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Abstract We prove a variant of Läuchli’s completeness theorem for intuitionistic
predicate calculus. The formulation of the result relies on the observation (due to
Lawvere) that Läuchli’s theorem is related to the logic of the canonical indexing
of the atomic topos of Z-sets. We show that the process that transforms Kripke-
counter-models into Läuchli-counter-models is (essentially) the inverse image of a
geometric morphism. Completeness follows because this geometric morphism is an
open surjection.
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1 Introduction

In Section 3 of [10], commutative triangles

of subobjects are presented as the content of a “logic in a narrow sense” which is
contrasted with the fact that “in topology, geometry, combinatorics, etc. there often
arises the need to compare Ei → B which are not necessarily monomorphisms”. The
contrast suggests the need for a “logic in a broader sense” that can deal with cases
where the attributes of B form non-posetal categories.
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Section 4 of [10] relates these narrow and broad aspects of logic via the following
result: the inclusion of the bicategory of posets into the bicategory of categories
has a left adjoint which is a bifunctor (hence preserves adjointness) and which
preserves products. This left adjoint is meant to embody the central idea of “there
exists a proof” and is referred to as the Curry–Läuchli adjoint, in reference to
Curry’s observation (concerning the analogy between modus ponens and laws of
functionality) and Läuchli’s completeness result [8].

The results in this paper can be seen as an application but, in a sense, they are not
new. We will use some of the things that the broad sense of logic has taught us in
order to better understand one of its sources of inspiration.

In the author’s commentary of [11] “Läuchli’s 1967 success in finding a com-
pleteness theorem for Heyting predicate calculus lurking in the category of ordinary
permutations” is recalled as inspiration for the introduction of hyperdoctrines. In
the introduction to [9] it is mentioned that hyperdoctrines appear to be related
to Läuchli’s result (see [8]) but that “the precise relation is yet to be worked
out”.

The first attempts to establish the precise relation were in lectures by Lawvere
“at the AMS Los Angeles meeting in August 1967 as well as another AMS meeting
in New York (which became the ‘hyperdoctrines’ paper) and at the 1968 Batelle
meeting in Seattle” (Kock and Lawvere, private communication). Further work in
this direction is [6] which unfortunately was never published. There, Kock uses pre-
doctrines to formulate and prove a variant of Läuchli’s result in the form of a pre-
doctrinal representation theorem. (Kock’s work was done in 1970 at Dalhousie while
he was participating in the seminar which gave rise to the theory of elementary
toposes and, according to Lawvere, it gave the participants of the seminar “much-
needed encouragement” that the ideas being developed were “potentially fruitful”
[Kock and Lawvere, private communication].)

The relation between Läuchli’s theorem and hyperdoctrines is also explored in
[14] where fibrations are used to give a uniform treatment of completeness theorems
for intuitionistic predicate calculus. In this framework, Läuchli’s result also appears
as a corollary of a representation theorem. (See also [3].)

Both in [14] and [6] the structure used to study Läuchli’s work is the hyperdoctrine
determined by the canonical indexing of the topos SetZ of Z-sets. That is, the
hyperdoctrine determined by the pseudo-functor which assigns SetZ/X to each
Z-set X.

It is our impression that the approaches just cited disregard a lot of structure that
is present in the categories involved in the original context. The purpose of this paper
is also to study Läuchli’s completeness theorem and its relation to the canonical
indexing of SetZ; but in contrast to the approaches in [14] and [6] we will rely more
on topos-theoretic machinery. We believe that the topos theoretic tools available
nowadays allow a more ‘geometric’ proof which we hope the readers will find a good
complement to those in [6, 8, 14].

Very roughly, Läuchli’s result and its proof can be described as follows. He defines
a new kind of model which he calls proof assignments. The completeness theorem
then states that for any closed formula A that is not provable in Heyting’s predicate
calculus there is a “counter-proof-assignment” for A. The proof relies on Kripke’s
work to produce a Kripke model � where A does not hold and then, out of �, Läuchli
constructs a proof assignment where A ‘does not hold’.
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We will show that this process of building proof assignments out of Kripke
models can be seen as the inverse image of a geometric morphism which is an
open surjection. General results about exact completions will allow us to relate this
geometric morphism with SetZ and to deduce completeness.

Concerning the organization of the paper. In Section 2 we recall Läuchli’s work
in more detail. Most of this section is taken from [8]. It is included here to ease the
comparison with our approach.

Section 3 recalls the necessary notions to formulate our version of Läuchli’s result.
Section 4 proves the main result and Section 5 compares the work reported here with
that in [6] and [14].

2 Läuchli’s Theorem

Consider formulas containing n-place predicate letters, a distinguished propositional
constant f (‘false’), individual constants, variables u, v, w, . . . and connectives ∧, ∨,
⇒, ∃, ∀. The set of closed formulas with individual constants from � is denoted by
F(�). Let � and � be countably infinite sets and c0 ∈ � a designated element. To
each formula A associate a set S(A), the set of ‘possible proofs of A’:

S(A) = � if A is atomic,
S(A ∧ B) = S(A) × S(B)

S(A ∨ B) = S(A) + S(B)

S(A ⇒ B) = S(B)S(A)

S(∀vA) = S(A)�

S(∃vA) = � × S(A)

Läuchli notes that since S(Av
c) = S(A) for all individual constants c, S(∀vA) can

be interpreted as the set of all choice functions which assign to each c ∈ � an element
of S(Av

c). Now define a proof assignment as any function p which assigns to each
closed formula A ∈ F(�) a set p[A] such that:

p[f] ⊆ p[A] ⊆ � if A is atomic,
p[A ∧ B] = p[A] × p[B]
p[A ∨ B] = p[A] + p[B]
p[A ⇒ B] = {x ∈ S(A ⇒ B) | xy ∈ p[B] for all y ∈ p[A]}
p[∀vA] = {x ∈ S(∀vA) | xc ∈ p[Av

c ] for all c ∈ �}
p[∃vA] = {(c, x) | c ∈ � and x ∈ p[Av

c ]}

Läuchli notes that p[A] ⊆ S(A) for all p and A, that the elements of p[A ⇒ B]
are functions with domain S(A) and that, in particular, the identity function on S(A)

belongs to p[A ⇒ A]. Notice also that contrary to a natural expectation, p[f] need
not be empty. This is essential and we will discuss it further below.

Now define D to be the least class containing the sets {0, 1}, �, �, such that
whenever D1, D2 ∈ D, then D1 × D2, D1 ∪ D2 and DD2

1 are also in D. Then let
F = ⋃D and call the elements of F functionals. A functional is called simple if it
can be described by a closed term definable from 0, 1, c0, variables, application, pair-
formation and λD-abstraction relative to a domain D ∈ D.
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Let σ be a permutation on � ∪ � which leaves invariant the sets � and � and
the designated element c0. Läuchli extends σ to a permutation on F as follows:
σ0 = 0, σ1 = 1; if g is a function then (σg)x = σ(g(σ−1x)). A functional � ∈ F is
called invariant, if σ� = �; that is if � is a fixed-point of σ . Läuchli notes that simple
functionals are invariant but that there are uncountable many invariant functionals
that are not simple. If we denote derivability in the intuitionistic predicate calculus
by � then the main result in [8] can be stated as follows.

Theorem 2.1 (Läuchli) Let A be a closed formula containing no individual constants
other than c0.

1. If � A then there is simple functional � such that � ∈ p[A] for all proof
assignments p.

2. If �� A then there is a p such that p[A] contains no invariant functional.

So, classically, � A if and only if for every p there is an invariant � ∈ p[A].
After stating Theorem 2.1, Läuchli shows that the theorem is not true if one

restricts to proof assignments p with p[f] = ∅. As an example, he shows that
for B = ∀v(Rv ∨ ¬Rv), p[¬¬B] contains an invariant functional for every p with
p[f] = ∅.

Concerning the proof of Theorem 2.1, Läuchli first states that “the first item of
his theorem is a routine variation on the proof of Theorem 62, [5] p. 504”. In order
to prove the second item, Läuchli relies on Kripke’s completeness theorem in the
following way.

Let � be the set of all finite sequences of natural numbers (including the empty
sequence 	) together with an ideal element U . Let R be the binary relation on �

such that sRs′ iff either s′ = U or s is an initial segment of s′. Let 
 be a function
with domain � and countable sets as values, such that whenever sRs′ and s �= s′, then

s ⊆ 
s′ and (
s′) − (
s) is infinite. It is also assumed that 
	 is infinite. Then
define F(
s) to be the set of formulas with individual constants from 
s.

A model is defined as a binary function � : F(
U) × � → {T, F} satisfying the
following conditions:

if �(A, s) = T then A ∈ F(
s);
if �(A, s) = T and sRs′ then �(A, s′) = T;
(!!) if �(f, s) = T then �(A, s) = T for all A ∈ F(
s);
�(A ∧ B, s) = T iff A ∧ B ∈ F(
s), �(A, s) = T and �(B, s) = T;
�(A ∨ B, s) = T iff A ∨ B ∈ F(
s) and either �(A, s) = T or �(B, s) = T;
�(A ⇒ B, s) = T iff A ⇒ B ∈ F(
s) and for all s′ with sRs′, if �(A, s′) = T

then �(B, s′) = T;
�((∀v)A, s) = T iff �(Av

c , s′) = T for all s′ with sRs′ and all c ∈ 
s′;
�((∃v)A, s) = T iff �(Av

c , s) = T for some c ∈ 
s.

After defining the notion of model in this way Läuchli states the following.

Lemma 2.2 Let A ∈ F(
	) with not � A. Then (and only then) there is a model �

such that �(A,	) = F.
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He then comments that the proof of Lemma 2.2 “is clear from Kripke’s work [7].
The element U is no bother: Any � which is defined on � − {U} can be extended to
� by setting �(A, U) = T for all A ∈ F(
U)”.

The extent to which the proof is clear from Kripke’s work may be a matter of taste
and/or background. In any case, the reader should be warned that Kripke works with
formulas that may have negation ¬ but which do not have f and, more importantly,
the condition that Kripke uses to define �(¬A, s) does not coincide with Läuchli’s
�(A ⇒ f, s). This warning is, of course, related to the highlighted condition on �(f, s)
and to the fact that p[f] need not be empty for a proof assignment p. (See also the
last two paragraphs in p. 223 of [3].)

In order to relate models and proof assignments Läuchli introduces the set
of prime numbers P, the poset D of natural numbers ordered by divisibility and
fixes a bijection q : � → P. Then he defines a function ϕ : � → D by ϕ	 = 1,
ϕ(s ∗ n) = (ϕs)q(s ∗ n) and ϕU = 0 where s ∗ n denotes the sequence obtained by
adding the number n to the end of the sequence s. Moreover, in the opposite
direction, Läuchli defines a function s : D → � by sn = glb{s | n divides ϕs}. After
that he states five simple consequences of the definitions which essentially say the
following. (Here we are considering � as a set partially ordered by the relation R.
See the definition of � above.)

Lemma 2.3 The functor ϕ : � → D is full (as well as faithful) and is right adjoint to
s : D → �.

(Lawvere commented that the fact that the connection between � and D was
given by an adjoint functor “was further confirmation that categorical logic, while
analogous to its posetal reflection, actually serves moreover as an objective logic
that produces not only statements but needed things for the statements to be about.
Similarly the fixed point operation crucial to Läuchli is really the right adjoint part of
a geometric morphism”)

After the facts that we have resumed as Lemma 2.3 comes the more intricate part
of [8]: it is explained how to transform a model � into a proof assignment p and then
it is proved by induction on the complexity of a formula A that (roughly) if � is a
counter-model for A then p[A] has no fixed points (see Lemma 2 in [8]).

3 Categorical Formulation

Having recalled Läuchli’s result in some detail let us go back to its categorical
formulation. We will assume that the reader is familiar with the interpretation of
first order logic in hyperdoctrines (see [11] and [17]).

We will only work with two types of hyperdoctrines (always over toposes). The
first type is the standard hyperdoctrine which assigns to each object X in the
underlying topos E , the poset of subobjects of X (see [4, 13]). We will denote this
hyperdoctrine by sE . The second type is the one determined by the assignment
X �→ E/X. This hyperdoctrine will be denoted by pE . When interpreting formulas
in pE , relation symbols of type X are interpreted as maps with codomain X, disjunc-
tions, conjunctions and implications are interpreted using coproducts, products and
exponentials (in the slices E/X) respectively and quantifiers are interpreted using
the adjoints to change of base π∗

0 : E/Y → E/(Y × Z ) along projections.
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Remark 3.1 The fundamental observation (due to Lawvere) for the categorical
understanding of Läuchli’s work is that the interpretation of logical symbols in
p(SetZ) is the same as that in the definition of proof assignment. This is clear for
the propositional connectives. The issue for quantifiers is less clear but only because
Läuchli avoids open formulas (and introduces the set � to get away with it). Related
to this, let us mention as a curiosity, that in the key part of his proof, when the time
comes to build a proof assignment with certain properties, Läuchli takes � = �.

For a fixed signature Sg and a hyperdoctrine H, Sg-structures in H are defined
as usual (see e.g. Section 5.1 in [17] or Section D1.2 in [4]). If M is a Sg-structure
and S is a sort in Sg, MS will denote the interpretation of S and we extend this
notation to contexts as usual. If −→x .φ is a formula-in-context the interpretation
[[−→x .φ]] (also denoted by [[φ]] if no confusion arises) will be defined as usual except
that, for essentially the same reasons that the p[f] should not be required to be
empty, we need to slightly adjust the way to interpret f. (In the following definition,
! : M(S1, . . . , Sn) → 1 is the unique map to the terminal object and !∗ is the usual
notation for H! : H1 → HM(S1, . . . , Sn) where H is the underlying hyperdoctrine.)

Definition 3.2 A rich Sg-structure is a Sg-structure M together with an object Mf
in H1 such that for every relation symbol R → S1, . . . , Sn in Sg, there is a map
!∗(Mf) → MR in M(S1, . . . , Sn).

Given a rich Sg-structure M, the interpretation [[−→x .φ]] of a formula-in-context
is defined inductively as usual except that [[−→x .f]] is interpreted as !∗(Mf). We say
that that −→x .φ holds in a Sg-structure M if [[−→x .φ]] is terminal in the category
HM(S1, . . . , Sn), where S1, . . . , Sn is the sequence of sorts associated with the context−→x . A standard inductive argument shows the following.

Lemma 3.3 If −→x .φ is a formula-in-context with xi : Si then there is a morphism
[[f]] → [[φ]] in M

−→
Si .

So a rich Sg-structure allows to interpret formulas φ in such a way that f ⇒ φ

always holds. As the logical connectives and quantifiers are interpreted as usual, it
should be clear that first order intuitionistic logic is sound for its interpretation in
terms of rich Sg-structures. The reason for considering rich Sg-structures is that they
allow new counter-models to appear.

Example 3.4 Consider the topos SetZ of Z-sets. We denote the essentially unique
representable also by Z. For each positive integer n, the integers modulo n (denoted
here by Zn and with underlying set {0, . . . n − 1}) have a canonical structure of
Z-set. We denote the resulting object in the topos SetZ also by Zn. Consider the
hyperdoctrine p(SetZ) and the signature given by a single propositional constant A.
It is not difficult to check that, for any structure M with Mf = ∅, [[¬A ∨ ¬¬A]] has
a fixed-point. On the other hand, consider the rich structure M with Mf = Z6 and
MA = Z2. In this case, [[¬A ∨ ¬¬A]] has a fixed point if and only if there is a map
1 → Z6

Z2 or a map 1 → Z6
(Z6

Z2 ). Clearly, there is no map Z2 → Z6 so we are left
to check if there is a map Z6

Z2 → Z6. But Z6
Z2 has a cycle of length 3 so a map as

above can not exist and hence [[¬A ∨ ¬¬A]] does not have a fixed point. (The use of
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¬A ∨ ¬¬A as an example for the need to consider proof assignments with p[f] �= ∅
is attributed to Läuchli in the Remark after Theorem 3.8 in [3].)

Finally, we will consider sequents-in-context φ �−→x ψ (see, for example, Defini-
tion D1.1.5 in [4]) and we will say that one such is satisfied or that it holds in a rich
structure M if the formula in context −→x .(φ ⇒ ψ) holds in M or, equivalently, if there
is a morphism [[φ]] → [[ψ]] in the fiber determined by the context.

The version of Läuchli’s result that emerges from the work of Kock, Lawvere and
Harnik–Makkai can be stated as follows.

Theorem 3.5 Let Sg be a countable signature and let φ �−→x ψ be a sequent in that
signature. If φ �−→x ψ is not provable then there is a rich Sg-structure M in p(SetZ) such
that φ �−→x ψ does not hold in M.

In particular, let α be a closed formula in the empty context. If �� α then the result
above says that there is a rich structure where the sequent does not hold. Now, the
interpretation of α is a morphism a : A → 1 in SetZ and the fact that the sequent
does not hold means that a does not have a section (that is, A has no fixed-points).
In other words, if we let � � � : SetZ → Set be the unique geometric morphism to
the category of sets then we have the following.

Corollary 3.6 Let α be a closed formula in the empty context. Then � α if and only
if for every rich structure in p(SetZ), the object [[α]] has a fixed point (i.e. �[[α]] �= ∅;
recall comment after Lemma 2.3).

Our proof of Theorem 3.5 will also rely on Kripke’s work [7]. But instead of seeing
models as Läuchli does, we are simply going to think of Kripke models as objects in
the presheaf topos Set� (see the first paragraph of p. 318 in [13]). So we reformulate
Lemma 2.2 as follows.

Lemma 3.7 Let Sg be a countable signature and let φ �−→x ψ be a sequent in that
signature. If φ �−→x ψ is not provable then there is a rich Sg-structure M in s(Set�)

such that φ �−→x ψ does not hold in M.

It seems fair to say that our work does not clarify the reasons why rich structures
(or other models with the interpretation of f different from empty) are necessary.
Läuchli’s comment cited after Lemma 2.2 suggests that such structures are already
present, at least implicitly, in Kripke’s work. Or perhaps, in completeness theorems
with respect to a restricted class of Kripke models (see Proposition 5.6 in [14]).

4 Our Proof

Let us now outline our proof of Theorem 3.5. The main idea is that there exists:

1. A topos G together with
2. A geometric inclusion SetZ → G which strongly relates the hyperdoctrines

p(SetZ) and sG and
3. An open surjection G → Set� .
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Recall that open geometric morphisms can be described as those whose in-
verse images preserve first order logic. On the other hand, a geometric morphism
f : E → F is a surjection if and only if for any pair of subobjects U and V of X in
F , f ∗U ≤ f ∗V in E implies U ≤ V in F . So, from a logical point of view, an open
surjection f : E → F can be thought of as saying that E is ‘as complete as F ’ (at least,
in the sense that if there is a model M in F where the sequent φ � ψ is not satisfied
then there is a model f ∗M in E where the same sequent is not satisfied either). As
Set� is complete by Lemma 3.7, the existence of an open surjection G → Set� implies
that G is complete. The strong relation between sG and p(SetZ) mentioned above
allows to transfer completeness of the first hyperdoctrine to that of the second. So
the result will follow.

The construction of G and the precise nature of the relation between p(SetZ)

and sG is better explained as an application of results about coproduct and exact
completions. We discuss these issues in Section 4.1. In Section 4.2 we explain how
to build the open surjection G → Set� . Finally, in Section 4.3 we review the whole
proof.

4.1 The Exact and Coproduct Completions

In this section we recall the facts about exact and coproduct completions that
we need. First, consider coproduct completions. For any category C there exists a
category FamC and a full and faithful functor C → FamC which is universal, in the
right 2-categorical sense, among functors C → D where D has small coproducts (see
Section 4 in [2]).

In particular, consider the atomic topos SetZ of Z-sets. Let C be the full subcat-
egory of SetZ determined by the representable Z together with the Zn for all n ≥ 1
(recall Example 3.4). The category C is small and equivalent to the full subcategory
of indecomposable objects of SetZ. Since SetZ has small coproducts, the universal
property of the coproduct completion induces a functor FamC → SetZ such that the
following diagram commutes.

Using Lemma 4.1 in [2], and the fact that every Z-set is a coproduct of connected
ones, we can conclude the following.

Lemma 4.1 The functor FamC → SetZ is an equivalence.

Consider now the forgetful 2-functor from the category of exact categories to
that of categories with finite limits. This functor has a left bi-adjoint with a very
simple explicit description discussed in Section 2 of [2]. For any category with finite
limits C, the result of applying this construction is usually denoted by Cex/lex. This
notation was devised to distinguish the construction from a related one denoted by
D �→ Dex/reg where D is a regular category (see Section 6 of [2]). We will not need
ex/reg-completions, so we denote Cex/lex simply by Cex.
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Proposition 4.2 Let C be a category with finite limits.

1. There is a full embedding y : C → Cex which preserves finite limits and whose
image is essentially the subcategory of projectives of Cex. Moreover, C is exact if
and only if y has a left adjoint which preserves finite limits.

2. Every object of Cex is covered by a projective.
3. If C is a locally cartesian closed pretopos then so is Cex.
4. For every X in C, the poset of subobjects of yX is (iso to) poset reflection of C/X.
5. If A is small and FamA has finite limits then (FamA)ex is equivalent to the presheaf

topos SetA
op

.

Proof All these facts are proved in [2]. Indeed, the first three items are proved in
Lemmas 2.1 and 2.2, the fourth is proved in the discussion just before Section 3 and
the fifth is the Corollary after Lemma 4.1. ��

The third item of Proposition 4.2 implies that s(Eex) is a hyperdoctrine when E
is a topos. The fourth item allows us to relate this hyperdoctrine with pE . Indeed,
let a : A → X and b : B → X in E . These induce subobjects a and b in the poset
of subobjects of X as an object in Eex. Moreover, a ≤ b if and only if there is a
map f : A → B such that b f = a in E . So, if we have a counter-model in pE then
we have one in s(Eex). The simple lemma below shows (using the first four items of
Proposition 4.2) that we can go the other way round.

Lemma 4.3 Let Sg be a signature and let M be a rich Sg-structure in s(Eex) for a topos
E . Then there exists a rich Sg-structure N in p(E) such that for every sequent σ , σ is
satisfied in M if and only if it is satisfied in N.

Proof For each sort S in Sg, choose a projective cover eS : NS → MS of MS. Using
that projectives are closed under finite products it is clear that for every context X
the original choices of projective covers induce a cover e : NX → MX. Projectivity
of the covers allows one to lift interpretation of function symbols and by pulling
back along the chosen projective covers we can obtain interpretation of relation
symbols. Denote the resulting Sg-structure by N. It should be clear that it is also a rich
Sg-structure.

Now let φ be a formula in context X and let [[φ]] � MX be the interpretation in
M. Then, the result e∗[[φ]] � NX of pulling back [[φ]] along e is the interpretation
of φ in N (because pulling back preserves Heyting structure and quantification).
Moreover, if φ � ψ holds in NX then it must hold in MX because [[φ]]N → [[φ]]M
is a regular epi.

All this in s(Eex). But for each context X, the poset of subobjects of NX (in Eex)
is iso to the poset reflection of E/(NX) so it must be the case that φ � ψ holds
in pE . ��

We still have not used the last item of Proposition 4.2. But notice that together
with Lemma 4.1, it implies that (SetZ)ex is equivalent to SetC

op
. The discussion pre-

ceding Lemma 4.3 shows that we can reduce completeness of p(SetZ) to completeness
of s(SetC

op
).
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Remark 4.4 It is perhaps interesting to mention that the relation between SetZ and
SetC

op
is an instance of a more general fact: every atomic topos has a presheaf

topos as its exact completion. Indeed, since every atomic topos over Set is the
coproduct completion of its full (and essentially small) subcategory of atoms, the
exact completion of such a topos is equivalent, by the last item of Proposition 4.2,
to the topos of presheaves on the category of atoms. See also [15] for recent results
concerning the characterization of toposes whose exact completions are toposes.

4.2 The Open Surjection

We must now prove the following.

Proposition 4.5 There exists an open surjection SetC
op → Set� .

In contrast with the situation in the late sixties or early seventies, we have nowa-
days established results about such geometric morphisms. Let us state a sufficient
condition quickly applicable to the cases we need.

Lemma 4.6 Let f : C → D be a functor between small categories. If

1. f is surjective on objects and
2. For any morphism b : fU → V in D there exists an a : U → U ′ in C such that

fU ′ = V and f a = b

then the geometric morphism f ∗ � f∗ : SetC → SetD is an open surjection.

Proof Example A4.2.7(b) in [4] implies that the geometric morphism is a surjection
and Lemma C3.1.2 in [4] implies that it is open. ��

It is easy to check that Lemma 4.6 is applicable to the left adjoint s : D → �

discussed in Lemma 4.6 so we obtain an open surjection s∗ � s∗ : SetD → Set� . To
complete the proof of Proposition 4.5 we prove that there is an open surjection
SetC

op → SetD. Denote by r : C
op → D the obvious functor presenting D as the poset

reflection of C
op. We can apply Lemma 4.6 again, this time to r, and obtain an open

surjection r∗ � r∗ : SetC
op → SetD.

At this point, Proposition 4.5 is proved and hence so is Theorem 3.5. It seems
useful, though, to give another look at the proof without concentrating on the
technicalities.

4.3 Recapitulation

First, imitating Läuchli, start assuming Kripke’s completeness theorem in the form of
Lemma 3.7 which states that Set� has ‘enough counter-models’ to make it complete.
Then apply Lemma 4.6 to conclude that the functors on the left below

induce open surjections as on the right above.
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In this way we obtain that both SetD and SetC
op

also have enough counter-models.
(The fact for SetD is stated explicitely both in [6] and [14] but the case of SetC

op
does

not seem to have attracted much attention.)
Finally, apply the results on exact completions (recalled in Section 4.1) to observe

that SetC
op ∼= (SetZ)ex and then ‘push down’ the counter-models in s(SetC

op
) to

counter-models in p(SetZ).

Remark 4.7 We have already mentioned that it may be arguable how “clear from
Kripke’s work” is Lemma 2.2. So some readers may find Lemma 3.7 not a very good
place to start. For those readers, it may be useful to point out that Proposition 5.6 in
[14] implies that SetD is complete. So we could have started from there.

5 Comparison

In this section we compare the work reported here with that of Läuchli [8], Kock [6]
and Harnik–Makkai [3, 14].

Theorem 2.1 is a completeness result with respect to the semantical structures
that Läuchli calls ‘proof assignments’. In perspective, and after the work of Lawvere,
Kock and Harnik–Makkai, proof assignments appear as a clever artifact to capture
the logic of the hyperdoctrine p(SetZ) at a time when hyperdoctrines had not been
discovered. Although Läuchli’s proof is highly technical and concrete I believe that
the construction of proof assignments out of (Kripke) models is essentially the same
as the one produced by the open surjections discussed above. This is not really
evident but it looks more plausible after reading Kock’s work.

In [6], Kock states the main results in terms of representations of pre-doctrines
but the key technical step is to construct, out of a presheaf P in SetD, a morphism
in SetZ over the Z-set P′ = ∑

λ∈D
Pλ × Zλ, that is, an object in the fiber over P′

of the hyperdoctrine p(SetZ). Then, Kock proves (through a long induction on
the complexity of formulas) Theorem 3.1 in [6], which is analogous to Lemma 2
in [8], and attributes to Läuchli the observation that SetD has enough counter-
models. Kock’s version of Läuchli’s main result is then a corollary of this and of
the assignment P �→ P′. It must be said, though, that it is not clear how Kock deals
with the issues around f.

Notice that for a presheaf P in SetD, (r∗ P)Zλ = Pλ so that P can be covered by∑
λ∈D

Pλ × λ where λ is the representable associated to λ. In turn, each λ has Zλ as
projective cover, so Kock’s assignment P �→ P′ can be seen as an application of r∗
followed by a natural choice of projective cover (Recall Lemma 4.3.)

In [14], Makkai uses hyperdoctrines to give an algebraic framework for the proof
theory of intuitionistic predicate calculus. In this setting, completeness results appear
as representation theorems, much as in the work of Kock. Makkai aims at a great
level of generality and we do not intend to give here an account of his work. We only
wish to point out certain analogies with the proofs we have already discussed.

From the very beginning, Makkai considers h−-fibrations which are hyperdoc-
trines that are not required to have initial objects in the fibers. This is, of course,
related to the fact that p[f] must not be required to be empty. In Section 5 of [14]
Makkai deals with Kripke’s completeness result. In particular, Proposition 5.6 proves
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a result which can be seen as a version of the completeness of SetD. (The proof uses
a very interesting property of D which is proved in [3].)

In Section 6 of [14] a general result is proved which implies roughly that the freely
generated h−-fibration can be weakly represented in p(SetZ). The proof involves
the version of Kripke’s completeness mentioned in the previous paragraph and an
explicit calculation of the poset reflection of SetZ. The last calculation naturally
involves Z-sets of the form Zn. (See the paragraph before Proposition 6.4 in [14]
for a brief plan of the proof of the main result.)

Altogether, all the proofs discussed involve more or less the same fundamental
ingredients. First, a version of Kripke’s completeness in the form of enough counter-
models in SetD. (As we have already mentioned, Kock attributes this observation to
Läuchli.) Second, an explicit consideration of the indecomposable objects in SetZ. In
this perspective, our factorization of the proof through (SetZ)ex

∼= SetC
op

seems like a
natural intermediate step. Moreover, this intermediate step is the one that allows the
Kripke-to-Läuchli construction to be the inverse image of a geometric morphism. In
turn, this presentation is the one that allows to use topos theory (through openness
and surjectivity) to take care of the ‘conservativity’ of the construction (compare with
Theorem 3.1 in [6] and Lemma 6.6 in [14]).

Further work related to Läuchli’s theorem appears, for example, in [1, 12, 16].
A discussion of this work falls outside the scope of the present paper but it is
worth mentioning that, on top of the results which form the core of [1], this paper
contains very interesting historical information on how Läuchli’s theorem influenced
important work in the area of semantics of programming languages.

We hope that the organization of the fundamental ingredients of Läuchli’s
theorem in terms of toposes, exact completions and open surjections provides an
interesting perspective.
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