of the flexible filaments in a confined
environment can produce their entrapment or buckling.

The buckling process is an instability that occurs when a
compressing force is applied to the end of a slender rod. If
the applied force exceeds a critical value [12,13], then the
originally straight filament collapses and buckles. The Euler
or critical force depends on the rod geometry and its elasticity.
For a clamped-clamped filament its value is

Pc = 4π2 EI

L2
, (1)

where E , I , and L are the filament’s Young modulus, second
moment of area of cross section, and length, respectively.

Whereas the critical force is independent of the
environment where the buckling takes place, the timescale of
the subsequent filament deformation strongly depends on the
surrounding viscosity [14]. Thereby, the time course of the
shape evolution will be slower the more viscous the fluid.
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As mentioned, the motion of filaments in viscous media is
present in several natural phenomena and industrial applica-
tions. Typically, in these cases, the applied load is not constant
and thus an equilibrium situation is not attained. For this
reason it is of great interest to understand the conditions under
which a flexible filament undergoes deformation, as well
as its characteristic shape and amplitude. Such deformation
could be responsible, for example, for the entrapment of the
filament, preventing its transport through the medium.

In this work we register the buckling of a thin rod when
it is compressed in a very viscous medium, i.e., glycerol,
at constant speed. We recover the filament shapes from the
movies and compute the wave number as the deformation
evolves for different compressing speeds. To relate these
shapes with the load, we develop a numerical simulation of the
process and obtain a relationship between the wave number
and the load. To achieve a physical understanding, we also
develop a mechanical theoretical model of a filament under
a constant load. This model is based on normal modes with
characteristic wave numbers that are directly related to the
compressing force.

II. MECHANICAL MODEL

The configuration of a uniform slender semiflexible fila-
ment is determined by the position of its neutral axis r(l ),
with l a curvilinear coordinate along the filament varying from
0 to L (unstressed length). The configuration has elastic and
bending energies given by:

VE = 1

2
EA

∫ L

0
ε2(l )dl, (2)

VB = 1

2
EI

∫ L

0
C2(l )[1 + ε(l )]2dl, (3)
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respectively, in terms of the strain ε(l ) = |r′(l )| − 1 and cur-
vature C(l ) = |r′(l ) × r′′(l )| |r′(l )|−3 of the filament, where
the primes indicate derivative with respect to the coordinate l .
The other parameters are the Young modulus E , the area A,
and the second moment of area I of the cross section of the
filament.

Using a variational principle for both potential energies, the
forces fE (l ) and fB(l ) per unit length on an infinitesimal ele-
ment of the filament can be obtained. The full expressions are
rather complicated, especially for the bending term, involving
up to the fourth spatial derivative of the position r(l ).

We also take into account a drag force as the filament
moves in a homogeneous viscous medium. The precise fluid
dynamics is beyond the scope of this work, although we
consider a low-Reynolds-number regime. Therefore, the drag
force acting on each element is directly proportional to its
velocity fvis(l ) = −cṙ(l ), where the dot accounts for time
derivative. The drag coefficient per unit length c is propor-
tional to the dynamical viscosity and also depends on the
geometry of the filament.

In an overdamped regime, the inertia term can be neglected
and, finally, the equation of motion for an infinitesimal seg-
ment is given by

fE (l ) + fB(l ) + fvis(l ) + fext (l ) = 0, (4)

where fext denotes applied external forces. The solution is
determined by the initial configuration of the filament and its
boundary conditions. For small deviations from the straight
shape and constant compressing load P, Eq. (4) has a general
analytic solution

δy(l, t ) =
∞∑

n=1

∑
σ

aσ
n �σ

n (P, l ) exp
(
�σ

n t
)

(5)

in terms of symmetric (σ = +1) and antisymmetric (σ =
−1) normal modes �σ

n , which depend parametrically on P
[15]. For a force larger than Pc, there is at least one mode
which exponentially grows in time (�σ

n > 0). In this case
the corresponding mode �σ

n is a linear superposition of two
sinusoidal waves with definite wave numbers,

κ± =
√

p ±
√

p2 − 4γ

2
, (6)

where p = L2P/(EI ) and γ = �cL4/(EI ). For the clamped-
clamped boundary condition the values of γ as a function of
p, for each mode n and parity σ , can be obtained numerically
finding the roots of a nonlinear equation [15]. For P � Pc

these values can be approximated by

γ σ
n ≈ p2

4
− (

nπ
√

2p − 4π2n2 +
√

2p εσ
n

)2
, (7)

where εσ
n is an oscillating function of p, much smaller than

1. Replacing this approximation in Eq. (6), the corresponding
wave numbers are

κ± ≈
√

p

2
±

√
2π2n2(p − 2π2n2) ±

√
2pεσ

n . (8)

Numerically, it turns out that this approximation is very
accurate even for values of P near the critical value. As an

FIG. 1. Wave numbers κ− and κ+ (dash and continued thin lines)
as a function of compressing force for n = 1 symmetric (σ = +1)
mode. Thick line: Effective wave number. Thick dash line corre-
sponds to mean wave number κ = √

p/2 = √
2π 2P/Pc. Inset: Sketch

of a normal mode and inflection points in circular dots.

example, we plot in Fig. 1 the two wave numbers for n = 1
symmetric (σ = +1) mode, which have the largest growing
rate �σ

n .
For a given mode, if the precise value of the compressing

force is unknown, then it would be difficult to determine
the two characteristic wave numbers from the inspection of
the filament’s shape. This is even more difficult if there is a
superposition of modes or an arbitrary shape, as it typically
occurs in the experiments.

To overcome this limitation we estimate an effective wave
number using the following criterion: For a perfect sinusoidal
wave, the distance between two consecutive inflection points
is trivially a half wavelength (see inset Fig. 1). Therefore,
for a particular configuration of the filament, we compute
the position of N inflection points, obtaining (N − 1) values
for a half wavelength. Averaging these values, we compute
an average wavelength λ̄. Finally, we estimate κeff = 2π/λ̄.
This criterion also gives a normal standard error, calculated
from the dispersion of the computed wavelengths. In Fig. 1
we plot this effective wave number applied to the theoretical
solutions (thick line). We observe discontinuities, given by the
appearance of new inflection points with the increasing force.

This approximation may not work properly in the ex-
perimental case: Observed amplitudes can be comparable to
L, boundary conditions are more complex, and compressing
force can vary in time and be nonhomogeneous along the
filament. However, these expressions give a relation between
the compressing load (difficult to measure) and the wave
numbers in a filament’s shape.

III. EXPERIMENTS

The experiments were carried out inside a horizontal glass
cell, open at the top, of length Lc = (35.0 ± 0.1) cm, width
Wc = (15.0 ± 0.1) cm, and height Hc = (20.0 ± 0.1) cm.
The filaments used were acetate strips of rectangular section
of width a = (4.0 ± 0.1) mm, thickness e = (100 ± 1) μm,
and length L = (28.6 ± 0.1) cm. Flat filaments were used

033004-2



EVOLUTION OF INSTABILITIES IN FILAMENT BUCKLING … PHYSICAL REVIEW E 99, 033004 (2019)

FIG. 2. Schematic view of the experimental set-up: 1, horizontal
cell; 2, filament; 3, syringe pump; 4, acrylic rod; 5, piston; 6, camera.

to reduce possible torsions and to induce deformation in the
plane perpendicular to the optical axis of the camera.

The Young’s modulus of the filaments was (2.5 ±
0.5) GPa. This value was estimated using the cantilever
method by measuring the deflection of the filament at one of
its ends when a transverse force is exerted on the free end.

Each end of the filament was held by two small pieces of
acrylic. One of these pieces was fixed to one end of the cell,
while the other end was joined, at the opposite side, to an
acrylic rod that could be moved inside the cell. The device
was uniformly illuminated from the bottom of the cell using a
light panel.

The cell was filled with glycerol until the filament was
fully covered. The fluid density and viscosity at room temper-
ature were approximately equal to 1.26 g/cm3 and 1.49 Pa s,
respectively.

The complete device is shown in Fig. 2.
For compression experiments the filament was placed in

the holders, making sure that it was completely stretched
and without torsion. Then the filament was compressed either
manually or by means of the piston of the syringe pump
(Harvard MA 55-52226, Model 22), pushing the movable end
of the filament at a constant speed. The advance of the piston
was stopped after moving a few centimeters from the initial
position to guarantee small amplitude deformations. After the
piston arrest, the filament relaxes.

Images were recorded during compression and relax-
ation using a digital camera, with spatial resolution of
0.17 mm/pixel and a frame size of 900 × 2010 pixels. Images
were acquired at constant time intervals (1/60 s or 1/70 s).

All images were processed after each experiment in order
to determine the instantaneous position of the piston and the
filament’s shape. To this purpose, we adapted the tracking
routines described in Ref. [16]. Briefly, points belonging to
the filament were manually selected from the initial frame and
used by the code as an initial guess for the tracking. Then
the intensity profiles in the transverse direction at successive
pixels along the filament extent (x coordinate) were interpo-
lated and the positions of the maximum were computed (y
coordinate). This method provides a subpixel determination
of the filament coordinates. The error of the tracking was
0.13 mm. The procedure was repeated automatically for all
the following frames in the movie. The compressing velocity
was measured by image processing, too, and included into the

code in order to determine the edge of the filament at each
frame.

IV. NUMERICAL SIMULATION

There are no analytic solutions for the hydrodynamic
equation (4) in the complex experimental situation, where the
speed of compression can be controlled but not the compress-
ing force. Nevertheless, the physics of the deformation can
be explored by means of a finite-element simulation of the
process. To this end, the filament is considered as N equal
segments of length �l = L/N . The configuration is deter-
mined by the (N + 1) coordinates rn of the end points of each
segment, where 0 � n � N . In terms of these coordinates, the
elastic and bending potential energies can be written as:

VE = 1

2

EA

�l

N−1∑
n=0

(|rn+1 − rn| − �l )2, (9)

VB = EI

�l

N−1∑
n=1

[
1 − (rn+1 − rn) · (rn − rn−1)

|rn+1 − rn| |rn − rn−1|
]
. (10)

Other expressions can be considered, depending on how the
discrete derivatives are defined, although these expressions
converge to Eqs. (2) and (3) in the limit �l → 0. Deriving
the potential energies with respect to the coordinate rn, elastic
and bending forces are obtained,

FE
n = −∂VE

∂rn
, (11)

FB
n = −∂VB

∂rn
, (12)

which are applied to the corresponding bead n. The vis-
cous force is given by Fvis

n = −c�l ṙn for 1 � n � (N − 1).
For the end beads n = 0 and n = N , the viscous force is
Fvis

n = −c(�l/2)ṙn, corresponding to the drag on both ending
semisegment.

Neglecting again the inertia, we arrive at (N + 1)-coupled
first-order differential equations,

ṙn = αn

c�l

(
FE

n + FB
n + Fext

n

)
, (13)

where αn = 1 for 1 � n � (N − 1) and αn = 2 for n = 0
and n = N . Given the parameters E , A, I , c, and boundary
conditions, these equations are integrated numerically from a
given initial configuration. For the values of the experimental
velocities, N = 150 segments was enough to capture the
shape and observed wave numbers.

The chosen initial configuration is a cosine shape which
best approaches the observed relaxed experimental shape.
Both ends fulfill a clamped condition. We implement it nu-
merically in the following way: We force the first bead to
move horizontally at constant velocity while the last one
is fixed. For the clamped-clamped boundary condition we
constrain the second and penultimate bead to move only
horizontally.
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V. RESULTS AND DISCUSSION

A. Estimation of the drag coefficient

Our model depends on several parameters, most of which
can be estimated quite accurately from tabulated values or
direct measurements. However, this is not the case for the drag
coefficient c, which has complex dependencies with the shape
and inclination of the body, the Reynolds number of the flow,
the roughness of the surface, and the viscosity of the fluid, to
mention a few.

In the experiments we observe two clearly different stages
of the buckling process. The first one is related to the dy-
namics due to the pushing constant velocity of the piston
(compression). The second one corresponds to the dynamics
taken place when the piston stops and the filament shape
relaxes (relaxation). The dynamical response of the filament
shows to be very sensitive to the drag coefficient, which plays
a key role in both compression and relaxation stages. Conse-
quently, it is mandatory to get a precise value of this parameter
to achieve a more accurate description of the experimental
data.

From the relaxation stage we can extract information about
the characteristic time of this process, which is directly related
to the drag coefficient c. For this purpose, we carry out the
following procedure. We track the shape of the filament in
the relaxation regime for different frames of one movie at
arbitrary times. Then we simulate the corresponding shapes
at the same times for a given c and we take the euclidean
distance between the simulated and experimental contours.
We repeat this procedure adjusting c until the distance be-
comes minimum (within an uncertainty interval), obtaining
an optimum c = (91 ± 1) dyn s/cm2. We check that this
value is independent of the selected times or the chosen
experimental set. Then this value is used for the simulations
in the compression stage.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

FIG. 3. Snapshots of two experiments. [(a) and (b)] v0 = 0.062
cm/s, t = 10.0 s, and 33.3 s, respectively. [(c) and (d)] v0 = 5 cm/s,
t = 0.0625 s, and 0.25 s. The experimental tracking [left panels
(green)] and the numerical simulation [right panels (yellow)] are
plotted as thin lines 1 cm below the filament to facilitate visual
inspection. Horizontal and vertical scale bars represent 3 cm and 1
cm, respectively.

TABLE I. Experimental and simulated effective wave number κ

for snapshots shown in Fig. 3

Data κexpL κsimL

(a) 13.8 ± 0.5 12.6 ± 3.5
(b) 10.8 ± 1.6 11.9 ± 1.3
(c) 62 ± 18 53.4 ± 7.9
(d) 46 ± 15 34.6 ± 5.0

B. Constant speed compression

We analyze in detail two experiments performed at two
different velocities. Initially, the filament is straight up to the
tracking error. The boundary conditions are clamped-clamped
(Fig. 3).

We perform numerical simulations of the buckling process
for the two experimental velocities. We choose an initial
configuration with an amplitude of 1 mm, which is much
smaller than the length of the filament. In Fig. 3 we show
experimental snapshots at two different times for each veloc-
ity, where we also plot the shapes obtained with the tracking
procedure (green) and with the simulations (yellow). Some
differences can be noticed, mostly in the positions of the
maxima and minima, although the amplitudes and shapes
are rather similar. We do not assign these differences to a
failure of the physical model but to a sensitivity to initial
configuration of the filament, as assessed numerically.

Applying the inflection point criterion described above
to the experimental and simulated shapes, we compute the
effective wave number κ (see Table I). A good agreement
between simulations and experiments is found for high and
low velocities.

For the simulations, we also compute the longitudinal
forces at the fixed and moving ends. A representative result
is plotted in Fig. 4.

The observed behavior is qualitatively similar for all speeds
and initial shapes, provided that the initial amplitude is much
smaller than L. For short times (notice the logarithmic scale
in time), the forces display a very rapid growth provided by
an isostatic compression. During this period (t < 0.03 s in

FIG. 4. Forces computed at the moving (continuous line) and
fixed (dash line) ends of the filament, and effective wave number
(dots) as a function of time, for v0 = 0.062 cm/s.
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FIG. 5. Wave number as a function of average force for the
two simulations of the experiments at v0 = 0.062 cm/s (circles) and
v0 = 5.0 cm/s (triangles). The continous curve corresponds to the
theoretical value κ+ for the symmetric mode n = 1.

the case shown), the filament’s shape and amplitude do not
vary, although the force increases several orders of magnitude.
This increasing force excites high-wave-number modes that
grow exponentially in time. At some point the force achieves a
maximum and it decays rapidly while the amplitude increases.
Later, as the force continues to decrease, the wave numbers
go down in a stepwise manner. This nonmonotonic behavior
of the wave numbers is a time-shift delay with respect to the
compressing force, suggesting a memory effect due to the
response timescales of the different modes. In other words,
there is a kind of hysteresis in the dynamical behavior of the
system.

In Fig. 5 we plot the wave number as a function of the
force for both theory and simulations. For the theoretical
case, we plot κ+ for the first symmetric mode n = 1. For
simulations we only plot data after the maximum force was
attained to avoid the isostatic compression stage. Even for
velocities with two orders of magnitude of difference, there
is an overlap in the intermediate range of forces, indicating a

similar underlying mechanism. The fact that simulations are
slightly above theoretical curves is a sign of the hysteresis
mentioned above.

Although our theoretical model is based on a constant
compressing load, which is not the case of the experiments, it
gives us a physical understanding of the relation between the
wave numbers obtained experimentally and the load, which is
a great challenge to measure in experimental conditions.

VI. CONCLUSIONS

In this paper we studied the dynamics of buckling instabil-
ities taking place when a thin filament immersed in a very
viscous fluid is compressed. Particularly, we explored the
buckling evolution during a constant velocity compression.
We determined an effective wave number to characterize the
shape of the filament and its evolution during the compression.
By means of numerical simulation, we were able to relate
the applied compressing force with the wave number for
both high and low velocities. This is compatible with the
theoretical predictions for constant loads, pointing out a simi-
lar underlying mechanism. Increasing the compressing speed
results in higher forces and larger wave numbers. After the
maximum force is reached, forces and wave numbers evolve
in a stepwise manner.

Our numerical model enables the study of the time evo-
lution and relation between the compressing force and the
wave number. The simulations also suggest a memory effect
in the dynamics, although this does not affect the general
conclusions obtained in this work.

These results are interesting since they allow us to estimate
the values of the forces acting on a filament in a noninvasive
way, just measuring the wavelength from a filament’s image.
This could be very useful for instance in the case of micro-
tubules within cells, whose buckling indicates internal forces
controlling important mechanical processes in the intracellu-
lar medium.

ACKNOWLEDGMENTS

M.F.C. and A.G.M. acknowledge Grant No.
14420140100013CO PIO-CONICET (AR).

[1] K. Yasuda, N. Mori, and K. Nakamura, Int. J. Eng. Sci. 40, 1037
(2002).

[2] D. Y. Yoo, S. Kim, G. J. Park, J. J. Park, and S. W. Kim,
Composite Structures 174, 375 (2017).

[3] M. C. Lagomarsino, I. Pagonabarraga, and C. P. Lowe,
Phys. Rev. Lett. 94, 148104 (2005).

[4] A. Ghosh, J. Samuel, and S. Sinha, Phys. Rev. E 76, 061801
(2007).

[5] M. Emanuel, H. Mohrbach, M. Sayar, H. Schiessel and I. M.
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