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Abstract

We study a model of spatial random permutations over a discrete set of points. Formally, a

permutation σ is sampled proportionally to

exp{−α
∑

x

V (σ(x) − x)}, (1)

where α > 0 is the temperature and V is a non-negative and continuous potential. The

most relevant case for physics is when V (x) = ‖x‖2, since it is related to Bose-Einstein

condensation through a representation introduced by Feynman in 1953. In the context

of statistical mechanics, the weights in (1) define a probability when the set of points is

finite, but the construction associated to an infinite set is not trivial and may fail without

appropriate hypotheses. The first problem is to establish conditions for the existence of such

a measure at infinite volume when the set of points is infinite. Once existence is derived, we

are interested in establishing its uniqueness and the cycle structure of a typical permutation.

We here consider the large temperature regime when the set of points is a Poisson point

process in Z
d with intensity ρ ∈ (0, 1/2), and the potential verifies some regularity conditions.

In particular, we prove that if α is large enough, for almost every realization of the point

process, there exists a unique Gibbs measure that concentrates on finite cycle permutations.

We then extend these results to the continuous setting, when the set of points is given by a

Poisson point process in R
d with low enough intensity.

Key words: Gibbs measures, permutations, finite cycles, Poisson point process.

1 Introduction

We consider a model of spatial random permutations. The interest in these permutations was

initially driven by their connection to Bose-Einstein condensation. Richard Feynman [Fey53]

introduced a representation of the Bose gas through trajectories of interacting Brownian mo-

tions that evolve over a fixed time interval, starting and finishing at the points of a spatial point

process. Several simplifications have been proposed over the years to reduce this representation
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to spatial random permutations. Sütő showed that macroscopic cycles are present in the ideal

Bose gas ([Süt93, Süt02]). Tóth [Tót93] relates a particular model of spatial random permuta-

tions, the interchange process, to the quantum Heisenberg ferromagnetic model, proving that

the existence of macroscopic cycles in the former is equivalent to the presence of spontaneous

magnetization for the latter.

Let Ω ⊂ R
d be a locally finite set, that is a set of points such that its intersection with any

compact subset of R
d is finite. We focus on the cases when Ω equals the integer lattice or is

given by a realization of a spatial point process. Let the space state SΩ given by the set of

permutations or bijections σ : Ω → Ω. We want to consider the probability measure µ formally

given by

µ(σ) =
e−αH(σ)

Z
, σ ∈ SΩ, α > 0 , (2)

where Z is a normalization factor and H the Hamiltonian, formally defined by

H(σ) =
∑

x∈Ω

‖σ(x) − x‖2 , σ ∈ SΩ . (3)

The Hamiltonian discourages the appearance of large jumps, whose probability decays expo-

nentially. The parameter α is physically interpreted as the temperature of the system, we

can also understand it as a degree of penalization of large jumps. Note that if Ω is finite the

measure (2) is well-defined. In general, for infinite Ω, the definition (2) does not make sense.

Statistical mechanics provides a standard approach to extending finite volume probabilities to

infinite volume. The method consists of specifying what the conditional probabilities of the

infinite volume measure given boundary conditions outside a compact set should look like, these

so-called specifications are given by (2) plus consistency with the boundary conditions, and then

proving that the specifications have weak limits, called Gibbs measures. One of the fundamental

problems is to determine whether there exists more than one Gibbs measure.

Once existence and uniqueness of Gibbs measures have been established, the next questions are

related to the cycle structure of a typical permutation, and how this depends on parameters

such as point density and temperature α. These issues are usually studied for identity boundary

conditions. In the following, whenever we discuss cycle-lengths properties, the reader should

assume that the boundary conditions under consideration are given by the identity. In particular,

it is interesting to know if infinitely long cycles appear with positive probability, and in this case,

whether they are macroscopic, i.e., if their intersection with a large finite box contains a positive

density of the points in the box.

For the model determined by the quadratic Hamiltonian (3) it is conjectured that, at all temper-

atures and with identity boundary conditions, a typical permutation will decompose into finite

cycles if d = 1, 2, whereas for d ≥ 3, there exists a critical value αc below which a typical per-

mutation contains an infinite cycle with positive probability. This conjecture can be explained

heuristically and it is supported by numerical simulations (see for instance [GRU07, GLU12,

GUW11]).
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The first rigorous results were obtained by Gandolfo, Ruiz and Ueltschi [GRU07] when the set

of points is the integer lattice Z
d. They show that for high enough temperatures all cycles are

finite, in any dimension. The case d = 1 was settled by Biskup and Richthammer in [BR15].

They prove uniqueness of the Gibbs measure associated to identity boundary conditions, at any

temperature, and show that it is supported on finite cycle permutations. They also establish a

bijection between ground states (local minima) of the Hamiltonian and extremal Gibbs measures.

This one-to-one correspondence is expected to fail in dimensions higher than 1. Armendáriz,

Ferrari, Groisman and Leonardi [AFGL15] consider the large temperature regime for general

strictly convex potentials in d ≥ 2. They derive the existence and uniqueness of Gibbs measures

concentrating on finite cycle permutations for large α, determined by the potential.

We are interested in the case when the set of points Ω is random. In the 1-dimensional case,

Biskup and Richthammer [BR15] show that if Ω is given by a realization of a point process with

a translation invariant distribution, then, as when the points belong to the integer lattice, cycles

are almost surely finite at all temperatures. This is a quenched result.

In the annealed case, when points and permutations are jointly sampled, Betz and Ueltschi

proved in [BU09, BU11b] that if d ≥ 3 there exists a critical density of points ρc below which

a typical permutation has only finite cycles, and above ρc it contains macroscopic cycles. The

asymptotic behavior of these cycle-lengths is derived in [BU11a]. Precisely, the sorted lengths of

the cycles, scaled down by N , converges to the Poisson-Dirichlet distribution, as was previously

proved to be the case for uniformly distributed permutations [Sch05].

We here consider the set of points given by a realization of a Poisson process on Z
d with intensity

ρ, that is, for each x ∈ Z
d we place a Poisson(ρ) number of points θ(x) at x, independently among

locations, and consider the set Ωθ = {(x, i) : 1 ≤ i ≤ θ(x), x ∈ Z
d} hence determined. This is a

simpler version of a regular Poisson point process on R
d with intensity ρ, obtained by collecting

all points in the d-dimensional hypercube x + [0, 1)d and placing them at x. We study the

permutation group of Ωθ under the probability induced by (3). In this model there might be

more than one point per site in Z
d, so the norm appearing in each term of (3) will measure the

distance between the projections of x and σ(x), x ∈ Z
d. In particular, if x and σ(x) project

onto the same point, then the term indexed by x vanishes. Our first result proves the existence

of Gibbs measures for almost every realization of the environment {θ(x)}x∈Zd , in the large

temperature regime and with fixed density ρ ∈ (0, 1/2). We next show that any permutation

sampled with respect to this Gibbs measure has finite cycles almost surely with respect to the

Poisson point process. We finally derive uniqueness for Gibbs measures supported on the set of

finite cycle permutations of Ωθ, for almost all {θ(x)}x∈Zd .

The results for the discrete quenched case can be extended to the continuous setting when the set

of points is a realization of a Poisson point process on R
d with low enough intensity. Precisely,

we show that if the intensity ρ is small enough, in the large temperature regime, there exists

a Gibbs measure for almost every realization of the point process, which is unique with the

property of being supported on permutations with finite cycle decomposition.
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To prove these results we follow the approach introduced by Fernández, Ferrari and Garcia

in [FFG01] to study the Peierls contours of the low temperature Ising model as a loss network.

Applied to our setting, this method attempts to realize the Gibbs measure as the stationary

distribution of an interacting birth and death process Markov process on the space of finite

cycles, where a new cycle can only be added to the configuration if no site in its support is

already visited by an existing cycle. This construction requires that the set of cycles determining

whether a given cycle γ can be born at time t, which we call the clan of ancestors, be almost

surely finite. To ensure this condition the authors in [FFG01, AFGL15] introduce a family of

subcritical multi-type branching processes that dominate the size of the clan. In the particular

case considered here, however, the fact that the point process distributes an unbounded number

of points in each position of Zd implies that we cannot apply the method directly. Instead, we

use the loss network in bounded regions to prove that the specifications on these regions are

dominated by a Poisson point process on the space of finite cycles, from where we derive the

tightness of the specifications. This proves the existence of Gibbs measures supported on finite

cycle permutations, and we also show that there is uniqueness in this class.

In the next section we introduce the Gibbs formalism for the model and state our main results.

In §3 we explain the loss network construction. The results pertaining to the discrete setting

are proved in §4 and §5, while in §6 we consider the continuous case when the points are in R
d.

2 Setting and results

Let θ = {θ(x)}x∈Zd be an i.i.d. sequence of Poisson random variables with mean ρ. We will

call θ(x) the multiplicity of site x ∈ Z
d, and denote by P and E the probability and expectation

associated to the distribution of θ.

Given a fixed realization of θ, define

Ωθ = {(x, i) ∈ Z
d × N : θ(x) > 0, i = 1, . . . , θ(x)},

and let X : Ωθ → Z
d be the projection mapping,

X(s) = x if s = (x, i), i ≤ θ(x).

We will abuse notation and say that a point s ∈ Ωθ belongs to Λ ⊂ Z
d, s ∈ Λ, if X(s) ∈ Λ. We

write Λ ⋐ Z
d to denote that Λ is a finite set. In general, we will use the term point to refer to

an element of Ωθ and site for its location in Z
d.

Denote by

Sθ := {σ : Ωθ → Ωθ bijective}
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with the topology determined by the distance

d(σ, σ′) = 2− min{‖X(s)‖ : σ(s)6=σ′(s)} ,

min ∅ = −∞, ‖ · ‖ the Euclidean norm in R
d. The space (Sθ, d) is complete and separable, let

Fθ be the Borel σ-algebra.

Let V : Rd → R be a non-negative function, that we call the potential. The Hamiltonian

associated to V restricted to the set Λ is

Hθ,Λ(σ) =
∑

s∈Λ

V
(
X(σ(s)) − X(s)

)
. (4)

For ξ ∈ Sθ and Λ ⋐ Z
d, consider the set of permutations that are compatible with the boundary

condition ξ at volume Λ, given by

Sξ
θ,Λ := {σ ∈ Sθ : σn(s) = ξn(s) for all s ∈ Λc, n ∈ Z}, (5)

where σn means the n-th fold composition of σ with itself. When Λ ⋐ Z
d the set Sξ

θ,Λ is also

finite. We illustrate these definitions for a particular choice of Λ, θ and boundary condition ξ in

Figure 1.
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Figure 1: Each figure above depicts a permutation in Sξ
θ,Λ, Λ = {1, . . . , 9} ⋐ Z. Cycles in the

decomposition of the boundary condition ξ are drawn using dashed lines, and cycles contained
in Λ that are compatible with ξ are drawn in solid lines.

The specification at volume Λ associated to temperature α > 0 and boundary condition ξ is
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given by

Gξ
θ,Λ(σ) =

e−αHθ,Λ(σ)

Zξ
θ,Λ

1{σ ∈ Sξ
θ,Λ} , (6)

where Zξ
θ,Λ is a normalizing constant that depends on α, ξ, θ and Λ. A distribution µ on (Sθ, Fθ)

is a Gibbs measure with respect to the Hamiltonian (4) and compatible with specifications (6)

if for any Λ ⋐ Z
d and A ∈ Fθ we have

µ(A) =

∫
Gξ

θ,Λ(A) dµ(ξ) .

A cycle γ associated to (s1, . . . , sn) ∈ Ωn
θ , n ∈ N ∪ {∞}, is a permutation γ ∈ Sθ such that

γ(si) = si+1, i = 1, . . . , n − 1, γ(sn) = s1 if n < ∞, and γ(s) = s otherwise. We write

γ = (s1, . . . , sn) for short. Due to the cyclic structure of the cycle, the choice of starting point

in this representation is arbitrary. A permutation σ is a finite cycle permutation when its

decomposition consists of finite cycles. Let

SF
θ := set of finite cycle permutations of points in Sθ.

Given a cycle γ, we define its support as

{γ} := {s ∈ Ωθ, γ(s) 6= s}.

Clearly {γ} = {s1, . . . , sn} when γ is associated to (s1, . . . , sn). We will abuse notation and

write s ∈ γ instead of s ∈ {γ}. We denote by

Γθ =
{
γ cycle in Sθ, #{γ} < ∞}

, (7)

Γθ,Λ =
{
γ ∈ Γθ, {γ} ⊆ Λ

}
.

Given a permutation σ we say that γ ∈ σ if γ is one of the cycles in its decomposition. We

define the weight of a finite cycle γ as

w(γ) := e
−α
∑

x∈γ
V (s−γ(s))

. (8)

The quadratic potential case in the discrete setting. We first consider the case V (x) =

‖x‖2.

Theorem 2.1. Let ρ ∈ (0, 1/2) be the density of the point process in Z
d. If α > α∗, where α∗

is defined below in (11), then for almost every realization of {θ(x)}x∈Zd there exists a unique

Gibbs measure µθ that concentrates on finite cycle permutations.

Furthermore, µθ can be obtained as a subsequential weak limit of specifications with identity

boundary conditions.
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Let r0 ∈ [0, 1] be the unique solution of the equation

r

(1 − r)2
− r =

1

2
, r0 ≈ 0.35542. (9)

Given ρ ∈ (0, 1/2), let

Cρ :=
ρe−ρ+ 1

2

1 − 2ρ
, (10)

and define α∗ as

α∗ :=
π

[( r0

Cρ
+ 1

) 1

d − 1

]2 . (11)

The proof of Theorem 2.1 holds for any environment given by an i.i.d. family {θ(x)}x∈Zd such

that E(θ(x)! 2θ(x)) < ∞, including the case discussed here where θ(x) ∼ P(ρ).

The general potential case in the discrete setting. A result analogous to theorem 2.1

holds for general potentials V under appropriate growth conditions. In particular, it is enough

that there exists α0 ≥ 0 such that for α > α0

ϕV (α) =
∑

x∈Zd

e−αV (x) < ∞ . (12)

Betz [Bet14] proves that this condition implies tightness of the specifications when the set of

points is the integer lattice Z
d.

Note that V need not be strictly positive, and then there are jumps of positive length that do

not contribute to the Hamiltonian. In this case an infinite cycle could have finite energy. To

avoid this problem we need to restrict the density. Define

LV := sup{‖x‖ : V (x) = 0, x ∈ Z
d}, (13)

and note that under (12), LV < ∞. Given R > 0, let E(R) be the event that there exists

an infinite sequence of points (si)i∈N ⊂ Ωθ such that ‖X(si) − X(si+1)‖ ≤ R. Meester and

Roy [MR96, Chapter 3] prove that for low enough density there is no Boolean percolation in the

continuous Poisson model. A similar argument proves that there exists ρc(R) with P(E(R)) = 0

if ρ < ρc(R) and P(E(R)) = 1 when ρ > ρc(R).

A density ρ is called good for the potential V when LV < 1 or P(E(LV )) = 0.

Theorem 2.2. Let V a non-negative potential satisfying (12) and ρ ∈ (0, 1/2) a good density

for V . Consider α and ρ such that

Cρ ϕV (α) < r0 ,

where r0 and Cρ are defined in (9) and (10) respectively.
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Then for almost every realization of {θ(x)}x∈Zd there exists a unique Gibbs measure µθ supported

on finite cycle permutations.

The family of Hamiltonians that satisfy the hypotheses of Theorem 2.2 includes the one-body

potentials discussed in [BU11a].

The quadratic potential case in the continuous setting. Let us now consider the case

when the set of points Ω is a realization of a Poisson point process on R
d with density ρ. The

definitions of specifications and Gibbs measures are analogous to those in discrete setting.

Theorem 2.3. Let ρ and α be as in the statement of Theorem 2.2 for the potential

V (x) := max
{‖x‖2 − 2

√
d ‖x‖, 0

}
. (14)

Then for almost every realization Ω of the Poisson point process at density ρ, there exists a

unique Gibbs measure at temperature α supported on finite cycle permutations associated to the

quadratic Hamiltonian H(σ) =
∑

x∈Ω ‖x − σ(x)‖2.

The proof follows as a corollary of Theorem 2.2 applied to V in (14) and the discrete Poisson

point process obtained by collecting all points in x + [0, 1)d at x, x ∈ Z
d.

3 Domination by a Poisson process

In this section we prove that the finite volume specifications (6) can be dominated by a Pois-

son measure on finite cycle permutations. The approach follows ideas from [FFG01, FFG02,

AFGL15]. In these articles, the Gibbs measure in infinite volume is realized as the station-

ary distribution of a suitable Markov process on the space of gas of finite cycles. Extend-

ing this method to infinite volume to get a similar result in our case would require that

β(α) = sups∈Ωθ
β(α, s) < 1, where

β(α, s) :=
∑

γ∈Γθ

|γ|w(γ) 1{s ∈ γ}, s ∈ Ωθ,

with w(γ) the weight in (8) and Γθ the set in (7). It is easy to see that this condition fails to

hold almost surely. Indeed, for any s ∈ Ωθ with X(s) = x, there exist (θ(x) − 1)! cycles passing

through s that have zero weight, and hence β(α, s) ≥ (θ(X(s))−1)!. Taking the supremum over

s ∈ Ωθ we conclude that β(α) = ∞ almost surely in {θ(x)}x∈Zd , for any α > 0.

Let Λ ⊂ Z
d be a finite set. A finite cycle permutation σ ∈ SF

θ can be represented as a configur-

ation η ∈ {0, 1}Γθ with η(γ) = 1{γ ∈ σ}. We say that η is the gas of cycles representation of

σ and write γ ∈ η iff η(γ) = 1. Notice that if η(γ) = 1, then η(γ′) = 0 for any cycle γ′ with

{γ} ∩ {γ′} 6= ∅.
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Given ξ ∈ SF
θ and Λ ⋐ Z

d let

B(ξ, Λ) = {γ ∈ ξ : {γ} ∩ Λ 6= ∅, {γ} ∩ Λc 6= ∅},

the set of cycles from ξ that intersect Λ and Λc. The set of permutations Sξ
θ,Λ that are compatible

with ξ at volume Λ introduced in (5) can now be described as

Sξ
θ,Λ =

{
η ∈ {0, 1}Γθ : η(γ) = 1 for all γ ∈ B(ξ, Λ),

η(γ) = 0 if γ ∈ Γθ,Λ and there exists γ′ ∈ B(ξ, Λ) with {γ} ∩ {γ′} 6= ∅,

η(γ)η(γ′) = 0 if {γ} ∩ {γ′} 6= ∅ for all γ, γ′ ∈ Γθ,Λ

η(γ) = ξ(γ) if {γ} ⊂ Λc
}

,

and the specification at finite volume Λ with boundary condition ξ (6) becomes

Gξ
θ,Λ(η) =

1

Zξ
θ,Λ

∏

γ∈Γθ,Λ

w(γ)η(γ) 1{η ∈ Sξ
θ,Λ} . (15)

From this viewpoint the specification Gξ
θ,Λ is a distribution over the space of gases of cycles,

which interact by exclusion: if a cycle γ is in the gas, then any other cycle that uses a point

visited by γ cannot be in the gas. For the rest of the article we indistinctly denote configurations

by σ or its associated gas of cycles η.

The free process. Let N be a Poisson process on Γθ × R × R+ with intensity measure

w(γ) × dt × e−rdr. Given ξ and Λ, we define the free process (ηo,ξ,Λ
t : t ∈ R) on N

Γθ
0 associated

to ξ, Λ as

ηo,ξ,Λ
t (γ) = 1{γ ∈ B(ξ, Λ)} +

∑

(γ,t′,r′)∈N

1{t′ ≤ t < t′ + r′} . (16)

each marginal process (ηo,ξ,Λ
t (γ) : t ∈ R) is a birth and death process of cycles of type γ, shifted

by 1 when γ ∈ B(ξ, Λ) to account for the boundary condition. A new copy of cycle γ appears

at rate w(γ) and is removed at rate 1, independently of other copies of the same cycle, and of

other cycles. The generator of this process is given by

Lo,ξ,Λf(η) =
∑

γ∈Γθ

w(γ) [f(η + δγ) − f(η)] +
∑

γ∈B(ξ,Λ)

η(γ)1{η(γ) ≥ 2} [f(η − δγ) − f(η)]

+
∑

γ /∈B(ξ,Λ)

η(γ) [f(η − δγ) − f(η)] , (17)

f : NΓθ
0 → R a test function.

Consider the product measure νξ
θ,Λ on N

Γθ
0 such that, independently for γ ∈ Γθ, the marginal

9



distribution νξ
θ,Λ(γ) satisfies

νξ
θ,Λ(γ) ∼ Poisson

(
w(γ)

)
if γ 6∈ B(ξ, Λ)

νξ
θ,Λ(γ) ∼ 1 + Poisson

(
w(γ)

)
if γ ∈ B(ξ, Λ).

When ξ = id, the set B(id, Λ) = ∅ for any Λ ⋐ Z
d, and ν id

θ,Λ does not depend on Λ; in this case

we write νθ instead of ν id
θ,Λ. Each marginal νξ

θ,Λ(γ) is reversible for the birth and death dynamics

of cycles of type γ, hence the product measure νξ
θ,Λ is reversible for Lo,ξ,Λ.

The family of processes
{
(ηo,ξ,Λ

t : t ∈ R), ξ ∈ SF
θ

}
can be simultaneously built using the same

driving Poisson process N . The coupled construction yields ηo,ξ,Λ
t ≥ ηo,id,Λ

t , that is,

ηo,ξ,Λ
t (γ) ≥ ηo,id,Λ

t (γ) for all γ ∈ Γθ, t ∈ R.

In fact, these processes only differ if γ ∈ B(ξ, Λ), and then ηo,ξ,Λ
t (γ) = ηo,id,Λ

t (γ) + 1.

Note that νξ
θ,Λ assigns positive probability to Sξ

θ,Λ, hence the conditional measure νξ
θ,Λ( · |Sξ

θ,Λ)

is well-defined, and it is a simple computation to verify that νξ
θ,Λ( · |Sξ

θ,Λ) = Gξ
θ,Λ(·).

The loss network. Our goal now is to define a process that can be easily compared to the

free process, and which has Gξ
θ,Λ as invariant measure. We will realize it as a thinning of the

free process. As before, let ξ ∈ SF
θ and Λ ⋐ Z

d be fixed.

We say that two cycles γ and γ′ are compatible if {γ} ∩ {γ′} = ∅. Otherwise, they are incom-

patible. A cycle γ is compatible with the gas of cycles η ∈ {0, 1}Γθ , which we denote by γ ∼ η,

when γ is compatible with all cycles γ′ such that η(γ′) = 1.

The loss network associated to ξ, Λ is the Markov process in Sξ
θ,Λ with generator

Lξ,Λf(η) =
∑

γ∈Γθ,Λ

w(γ)1{γ ∼ η} [f(η + δγ) − f(η)] +
∑

γ∈Γθ,Λ

η(γ) [f(η − δγ) − f(η)] , (18)

f : Sξ
θ,Λ 7→ R a test function.

Informally, the loss network follows the dynamics of the free process but it is subject to an

exclusion rule: a cycle γ ∈ Γθ,Λ tries to be added at rate w(γ) but the attempt is effective only

when γ is compatible with the cycles already present in the configuration at the time; each cycle

is removed at rate 1 independently of others; and a copy of each cycle in B(ξ, Λ) is present at all

times. The loss network is an irreducible Markov process in a finite state space with a unique

invariant measure.

Lemma 3.1. Let Λ ⋐ Z
d and ξ a finite cycle permutation. The measure Gξ

θ,Λ defined in (15)

is the unique invariant distribution for the generator Lξ,Λ.

Since we only need to verify the detailed balance equations, we omit the proof.

10



Denote by ηξ,Λ
t the loss network process related to ξ and Λ at time t. We want to construct

ηξ,Λ
t using a convenient thinning of the free process (ηo,ξ,Λ

t ) to obtain ηξ,Λ
t ≤ ηo,ξ,Λ

t for all t. The

algorithm to delete cycles needs to know if the birth attempt of a cycle is allowed or not. So,

we consider the clan of ancestors of ζ = (γ, t, r) ∈ Γθ,Λ ×R×R
+ as follows. The first generation

of ancestors supported on Λ is defined by:

Aζ,Λ
1 = {(γ′, t′, r′) ∈ N : γ′ ∈ Γθ,Λ, γ′

≁ γ, t′ < t < t′ + r′} .

Inductively, if Aζ,Λ
n−1 is determined, for the n-th generation we set:

Aζ,Λ
n =

⋃

υ∈Aζ,Λ
n−1

Aυ,Λ
1 .

The clan of ancestors of the mark ζ supported in Λ is defined by

Aζ,Λ =
⋃

n≥1

Aζ,Λ
n .

Suppose that Aζ,Λ is finite for all ζ ∈ Γθ,Λ × R × R
+ and for almost all realizations of N . To

describe the thinning of ηo,ξ,Λ we define in each step if a cycle is kept or deleted using its clan

of ancestors.

Let Dξ,Λ
0 = {(γ, t, r) ∈ N : γ ≁ γ′ for some γ′ ∈ B(ξ, Λ)} and for n ≥ 1 set

Kξ,Λ
n = {ζ ∈ N : Aζ,Λ

1 \ Dξ,Λ
n−1 = ∅}, Dξ,Λ

n = {ζ ∈ N : Aζ,Λ
1 ∩ Kξ,Λ

n 6= ∅} . (19)

Let Kξ,Λ = ∪n≥1Kξ,Λ
n be the set of kept cycles and Dξ,Λ = ∪n≥1Dξ,Λ

n be the set of deleted

cycles. Note that in the initial step any cycle that is incompatible with a cycle from B(ξ, Λ) is

deleted. Under the assumption that all the clans of ancestors supported in Λ are finite, every

mark ζ ∈ Γθ,Λ × R × R
+ is kept or deleted.

Now, using kept cycles we give a graphical construction for the loss network related to ξ at

volume Λ by the formula

ηξ,Λ
t (γ) =

∑

(γ,t′,r′)∈N

1{t′ ≤ t < t′ + r′} 1{(γ, t′, r′) ∈ Kξ,Λ} 1{γ ∈ Γθ,Λ} . (20)

To show that (20) is well-defined we need to check that the clan of ancestors of any mark

(γ, t′, r′) is finite almost surely. The next Lemma proves it when Λ is finite but unfortunately

the argument does not work when Λ is infinite as we seen at the beginning of this section.

Lemma 3.2. If Λ ⋐ Z
d, the process (ηξ,Λ

t : t ∈ R) is well-defined. It is a Markov process with

generator given by (18). The construction (20) is stationary, so, ηξ,Λ
t is distributed according to

Gξ
θ,Λ for all t.

11



Proof. Since Γθ,Λ is a finite set, for almost every realization of the process N there exists a

sequence of times {tj : j ∈ Z} with tj→ ± ∞ as j → ±∞ such that ηo,ξ,Λ
tj

(γ) = 0 for all γ ∈ Γθ,Λ.

Therefore, Aζ,Λ must be finite almost surely for all ζ ∈ Γθ,Λ × R × R
+.

If the process (ηo,ξ,Λ
t : t ∈ R) is restricted to cycles in Γθ,Λ, marks can be sorted by their birth

time (the second coordinate of the mark), and so, the algorithm described in (19) works.

The construction (20) is stationary and Lemma 3.2 implies that ηξ,Λ
t has distribution Gξ

θ,Λ for

all t.

Lemma 3.3. Let ξ be a finite cycle permutation. For almost every realization of the environment

θ, we have that Gξ
Λ,θ is stochastically dominated by νξ

θ,Λ for all Λ ⋐ Z
d.

Proof. Since νξ
θ,Λ and Gξ

Λ,θ are invariant measures for the free process and the loss network

process respectively, it is enough to give a coupling such that ηξ,Λ
t ≤ ηo,ξ,Λ

t for all t. The

coupling is to use the same N for both graphical representations defined in (16) and (20). By

these constructions it follows that

ηξ,Λ
t (γ) ≤ ηo,ξ,Λ

t (γ) for all t,

and as both process are stationary νξ
θ,Λ dominates Gξ

Λ,θ.

4 Existence of Gibbs measures

In this section we prove that for ρ ∈ (0, 1/2) the family of specifications with identity boundary

condition is tight in the large temperature regime for almost every realization of θ. The tightness

also holds considering specifications with a boundary condition given by a finite cycle permuta-

tion. In the next section we prove that for the large temperature regime there exists a unique

Gibbs measure that concentrates over finite cycle permutations, so, weak limits of specifications

with a general finite cycle boundary condition are the same as the identity case. For this reason,

we focus on the identity boundary condition case.

All proofs are done for the quadratic potential case but work in the general case with slight

modifications. In such cases we explain differences in the next subsection.

We have cycles that are different but they use the same sites and have an identical value for the

Hamiltonian. See for instance γ2
1 and γ2

2 in Figure (1). We want to study the number of cycles

that project to a fixed and ordered set.

The ordered support [γ] of a cycle γ = (s1, s2, . . . , sn) is the vector in (Zd)m, m ≤ n, given by

[γ] = (x1, x2, . . . , xm) with xi = X(sπ(i)) (21)

where π(1) = 1, and inductively, π(i) = inf{k > π(i − 1), X(sk) 6= X(sπ(i−1))}, i > 1. In other

12



words, [γ] is the projection of γ to Z
d erasing consecutive repetitions of sites. Note that both

in the representation of γ as a vector and in the definition of its ordered support [γ], due to the

cyclic property of γ, the choice of initial point is arbitrary. Starting from any other point s ∈ {γ}
for the former, or of its spatial coordinate X(s) for the latter, lead to alternative representations

of the cycle and its ordered support.

The following refers to Figure 1. The supports of the cycles in σ1 are {γ1
1} = {(3, 1); (3, 2)} and

{γ1
2} = {(6, 1); (6, 2); (6, 3); (7, 1)}, and the ordered supports are [γ1

1 ] = (3) and [γ1
2 ] = (6, 7).

Also, {γ2
2} = {(6, 1); (6, 2); (7, 1)} 6= {γ1

2}, but they share the ordered support, [γ1
2 ] = [γ2

2 ].

Let ȳ ∈ (Zd)m be a vector such that ȳi 6= ȳi+1. It will represent an ordered support, so, it could

have repetitions in different (but non-consecutive) coordinates. Write Nθ(ȳ) for the number of

cycles γ such that [γ] = ȳ. In the appendix, using basic facts from combinatorics, we compute

an upper bound for Nθ(ȳ) and we call it Mθ(ȳ). The explicit definition of Mθ(ȳ) is in (28).

In the following we use that the expectation of Mθ(ȳ) under P is bounded for ρ ∈ (0, 1/2) by

E[Mθ(ȳ)] ≤
(

ρe−ρ+ 1
2

1 − 2ρ

)|ȳ|

, (22)

where |ȳ| is the number of coordinates of ȳ.

Note that the weight of a cycle is a function of its ordered support. So, for a cycle γ with [γ] = ȳ

we have that w(γ) = w(ȳ) := exp{−α
∑m

i=1 ‖yi+1 − yi‖2} assuming ym+1 = y1.

In certain situations it will be useful to sum the weights of all finite cycles that contain a site x.

Instead, using the bound Mθ(ȳ), we will sum over the ordered supports, whose sums are easier

to calculate. In fact, the sum of the weights of ordered supports that contain site x and have

length m is,

∑

ȳ : x∈ȳ
|ȳ|=m

ȳi 6=ȳi+1

w(ȳ) =
∑

ȳ : x∈ȳ
|ȳ|=m

ȳi 6=ȳi+1

m∏

i=1

e−α‖ȳi−ȳi+1‖2

=
∑

t1...tm

ti 6=0d

m∏

i=1

e−α‖ti‖2

= ϕ(α)m, (23)

where ϕ(α) =
∑

t∈Zd, t6=0d
e−α‖t‖2

. Observe that ϕ is the function defined in (12) for the quadratic

potential. It is easy to compute that ϕ(α) < (1 +
√

π
α)d − 1. So, ϕ is a decreasing function of α

that tends to 0 when α → +∞.

Now we start with a series of lemmas to prove the tightness of {Gid
θ,Λ}Λ⋐Zd .

For f : Zd 7→ N we define the set K̂f =
⋂

x∈Zd K̂f (x), where

K̂f (x) = {η ∈ N
Γθ
0 : ∀ γ ∈ η such that x ∈ γ we have H(γ) ≤ f(x)} .

Denote by K̂c
f (x) the complement of K̂f (x).

13



Lemma 4.1. Let ρ ∈ (0, 1/2) and α > 0 such that

Cρ ϕ(α/2) < 1 , (24)

where ϕ is the function defined in (12) and Cρ = ρe−ρ+ 1
2

1−2ρ . Then,

E

[
νθ(K̂c

f (x))
]

≤ C(ρ, α)e− α
2

f(x) . (25)

In the quadratic potential case we know that ϕ(α/2) → 0 when α → +∞, so, for any ρ ∈ (0, 1/2)

we can choose α large enough such that Cρ ϕ(α/2) < 1.

For a general potential V the condition (24) becomes to CρϕV (α/2) < 1 where ϕV is the

analogous function of ϕ defined in (12). Observe that now, ϕV (α) does not tend to 0 necessarily.

Proof of Lemma (4.1). By the cycle gas representation and using the marginal distributions of

νθ we have

E

[
νθ(K̂c

f (x))
]

≤ E
[ ∑

γ : γ∋x
H(γ)>f(x)

νθ(1{γ ∈ η})
]

= E
[ ∑

γ : γ∋x
H(γ)>f(x)

(1 − e−w(γ))
]
.

We want to sum over ordered supports instead of cycles. Write the weight of each cycle as a

function of its order support, and recall that for each ordered support ȳ, the number of cycles

that have ordered support ȳ is bounded above by Mθ(ȳ), where Mθ(ȳ) was defined in (28).

Then, using the linearity of E, the bound (22) and 1 − e−t ≤ t, we obtain

E
[
νθ(K̂c

f (x))
] ≤ E

[ ∑

m≥2

∑

ȳ : ȳ∋x
ȳi 6=ȳi+1

|ȳ|=m
H(ȳ)>f(x)

Mθ(ȳ)(1 − e−w(ȳ))
] ≤

∑

m≥2

∑

ȳ : ȳ∋x
ȳi 6=ȳi+1

|ȳ|=m
H(ȳ)>f(x)

Cm
ρ w(ȳ) .

Now, using that H(ȳ) > f(x) and the definition of ϕ (see (23)) we have

E
[
νθ(K̂c

f (x))
] ≤ e− α

2
f(x)

∑

m≥2

Cm
ρ

∑

ȳ : ȳ∋x
ȳi 6=ȳi+1

|ȳ|=m

e− α
2

H(ȳ) = e− α
2

f(x)
∑

m≥2

Cm
ρ ϕ (α/2)m .

Finally, lemma follows from the fact Cρϕ (α/2) < 1.

Lemma 4.2. Let ρ and α be in the same conditions as in Lemma (4.1). Given ǫ > 0, for almost

every realization of θ there exists a function f that depends on θ, such that νθ(K̂c
f ) < ǫ.

Proof. For each n, using (25) we pick fn(x) large enough such that: E
[
νθ(K̂c

fn
(x))

] ≤ 1/(n22‖x‖).
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If we define fn : Zd 7→ N in the obvious way, we have:

E
[
νθ(K̂c

fn
)
] ≤ E

[ ∑

x∈Zd

νθ(K̂c
fn

(x))
] ≤

∑

x∈Zd

1

n2

1

2‖x‖
=

C

n2
.

So, we have a sequence of functions {fn}n≥1 such that E
[∑

n≥1 νθ(K̂c
fn

)
]

< ∞ . Therefore
∑

n≥1 νθ(K̂c
fn

) < ∞ for almost every realization of θ. So, for almost every realization of θ

there exists n0(θ, ǫ) such that νθ(K̂c
fn

) < ǫ for all n ≥ n0.

The following lemma works in the quadratic potential case. Later we discuss the proof in the

case of a general potential.

Lemma 4.3. Consider a function f : Zd 7→ N and the set Kf := K̂f ∩ SF
θ , where SF

θ is the

finite cycle permutation space. Then, Kf is a non-empty compact set.

Proof. The gas of cycles representation for the identity is the null configuration, thus id ∈ K̂f (x)

for all x and any choice of f(x).

Recall that a sequence of permutations {σn} converges to σ if and only if σn(s) → σ(s) for all

s ∈ Ωθ. Let {σn}n≥1 be a sequence on Kf and fix s ∈ Ωθ. Definition of Kf implies that

‖σn(s) − s‖2 ≤ ‖X(σn(s)) − X(s)‖2 + R(s) ≤ f(X(s)) + R(s),

where R(s) = max{θ(x) : ‖x − X(s)‖2 ≤ f(X(s))}. So, {σn(s)}n≥1 is bounded and it has a

convergent subsequence. Since Ωθ is countable and Sθ is a complete metric space, a Cantor’s

diagonal argument follows to prove that {σn} has a subsequential limit σ. We write also {σn}
for the convergent subsequence.

It only remains to prove that σ is a finite cycle permutation. On the contrary, suppose that the

point s is contained on an infinite cycle, i.e., σj(s) 6= s for all j ∈ Z. Choose a subsequence {jk}
such that X(σjk (s)) 6= X(σjk−1(s)) for all k. Since σn → σ we can pick n large enough such

that σjk
n (s) = σjk(s) for all k = 1, . . . , k0 being k0 = f(X(s)) + 1. Then, calling γ′ for the cycle

that contains s in the permutation σn:

H(γ′) ≥
k0∑

k=1

‖X(σjk
n (s)) − X(σjk−1

n (s))‖2 =
k0∑

k=1

‖X(σjk (s)) − X(σjk−1(s))‖2 ≥ f(X(s)) + 1 ,

which contradicts that σn ∈ Kf . Hence, σ is a finite cycle permutation.

Recall that SF
θ has a natural partial order, i.e., η ≤ η′ if η(γ) ≤ η′(γ) for all γ ∈ Γθ. So, an

event A ⊂ SF
θ is increasing when 1A is an increasing function with respect to the partial order.

Lemma 4.4. Set Kc
f = K̂c

f ∩ SF
θ . Then Kc

f is an increasing event.
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Proof. Fix η ∈ K̂c
f (x) and let be η′ such that η ≤ η. By definition of K̂c

f (x) there exists γ ∈ η

such that x ∈ γ and H(γ) > f(x). The fact γ ∈ η implies that γ ∈ η′, and so, using the same

cycle γ ones proves that η′ ∈ K̂c
f (x).

The next result is a general fact from Gibbs measures theory, for this reason we omit its proof.

Lemma 4.5. Let {Λn}n≥1 ⋐ Z
d an increasing sequence such that Λn ↑ Z

d and {Gid

θ,Λn
}n≥1

converges weakly to a probability measure µ. Then, µ is a Gibbs measure.

Lemma 4.6. Let ρ and α satisfying conditions of Lemma (4.1). Then for almost every reali-

zation of θ there exists a Gibbs measure µθ related to temperature α and specifications defined

in (6).

Proof. First we prove that the family of specifications {Gid
θ,Λ}Λ⋐Zd is tight. By Lemma (3.3) we

know that νθ stochastically dominates Gid
θ,Λ for all Λ ⋐ Z

d and, so, as Kc
f is an increasing event

we obtain:

sup
Λ⋐Zd

Gid
θ,Λ(Kc

f ) ≤ νθ(Kc
f ) , θ a.s..

Given ǫ > 0, by Lemma (4.2) for almost every realization of θ there exists a function f , such

that νθ(Kc
f ) < ǫ. Combining this with the previous inequality and the compactness of Kf ,

tightness follows. Now, we have a subsequential limit µθ and Lemma (4.5) shows that µθ is a

Gibbs measure.

4.1 Remarks for the general potential case

Previous results hold also when the Hamiltonian is given by a potential V satisfying (12) instead

the quadratic potential. The only relevant difference is in Lemma (4.3) to prove that Kf is com-

pact, concretely in the proof that limit permutation σ has only finite cycles in its decomposition

(other steps can be adapted). Other proofs work line by line, using ϕV with α ≥ α0 in the

statements instead of ϕ.

To show that σ is a finite cycle permutation we need to ensure that any infinite cycle has

infinite energy associated to the Hamiltonian. In the case when V is strictly positive on [1, +∞)

the previous proof works, since each jump among points located in different sites contributes

non-zero to HV .

Otherwise, if LV ≥ 1, where LV = sup{‖x‖ : V (‖x‖) = 0}, it can exist infinite cycles with finite

energy. To skip this problem we take the density ρ small enough to ensure that the event that

there exists an infinite sequence of points {si}i∈N ⊂ Ωθ such that ‖X(si) − X(si+1)‖ ≥ LV , has

zero probability with respect to the environment. This is exactly our definition that ρ is good

density for the potential V in (13) and the condition that appears in the Theorem (2.2).
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5 Uniqueness of Gibbs measures

Proved the existence of a Gibbs measure we want to prove that it is unique. Specifically, we

want to show that if µ and µ′ are Gibbs measures supported on the finite cycle permutations

then µ = µ′. For that we consider the product measure µ ⊗ µ′, which is a Gibbs measure with

respect to the product specifications Gξ1

θ,Λ1
⊗ Gξ2

θ,Λ2
with ξ1, ξ2 and Λ1, Λ2 ⋐ Z

d.

As in the previous section we focus in the quadratic potential case. For a potential V the

difference is to use ϕV instead of ϕ in each statement.

For the rest of this section µ and µ′ will be Gibbs measures supported on finite cycle permuta-

tions.

Definition 5.1. We say that ∆ ⊂ Z
d separates η ∈ N

Γθ
0 when for all γ ∈ η we have {γ} ⊂ ∆ or

{γ} ⊂ ∆c. For a pair (η, η′) we say that the pair is separated by ∆ ⊂ Z
d when both coordinates

are separated by ∆.

The separating set property is closed by unions. Indeed, let ∆1 and ∆2 such that both are

separating sets for (η, η′). If γ ∈ η is such that {γ} ⊂ ∆1, ∆2, we have {γ} ⊂ ∆1 ∪ ∆2. In other

case, as ∆1 and ∆1 are separating sets, we have {γ} ⊂ ∆c
1 ∩ ∆c

2. So, ∆1 ∪ ∆2 is a separating set

for η and the same holds for η′.

Denote by Λl the box [−l, l]d ∩Z
d. Let An be the event that exists ∆ ⋐ Z

d such that ∆ separates

(η, η′) and ∆ ⊃ Λn. Note that An+1 ⊂ An and define A = ∩n≥1An. Observe also that A and

An are decreasing events with respect to the partial order of NΓθ
0 .

Our goal is to prove that for sufficiently large α the event A has full measure with respect to the

product measure µ ⊗ µ′. Then we use the existence of an arbitrary large separating set to prove

that µ and µ′ are equal to the weak limit of specifications with identity boundary condition.

We say that cycles γ, γ′ ∈ Γθ are neighbors, and we write γ ⋊⋉ γ′, if exists s, s′ ∈ Ωθ such that

s ∈ γ, s′ ∈ γ′ and X(s) = X(s′). In terms of ordered supports γ and γ′ are neighbors when

{[γ]} ∩ {[γ]′} 6= ∅. A path of cycles of length n is a sequence of n different cycles γ1, . . . , γn such

that γi ⋊⋉ γi+1 for i = 1, . . . , n−1. The idea is to consider a random subgraph of (Γθ,⋊⋉) and ask

about percolation on it, i.e., the existence of an infinite path of cycles with positive probability.

Fix (η, η′) ∈ N
Γθ ×N

Γθ . We declare that γ is open when η(γ) + η′(γ) ≥ 1. A path is open when

it is composed by open cycles. A cycle is a trivial cycle if only uses points located at the same

site. We are interested in open paths that use non-trivial cycles.

Fix x0 ∈ Z
d with θ(x0) 6= 0. Let D(n) be the event that there exists an open path of length n

formed only by non-trivial cycles and for which the first cycle contains x0. Of course D(n+1) ⊂
D(n) for all n. There are paths of length n that are not included in D(n) since we only allow

non-trivial cycles. However, an infinite path of cycles exists if and only if there exists an infinite

path using only non-trivial cycles.
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To enunciate the next lemma recall that r0 is the unique solution in [0, 1] of the equation
r

(1−r)2 − r = 1
2 . Note that r < r0 implies

∑
m≥2 mrm = r

(1−r)2 − r < 1
2 .

Lemma 5.2. Suppose that ρ ∈ (0, 1/2) and α > 0 satisfy Cρϕ(α) < r0, where Cρ is the constant

that appears in Lemma (4.1) and ϕ is the function defined in (12). Let ξ, ξ′ be finite cycle

permutations and Λ ⋐ Z
d.

Consider the pair (η,η′) independently sampled according to νξ
θ,Λ ⊗ νξ′

θ,Λ and the graph structure

induced by it on Γθ.

Then for almost every realization of θ, the event that there exists an infinite open path of cycles

has zero probability with respect to νξ
θ,Λ ⊗ νξ′

θ,Λ.

Proof. It is sufficient to show that limn→+∞ νθ ⊗ νθ(D(n)) = 0. Indeed, there is a natural

coupling between νθ ⊗ νθ and νξ
θ,Λ ⊗ νξ′

θ,Λ such that the former is stochastically dominated by the

last one but both realizations have only a finite number of differences (see remark below (17)).

So, the graph induced by the realization of νξ
θ,Λ ⊗ νξ′

θ,Λ has more open cycles but only a finite

number of them. So, the existence of an infinite open path under one measure is equivalent to

the same event for the other.

Now, we compute the annealed expectation of D(n) with respect to νθ ⊗νθ. Using the marginals

distribution and independence, we obtain

E[νθ ⊗ νθ(D(n))] = E[
∑

γ1,...,γn

n∏

i=1

(1 − e−2w(γi))] ≤ E[
∑

γ1,...,γn

n∏

i=1

2w(γi)] ,

where the sum denoted by
∑

γ1,...,γn
is over all paths of length n formed by non-trivial cycles and

for which x0 ∈ γ1. Any non-trivial cycle has an ordered support, so, we will sum over sequences

of ordered supports instead cycles. Concretely, we sum over all sequences of n ordered supports

ȳ1, . . . , ȳn such that x0 ∈ {ȳ1} and {ȳi} ∩ {ȳi+1} 6= ∅ for all i. This sum is denoted by
∑

ȳ1,...,ȳn
.

Recall that Mθ(ȳ1 . . . ȳn) is an upper bound for the number of cycles γ1, . . . , γn that have ordered

supports ȳ1, . . . , ȳn respectively (see Remark (6.5)). Combining these with the bound obtained

in (22) we have

E[νθ ⊗ νθ(D(n))] ≤ E[
∑

ȳ1,...,ȳn

Mθ(ȳ1 . . . ȳn)
n∏

i=1

2w(ȳi)] =
∑

ȳ1,...,ȳn

n∏

i=1

2C |ȳi|
ρ w(ȳi) .

To estimate the last sum we need to consider all possibilities for which ȳn shares a site with

ȳn−1, and after this, all possibilities such that ȳn−1 shares a site with ȳn−2 and so on. Using

that Cρϕ(α) < r0 < 1 we compute it to obtain

E[νθ ⊗ νθ(D(n))] ≤ 2n
[ ∑

m≥2

(Cρϕ(α))m
][ ∑

m≥2

m(Cρϕ(α))m
]n−1

.
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The choice of r0 implies that
∑

m≥2 m(Cρϕ(α))m < 1/2 and it follows that

E[
∑

n≥1

νθ ⊗ νθ(D(n))] =
∑

n≥1

E[νθ ⊗ νθ(D(n))] < ∞ .

Finally, for almost every realization of θ we have νθ ⊗ νθ(D(n)) → 0 when n → +∞.

Lemma 5.3. Let ρ and α as in Lemma 5.2. Recall that An be the event that exists a separating

set ∆ that contains Λn and A = ∩n≥1An.

Let ξ, ξ′ be finite cycle permutations and Λ ⋐ Z
d. Then for almost every realization of θ we

have νξ
θ,Λ ⊗ νξ′

θ,Λ(A) = 1.

Proof. Define ∆0(η, η′) as

∆0(η, η′) = sup{∆ ⋐ Z
d : 0 ∈ ∆, ∆ separates (η, η′)} .

Such ∆0 exists because the separating set property is closed by finite unions.

For the event {∆0 = Z
d} we understand that any site with non-zero multiplicity is in ∆0. Note

that events A and {∆0 = Z
d} are equivalent. In fact, if A does not hold there exists n such that

∆ does not separate (η, η′) for all ∆ ⊃ Λn. So, ∆0 cannot contain Λn. Reciprocally, suppose

that x /∈ ∆0 with θ(x) 6= 0 and the event A holds. So, there exists a finite set ∆ such that ∆

separates (η, η′) and ∆ ⊃ Λn where n is fixed such that x ∈ Λn. Then ∆0 ∪ ∆ is a separating

set that contradicts the maximal assumption of ∆0.

Assume that exists x ∈ ∆c
0 with θ(x) 6= 0. In such case, there exists s ∈ Ωθ with X(s) = x such

that (η(s), η′(s)) 6= (s, s). Otherwise, ∆0 ∪ {x} contains 0 and it is a separating set for (η, η′)

larger than ∆0. Call γ1 to the cycle from η or η′ such that γ1(s) 6= s. Clearly γ1 is open and as

∆0 is a separating set we have {γ1} ⊂ ∆c
0.

Consider ∆1 = ∆0 ∪ {γ1}. It cannot be a separating set for (η, η′) by the maximal assumption

of ∆0. So, there exists γ2 in η or η′ such that ∆1 ∩ {γ2} 6= ∅ and ∆c
1 ∩ {γ2} 6= ∅. From the

second intersection, we deduce ∆c
0 ∩ {γ2} 6= ∅ but as ∆0 is a separating set we have {γ2} ⊂ ∆c

0.

We have also {γ2} ∩ {γ1}c 6= ∅, so γ2 6= γ1. From the first intersection we obtain that γ2 ⋊⋉ γ1,

because {γ2} ∩ {γ1} 6= ∅ and γ2 6= γ1. Note that γ2 is open.

Now, suppose that there are n different open cycles γ1, . . . , γn such that {γi} ⊂ ∆c
0 for all

i = 1, . . . , n and for each γi there exists j ∈ {1, . . . , i − 1} such that γj ⋊⋉ γi. Denote by ∆n

the set ∆0 ∪ (∪n
i=1{γ̄i}). Since ∆n cannot separate (η, η′) there exists a cycle γn+1 in η or η′

(so, γn+1 is open) such that ∆n ∩ {γn+1} 6= ∅ and ∆c
n ∩ {γn+1} 6= ∅. As ∆0 is a separating set,

the second condition implies that {γn+1} ⊂ ∆c
0 and γn+1 6= γj for all j = 1, . . . , n. Then the

condition ∆n ∩ {γn+1} 6= ∅ says that γn+1 ⋊⋉ γj for some j = 1, . . . , n.

Thus, there is a sequence of different open cycles {γi}i∈N such that each γn is the neighbor of some

γj with j < n. Then all cycles from the sequence are in the same connected component, so, it is
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infinite. Hence, we have proved that Ac ⊂ {exists an infinite open path of cycles containing x} ,

and by Lemma (5.2) it follows that νξ
θ,Λ ⊗ νξ′

θ,Λ(Ac) = 0 for almost every realization of θ.

Lemma 5.4. Let ρ and α as in Lemma 5.2. Let µ and µ′ be Gibbs measures that concentrate

on finite cycle permutations. Then µ ⊗ µ′(A) = 1.

Proof. As An+1 ⊂ An it is sufficient to show that limn→∞ µ ⊗ µ′(An) = 1. Using that An is a

decreasing event with the definition of Gibbs measures, we obtain for Λ ⋐ Z
d:

µ ⊗ µ′(An) =

∫
Gξ

θ,Λ ⊗ Gξ′

θ,Λ(An)dµ ⊗ µ′(ξ, ξ′) ≥
∫

νξ
θ,Λ ⊗ νξ′

θ,Λ(An)dµ ⊗ µ′(ξ, ξ′) .

To complete the proof, we take limit as n tends to ∞ in the last term and use the Lemma (5.3).

Lemma 5.5. Consider ρ ∈ (0, 1/2) and α > 0 such that Cρϕ(α) < r0, where r0 is the constant

defined in (9). If µ and µ′ are Gibbs measures supported on finite cycle permutations, then

µ = µ′.

Proof. It is sufficient to prove that µ(B) = µ′(B) for a local event B.

Let JΛ(∆) be the event that ∆ ⋐ Z
d is the first separating set that contains Λ. The existence

of ∆ is guaranteed by (5.4) and so,
∑

∆⊃Λ, ∆⋐Zd µ ⊗ µ′(JΛ(∆)) = 1 .

Now, suppose that for any finite cycle boundary conditions ξ and ξ′, we have

Gξ
θ,∆ ⊗ Gξ′

θ,∆

(
(B × SF

θ ) ∩ JΛ(∆)
)

= Gξ
θ,∆ ⊗ Gξ

θ,∆

(
(SF

θ × B) ∩ JΛ(∆)
)

. (26)

Then, integrate with respect to µ ⊗ µ′ and use that µ and µ′ are supported on finite cycle

permutations to obtain

µ ⊗ µ′
(
(B × SF

θ ) ∩ JΛ(∆)
)

= µ ⊗ µ′
(
(SF

θ × B) ∩ JΛ(∆)
)

,

and summing over all choices of ∆, we show µ(B) = µ′(B).

So, it remains to prove that (26). Observe that if ∆ does not separate (ξ, ξ′), both sides of (26) are

0. If ∆ separates, the boundary conditions (ξ, ξ′) have the same effect as the identity boundary

conditions. Hence, we can replace ξ and ξ′ by id. Since the event JΛ(∆) and Gid
θ,∆ ⊗ Gid

θ,∆ are

invariant under the map (σ, σ′) 7→ (σ′, σ) the equation (26) holds.

6 Existence and uniqueness on the continuum

In this section we study the existence of Gibbs measure when the set of points is a realization

of a homogeneous Poisson point process on Rd with low intensity. The Hamiltonian H is given

by the quadratic potential as in (3). We understand the finite volume Λ as a compact subset of
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R
d and we write Λ ⋐ R

d for it. The thermodynamic formalism has analogous definitions that

in the random lattice case.

Let Ω ⊂ R
d be the realization of a Poisson point process with density ρ. The notation is the

same that for previous sections, we write Ω instead Ωθ or θ. So, SΩ is the permutation space,

SF
Ω is the set of finite cycle permutation and ΓΩ is the space of finite cycles. The support of a

cycle has the same definition as before. However, the notion of ordered support does not make

sense in the continuous setting, since each jump contributes non-zero to the Hamiltonian.

Section (3) works as in the previous case because we did not use anything related to the environ-

ment. So, the free process and the loss network of cycles have the same definitions and properties

that in the discrete case. In particular, the specification at finite volume Λ corresponding to

a finite cycle boundary condition is stochastically dominated by the corresponding invariant

measure of the free process. So, to show the existence we will prove tightness of the family of

specifications {Gid
Ω,Λ}Λ⋐Rd . To prove uniqueness we will apply the existence of separating sets

as in Lemma (5.4).

We want to construct a coupling between the free process in the continuum setup with the free

process of a certain discrete model on Z
d with Poisson multiplicities in such way that the first

is dominated by the second. Then we are able to apply the results of previous sections.

If z = (z1, . . . , zd) ∈ R
d we write ⌊z⌋ = (⌊z1⌋, . . . , ⌊zd⌋) ∈ Z

d. Let Ω be a homogeneous Poisson

process on R
d with intesity ρ. For x ∈ Z

d, let θ(x) be the number of points in Ω ∩ Ix, where

Ix = x + [0, 1)d. Then θ = {θ(x)}x∈Zd is an i.i.d. sequence of Poisson(ρ) random variables. For

each x such that θ(x) 6= 0 we tag points of Ix from 1 to θ(x) with some rule. For example,

using the relative order of the distance to x. So, there is a bijection among Ω and Ωθ, where

Ωθ ⊂ Z
d × N is the set associated to θ, such that each z ∈ Ω is mapped to some (⌊z⌋, i) with

i ∈ {1, . . . , θ(⌊z⌋)}. This bijection induces also a bijective map among the finite cycle spaces.

We denote this bijection by Ψ. The following lemma summarizes these claims.

Lemma 6.1. The map Ψ: SΩ → Sθ is a homeomorphism. Further, it induces a homeomorphism

among N
ΓΩ

0 and N
Γθ
0 by the relation η 7→ ς where ς(γ) = η(Ψ−1(γ)) for all γ ∈ Γθ.

The following lemma tells us what potential we can choose to compare the discrete and con-

tinuum models.

Lemma 6.2. For x, z ∈ R
d we have: ‖x − z‖2 ≥ V (⌊x⌋ − ⌊z⌋), where V is defined by V (x) =

max{‖x‖2 − 2
√

d‖x‖, 0}.

Proof. For x ∈ R
d write x = ⌊x⌋ + x̃ with x̃ ∈ [0, 1)d. So, using Cauchy-Schwarz we have

‖x − z‖2 ≥ ‖⌊x⌋ − ⌊z⌋‖2 − 2‖⌊x⌋ − ⌊z⌋‖‖x̃ − z̃‖ ≥ ‖⌊x⌋ − ⌊z⌋‖2 − 2
√

d‖⌊x⌋ − ⌊z⌋‖.

For the rest of this section, V will denote the potential defined in the previous Lemma and
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HV its associated Hamiltonian. Note that H(γ) ≥ HV (Ψ(γ)) for all γ ∈ ΓΩ, so, the respective

weights satisfies w(γ) ≤ wV (Ψ(γ)) for all γ ∈ ΓΩ.

Denote by (ηo
t : t ∈ R) and (ςo

t : t ∈ R) the stationary constructions of free processes for the

continuum model with quadratic potential and for the discrete model related to V respectively.

By the relation among weights, we can give a coupling between processes such that Ψ(ηo
t ) ≤ ςo

t for

all t. Each free process is constructed as a function of a Poisson process in the cycle spaces, so, it

is sufficient to couple both processes. Denote by N and NV the Poisson processes corresponding

to (ηo
t : t ∈ R) and (ςo

t : t ∈ R) respectively. It is sufficient to construct N as an independent

thinning of NV as follows: a mark (Ψ(γ), t, s) ∈ NV induces a mark (γ, t, s) in the process N
with probability w(γ)/wV (Ψ(γ)) independent of each other.

Let K ⊂ SF
Ω ⊂ {0, 1}ΓΩ be a decreasing event. Since the Lemma (3.3) holds for the continuum

setting, the specifications are dominated by the Poisson measure νΩ. Using this fact with the

coupling among both free processes we have that for all compact set Λ ⊂ R
d:

Gid
Ω,Λ(Kc) ≤ νΩ(Kc) ≤ νθ(Ψ(Kc)). (27)

For the discrete model we define K̂f =
⋂

x∈Zd

K̂f (x) ⊂ N
Γθ
0 where

K̂f (x) = {η ∈ N
Γθ
0 : ∀ γ ∈ η such that x ∈ γ we have HV (γ) ≤ f(x)} .

It is the same set of the previous section but now is associated to HV . The set Kf = K̂f ∩ SF
θ

is a decreasing event by Lemma (4.4) and if the density ρ is good for V , Kf is a non-empty

compact set for almost every realization of θ. For the rest of the section we assume that ρ is

good for V .

Note that Ψ−1(Kf ) is also a decreasing event and a non-empty compact set. Hence, equation (27)

implies that for almost every realization of Ω we have

Gid
Ω,Λ(Ψ−1(Kc

f )) ≤ νΩ(Ψ−1(Kc
f )) ≤ νθ(Kc

f ) .

So, given ǫ > 0, Lemma (4.2) provides a function f such that νθ(Kc
f ) < ǫ.

Lemma 6.3. Let ρ ∈ (0, 1/2) such that ρ is good for V . Suppose that ρ and α > 0 satisfy

CρϕV (α/2) < 1, where Cρ = ρe−ρ+ 1
2

1−2ρ and ϕV was defined in (12).

Then the family {Gid

Ω,Λ}Λ⋐Rd is tight and there exists a Gibbs measure µ that concentrates on

finite cycle permutations.

Now, we want to establish the uniqueness among Gibbs measures that concentrate on finite

cycle permutations. To prove it, we use the existence of arbitrary large separating sets for the

discrete model with potential V .

We say that a compact set ∆ ⊂ R
d is a separating set for η ∈ N

ΓΩ

0 if ∂∆ ∩ Ω = ∅ and for any
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γ ∈ η we have {γ} ⊂ ∆ or {γ} ⊂ ∆c. We say that ∆ is a separating set for the pair (η, η′), if it

is a separating set for η and η′.

Given z1, . . . , zn ∈ Ω, we can pick a compact set Λ ⊂ R
d such that ∂Λ ∩ Ω = ∅ and Λ ∩ Ω =

{z1, . . . , zn}. There exists a lot of ways to choose Λ, but fix one of these. Now, given ∆ ⋐ Z
d

define Ψ−1(∆) as the fix previous compact set that contains ∪x∈∆(Ω ∩ Ix). Note that, if ∆ ⋐ Z
d

is a separating set for ς ∈ N
Γθ
0 , the compact set Ψ−1(∆) ⊂ R

d is also a separating set for

η = Ψ−1(ς) ∈ N
ΓΩ

0 . This fact can be extended to pair of configurations.

Let A be the event that exists a sequence of compact sets that increase to R
d and each set is a

separating set for pairs (η, η′) ∈ N
ΓΩ

0 ×N
ΓΩ

0 . By the coupling between continuum and discrete free

processes and Lemma (5.3) about the existence or arbitrary large separating sets for the discrete

model, one shows that for almost surely with respect to the environment νξ
Ω,Λ ⊗ νξ′

Ω,Λ(A) = 1 for

any finite Λ and any pair (ξ, ξ′) of finite cycle permutations in SΩ.

Lemma (5.4) also holds in the continuum context, since it only uses the definition of Gibbs

measures and the domination of specifications by the corresponding free process. So, if µ and µ′

are Gibbs measures in the continuous model that concentrate on the finite cycle permutations,

we have

µ ⊗ µ′(∃{∆j}j∈N ↑ R
d such that ∆jis a separating set) = 1.

Hence, the existence of an increasing sequence of separating sets in the continuum model is

proved.

Lemma 6.4. Let ρ ∈ (0, 1/2) such that ρ is good for V . Suppose that ρ and α satisfy CρϕV (α) <

r0, where r0 is the solution of the equation (9).

Then, if µ and µ′ are Gibbs measures supported on finite cycle permutations we have µ = µ′.

Proof. The proof of Lemma (5.5) applies without changes.

Appendix

In this appendix we prove a bound for the number of cycles that have the same ordered support.

Recall that the ordered support of a cycle γ, defined in (21), is the projection of γ to Z
d erasing

consecutive repetitions of sites.

Let ȳ ∈ (Zd)m such that ȳi 6= ȳi+1. It is a possible ordered support. Remember that Nθ(ȳ) is

the number of cycles such that its ordered support is ȳ. Write {ȳ} for coordinates of ȳ without

repetitions. For z ∈ {ȳ} let kz(ȳ) = #{i : yi = z} be the number of times that z appears in the

ordered support ȳ, i.e., the effective uses of site z in the sense that computes non trivially for

the Hamiltonian. If ȳ is such that kz > θ(z) for some z ∈ {ȳ}, then the number of cycles that

has ȳ as ordered support is zero. It is the same if θ(z) = 0 for any z ∈ {ȳ}. Therefore, suppose

that ȳ is such that 0 < kz ≤ θ(z) for all z ∈ {ȳ}.
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A cycle γ with [γ] = ȳ can use the site z at least kz times and at most θ(z) times. Let

a ∈ {kz , . . . , θ(z)} be the number of times that γ uses z. There are
(θ(z)

a

)
a! ways to choose a

different points in Ωθ located at z. Then, the a different points have to locate at kz coordinates

of ȳ = [γ] corresponding to place z, and they must use all of kz coordinates. Thus, there are( a−1
kz−1

)
ways to do it (it is the same problem that put a balls in kz boxes using at least one ball

per box). So, for the number of cycles that has ȳ as ordered support we have

Nθ(ȳ) ≤
∑

k1≤a1≤θ(z1)

...
kl≤al≤θ(zl)

l∏

j=1

(
θ(zj)

aj

)
aj !

(
aj − 1

kj − 1

)
≤

l∏

j=1

(
e

1
2

2
θ(zj)! 2θ(zj )1{θ(zj)6=0}

)
:= Mθ(ȳ) , (28)

where {ȳ} = {z1, . . . , zl} and kj = kzj
.

For density ρ ∈ (0, 1/2), the expectation under P of the upper bound Mθ(ȳ) given in (22), can

be computed using the independence of multiplicities and their distribution. Indeed,

E[Mθ(ȳ)] = E

[
e

1

2

2
θ(z)! 2θ(z)1{θ(z)6=0}

]l

=


∑

i≥1

e
1

2

2
2i e−ρ ρi




l

≤
(

ρe−ρ+ 1

2

1 − 2ρ

)|ȳ|

.

Remark 6.5. The upper bound Mθ(ȳ) does not depend on the relative order for coordinates of

ȳ. So, if we need an upper bound for the number of pairs of cycles (γ, γ′) such that [γ] = ȳ and

[γ′] = ȳ′, we use the upper bound Mθ(ȳȳ′), where ȳȳ′ is a concatenation of vectors such that

(ȳ, ȳ′) is an ordered support.
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