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Abstract In this work, we introduce an hp finite element method for two-dimensional Pois-
son problems on curved domains using curved elements. We obtain a priori error estimates
and define a local a posteriori error estimator of residual type. We show, under appropriate
assumptions about the curved domain, the global reliability and the local efficiency of the
estimator. More precisely, we prove that the estimator is equivalent to the energy norm of the
error up to higher-order terms. The equivalence constant of the efficiency estimate depends
on the polynomial degree. We also present an hp adaptive algorithm and several numerical
tests which show the performance of the adaptive strategy.
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1 Introduction

The goal of this paper is to introduce and analyze an hp finite element scheme for solving
the Poisson problem on curved domains using curved elements. This elements are suitable
for use along the curved part of the boundary. Adaptive procedures based on a posteriori
error estimators play a relevant role in the numerical approximation of partial differen-
tial equations. In fact, there are several papers concerning the development of a posteriori
error estimates and efficient adaptive schemes for the h finite element approximation of
a wide range of problems (see, for example, Verfürth 1996 and the references there in).
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There are also some references regarding the hp finite element approximation for different
type of problems (see, for instance, Armentano et al. 2011; Azaiez et al. 2008; Boffi et al.
2006; Melenk and Wohlmuth 2001; Schwab 1998). However, to the authors’ knowledge, all
analysis for the hp approach are restricted, in general, to the case of polygonal domains,
or by replacing the curved domain � with a polygonal domain �h . These approaches, how-
ever, do not retain the same accuracy along the curved part of the original boundary. Different
approaches have been considered, for instance by Ciarlet and Raviart (1972), Scott (1975)
and Zlâmal (1973), to deal with curved domains. In this work, we consider curved element
(like those introduced in Zlâmal 1973) that are suitable for the curved part of the boundary
of �.

On the other hand, a posteriori error analysis for the hp version of the finite element
method still presents several difficulties even for source problems in polygonal domains (see,
for instance, Ainsworth and Senior 1997, 1998; Melenk and Wohlmuth 2001; Tarancon et
al. 2005 and the references therein). One of the main difficulties in hp adaptivity arises from
the fact that the accuracy can be improved by subdividing elements or by increasing the
polynomial degree. Consequently at each refinement step, it is necessary to decide which
of these two options must be chosen. There are different hp adaptive strategies (see, for
example, Ainsworth and Senior 1997, 1998; García-Castillo et al. 2007; Demkowicz 2007;
Demkowicz et al. 2008; Oden et al. 1995, 1992; Pardo et al. 2007). Some of them follow the
strategy developed by Demkowicz (2007), Demkowicz et al. (2008), while others are based
on the estimation of the local regularity of the solution. Within the second kind of strategies,
we find the one proposed by Melenk and Wohlmuth (2001), based on a predictor of the error
in each element of the mesh.

In this work, we obtain a priori error estimates and develop a posteriori error estimator of
residual type using curved elements which fit the curved domain. We analyze the equivalence
of this estimator with the energy norm of the error. We prove, under appropriate assumptions
about the curved domain, the global reliability of the error indicator up to higher-order terms.
Moreover, we also show the local efficiency of the indicator with a constant which depends
on the polynomial degree of the element. To the best of the authors’ knowledge, simul-
taneous reliability and efficiency estimates with constants independent of the polynomial
degree have been obtained only for the one-dimensional case (Dorfler and Heuveline 2007).
In fact, in the two-dimensional case, this kind of estimates has not yet been proved for any a
posteriori error estimator for hp finite element methods.

Following the hp adaptive strategy given in Armentano et al. (2011, 2012), Melenk and
Wohlmuth (2001), we propose an adaptive algorithm and apply it to different curved domains.
These numerical tests allow us to show a good performance of the error indicator and the
adaptive algorithm.

The rest of the paper is organized as follows. In Sect. 2, we introduce the problem. In
Sect. 3, we present the hp finite element approximation and obtain a priori error estimates.
In Sect. 4, we introduce a posteriori error estimator and prove its equivalence with the energy
norm of the error. Finally, in Sect. 5, we report several numerical examples that allow assessing
the performance of the adaptive scheme.

2 The state of the problem

Let � ⊂ R
2 be a bounded open domain, in general, nonconvex, with a piecewise smooth

Lipschitz boundary �. We assume that � belongs to Ck+1 piecewise with k ≥ 1 sufficiently
large to fulfill our requirements.
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Fig. 1 Curved triangle
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Our model problem is {−�u = f in �,
u = 0 on �.

(1)

Let V = H1
0 (�). The weak formulation of problem (1) is to find u ∈ V such that∫

�

∇u · ∇v =
∫
�

f v ∀v ∈ V . (2)

A natural way to approximate the solution of problem (1) is to replace�with a polygonal
domain and to use the classical finite element method in its h, p or hp version. In this work,
we consider curved element that are suitable for the curved part of �.

The domain � is subdivided into a finite number of (closed) triangles. We assume that
the boundary � can be divided into a finite number of arcs. For triangles without edges in �,
we use standard linear triangles. For triangles T with an edge � ⊂ ∂T ∩ �, we use the local
numbering {P1, P2, P3}, where P2 is in the interior of � and P1, P3 ∈ �. Consequently,
the arc � = P̂1 P3 ⊂ � (see Fig. 1). We assume that each of those arcs has a parametric
representation (φ(s), ψ(s)), a ≤ s ≤ b, with functions φ,ψ ∈ Ck+1([a, b]).

We denote by hT and θT the greatest side and smallest angle of the triangle of vertices
P1, P2, P3, respectively.

Let T̂ be the classical reference triangle, i.e., the triangle of vertices (0, 0), (1, 0) and
(0, 1). For each triangle T in the triangulation, we introduce an application F which maps
the triangle T̂ on the triangle T . If we denote by (x j , y j ), 1 ≤ j ≤ 3, the coordinates of the
vertices Pj of T , then the mapping F can be defined as (see Zlâmal 1973):

F(ξ, η) = F0(ξ, η)+ (1 − ξ − η) (�(η),(η)), (3)

where F0 is the affine transformation from T̂ onto the triangle of vertices P1, P2 and P3:

F0(ξ, η) = (x1 + (x2 − x1)ξ + (x3 − x1)η, y1 + (y2 − y1)ξ + (y3 − y1)η).

Functions � and  are defined as:

�(η) = φ(s1 + (s3 − s1)η)− x1 − (x3 − x1)η

1 − η
,

(η) = ψ(s1 + (s3 − s1)η)− y1 − (y3 − y1)η

1 − η
,

with s1 and s3, the values of the parameters corresponding to the vertices P1 and P3, respec-
tively. We remark that the point η = 1 is only an apparent singularity. Indeed, it is possible
to extend �(η) and (η) for η = 1 such that they belong to Ck (see Zlâmal 1973).
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Then, given a polynomial function v̂(ξ, η) in T̂ with degree p, we can define a function
v(x, y) in T by v(x, y) = v̂(F−1(x, y)). We say that v has “degree” pT = p in T .

The next theorem presents some properties of transformation F . Although the result is a
particular case of Theorem 1 in Zlâmal (1973), we include it for the sake of completeness.

Theorem 1 Let � be of class Ck+1 piecewise with k ≥ 1. If h is sufficiently small, the
transformation F maps T̂ one-to-one on T . The Jacobian JF (ξ, η) of this mapping is different
from zero on T̂ , the side (0, 0)(0, 1) is mapped on the arc P̂1 P3, the sides (0.0)(1, 0) and
(1, 0)(0, 1) are linearly mapped on the sides P1 P2 and P2 P3, respectively. The mapping and
its inverse mapping are of class Ck. In addition,

|JF (ξ, η)| = O(h2
T ), (4)

D j Fi (ξ, η) = O(h| j |
T ) 1 ≤ | j | ≤ k, (5)

D j F−1
i (ξ, η) = O(h−1

T ) | j | = 1, (6)

where j = ( j1, j2), | j | = j1 + j2 and D j Fi (ξ, η) = ∂ | j |Fi

∂ξ j1∂η j2
.

3 The hp finite element approximation and a priori error estimates

In this section, we introduce an hp finite element method for the Poisson problem described
in the previous section, prove its convergence and obtain a priori error estimates.

Let {Th} be a family of triangulations of� such that any two triangles in Th share at most
a vertex or an edge. We assume that the family of triangulations {Th} satisfies a minimum
angle condition, i.e., there exists a constant θ0 > 0 such that θT ≥ θ0, for any T ∈ Th .

We associate with each element T ∈ Th a (maximal) polynomial degree pT ∈ N. We
assume that the polynomial degrees of neighboring elements are comparable, i.e., there exists
a constant γ > 0 such that

γ−1 pT ≤ pT ′ ≤ γ pT ∀T, T ′ ∈ Th with T ∩ T ′ 
= ∅. (7)

We denote p := {pT }T ∈Th
the family of polynomial degrees.

Throughout the work, we denote by C a generic positive constant (not necessarily the
same at each occurrence), which may depend on the mesh and the degree of the polynomials
only through the parameters θ0 and γ , respectively.

We define the finite element space as follows:

V p
h := {

v ∈ V : v|T = v̂ ◦ F−1, v̂ ∈ PpT ∀T ∈ Th
}
,

where Pk denotes the space of polynomials of degree at most k.
The discrete problem associated with (1) is to find uh ∈ V p

h such that
∫
�

∇uh · ∇v =
∫
�

f v ∀v ∈ V p
h . (8)

The norms and seminorms in Hm(D), with m an integer, and the norm in L∞(D) are
denoted by ‖ · ‖m,D , | · |m,D and | · |∞,D , respectively. The inner product in L2(D) for
any subdomain D ⊂ � is denoted by (·, ·)D . The domain subscript is dropped for the case
D = �.
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As a consequence of the classical a priori estimates (see Grisvard 1985), the solution of
(2) is known to satisfy some further regularity for any f ∈ L2(�). In fact, u ∈ H1+r (�) for
some r > 0 depending on the geometry of � and it holds

‖u‖1+r ≤ C‖ f ‖2, (9)

with r = 1, when� is an smooth domain [see Grisvard 1985, Theorem 2.2.2.3 and (2.3.1.1)]
or is a polygonal domain without reentrant corners. In the particular case in which � is a
polygonal domain with reentrant corners, we have r < 2π

θ
with θ being the largest interior

angle of �.
Our first goal is to prove that the solutions of the discrete problem (8) converge to the

solution of problem (1). To do this, we present the following Lemma that is a particular case
of Theorem 4.3.2 of Ciarlet (1978).

Lemma 1 If v̂ : T̂ → R is a function in Hk(T̂ ), for some k ∈ Z≥0, the function v =
v̂ ◦ F−1 : T → R belongs to Hk(T ) and there exists a constant C such that

|v|0,T ≤ |JF |1/2∞,T̂
|v̂|0,T̂ , ∀v̂ ∈ L2(T̂ ), (10)

|v|1,T ≤ C |JF |1/2∞,T̂
|DF−1|∞,T |v̂|1,T̂ , ∀v̂ ∈ H1(T̂ ), (11)

|v|2,T ≤ C |JF |1/2∞,T̂

(
|DF−1|2∞,T |v̂|2,T̂ + |D2 F−1|∞,T |v̂|1,T̂

)
, ∀v̂ ∈ H2(T̂ ). (12)

Now, we are in a position to prove the following a priori error estimates.

Proposition 1 For all r < π
θ

, there exist positive constants C and κ , such that, if

maxT ∈Th
hT
pT
< κ , then

|u − uh |1 ≤ C

(
max
T ∈Th

hT

pT

)r

. (13)

Proof It can be seen from Babuška and Suri (1994, Theorem 4.1), Babuška and Suri (1987,
Lemma 4.5, Theorem 4.6), Oden et al. (1989, Theorem 2.1) and standard results on inter-
polation in Sobolev spaces (see, for instance, Theorem 1.4 in Girault and Raviart 1986) that
there exists an operator � p

h satisfying

‖v̂ −�
p
h v̂‖2

1,T̂
≤ C

(
1

p′
T̂

)2r

‖v̂‖2
1+r,T̂

for any function v̂ ∈ H1+r (T̂ ). Then, the estimate (13) is a direct consequence of a simple
changes of variables, Theorem 1, Lemma 1, the fact that

∑
T ∈Th

‖v‖2
1+r,T ≤ C‖v‖2

1+r and
the a priori estimate (9). ��

4 A posteriori error estimator

In this section, we present a posteriori error estimator for the error e := u − uh in the
energy norm. We show global reliability and local efficiency by proving that the estimator is
equivalent to the energy norm of the error up to higher-order terms. The equivalence constant
of the efficiency estimate is suboptimal in that it depends on the polynomial degree.

We introduce here some notation that we use in the definition and analysis of the error
estimator. For any T ∈ Th , let ET denote the set of edges of T and E := ⋃

T ∈Th
ET . We

decompose E in disjoint sets E� := {� ∈ E : � ⊂ �}, and E� := E \ E� .
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For each � ∈ E�, we choose a unit normal vector n� and denote the two triangles sharing
this edge Tin and Tout, with n� pointing outwards Tin. For vh ∈ V p

h , we set[[
∂vh

∂n

]]
�

:= ∇ (vh |Tout

) · n� − ∇ (vh |Tin

) · n�,

which corresponds to the jump of the normal derivative of vh across the edge �. Notice that
this value is independent of the chosen direction of the normal vector n�.

From (2) and (8), we know that for any vh ∈ V p
h , the error e satisfies∫

�

∇e · ∇vh = 0. (14)

On the other hand, for any v ∈ V , using (2) and integrating by parts, we obtain∫
�

∇e · ∇v =
∑

T ∈Th

∫
T

( f +�uh)v +
∑

T ∈Th

∫
∂T

∂uh

∂n
v.

Hence, defining for each edge � ∈ E�

J� := 1

2

[[
∂uh

∂n

]]
�

,

we have ∫
�

∇e · ∇v =
∑

T ∈Th

⎛
⎝∫

T

( f +�uh)v +
∑
�∈ET

∫
�

J�v

⎞
⎠ (15)

for all v ∈ V .
Let P p

h denote the L2 projection onto V p
h defined for any f ∈ L2(�) by

P p
h f ∈ V p

h :
∫
�

P p
h f vh =

∫
�

f vh ∀vh ∈ V p
h . (16)

For each element T ∈ Th , we define the local error indicator ηT by

η2
T := h2

T

p2
T

∥∥P p
h f +�uh

∥∥2
0,T +

∑
�∈ET

|�|
p�

‖J�‖2
0,� , (17)

with p� := max {pT : � ∈ ET } and the global error estimator η� by

η2
� :=

∑
T ∈Th

η2
T .

To compare the error and the estimator, we need some interpolation error estimates similar
to the hp Clément interpolation operator (see, for example, Melenk and Wohlmuth 2001),
valid for standard triangulation.

We introduced the following notation: for each vertex, V of the triangulation Th ,

ωV :=
⋃

{T ∈ Th : V is a vertex of T},
ωT :=

⋃
{ωV : V is a vertex of T },

ωL :=
⋃

{ωV : V is an endpoint of � },
EV := {� ∈ E : V is an endpoint of �}.
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Γ

Fig. 2 patches ω̂V and ωV

The next step in our construction consists in associating any patch ωV with a reference
patch ω̂V . If NV denotes the number of triangles inωV , then the corresponding reference patch
ω̂V is the regular polygon with NV edges of length 1 centered at the origin 0, triangulated
with NV triangles all sharing the vertex 0 (see Fig. 2). The patch ωV can be related to the
reference patch by a homeomorphism FV : ω̂V → ωV with FV (0) = V which has the form

FV |T := F ◦ F−1
A ,

where the maps FA are the affine transformation between T̂ and the triangles in ω̂V Melenk
(2005). Now, we are in condition to obtain the following interpolation error estimates

Lemma 2 There exists a bounded linear operator I p
h : V → V p

h such that for any T ∈ Th

and for all edges � ∈ E

∥∥u − I p
h u
∥∥

0,T + hT

pT

∥∥∇(u − I p
h u)

∥∥
0,T ≤ C

hT

pT
|u|1,ωT

, (18)

∥∥u − I p
h u
∥∥

0,� ≤ C

(
h�
p�

) 1
2 |u|1,ωL

. (19)

Proof Following the ideas given above, for each triangulation Th , we can associated a ref-
erence triangulation T̂h by connecting, for all v ∈ E , patches like ω̂V with corresponding
patches ωV . Then, for the triangulation T̂h and any function û ∈ H1(T̂h), we can consider
Î p
h : V̂ → V̂ p

h , the well-known hp Clément interpolant, which satisfies (see Melenk 2005):
∥∥∥û − Î p

h û
∥∥∥

0,T̂
+ 1

pT

∥∥∥∇(û − Î p
h û)

∥∥∥
0,T̂

≤ C
1

pT

∣∣û∣∣1,ω̂T
∀T̂ ∈ T̂h, (20)

∥∥∥û − Î p
h u
∥∥∥

0,�̂
≤ C

(
1

p�

) 1
2 ∣∣û∣∣1,ω̂L

, (21)

where V̂ = {v ∈ H1(T̂h) : v = 0 on ∂T̂h} and V̂ p
h :=

{
v̂ ∈ V̂ : v̂∣∣T ∈ PpT ∀T ∈ T̂h

}
.

We define the interpolant I p
h as: I p

h |ωV = Î p
h |ω̂V ◦ FV . Then, from Theorem 1 and Lemma

1, the fact that ‖DF−1
A ‖∞,T̂ ≤ C and inequalities (20) and (21), we conclude that

∥∥u − I p
h u
∥∥

0,T + hT

pT

∥∥∇(u − I p
h u)

∥∥
0,T ≤ ChT

(∥∥∥û − Î p
h û
∥∥∥

0,T̂
+ 1

pT

∥∥∥∇(û − Î p
h û)

∥∥∥
0,T̂

)

≤ C
hT

pT

∣∣û∣∣1,ω̂T
≤ C

hT

pT

∑
T ⊂ω̂T

∣∣û∣∣1,T
≤ C

hT

pT

∑
T ⊂ωT

|u|1,T ≤ C
hT

pT
|u|1,ωT

.
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The other inequality can be obtained in a similar way. ��
The following theorem provides an upper bound for the error, which proves the reliability

of the error estimator up to higher-order terms.

Theorem 2 There exists a positive constant C such that

|e|1 ≤ C

[
η� +

(
max
T ∈Th

hT

pT

)
‖ f − P p

h f ‖0

]
.

Proof Using the error equations (14) with vh = I p
h e and (15) with v = e − I p

h e, we obtain

|e|21 =
∫
�

∇e · ∇ (e− I p
h e
)= ∑

T ∈Th

⎛
⎝∫

T

( f +�uh)
(
e− I p

h e
)+∑

�∈ET

∫
�

J�(e− I p
h e)

⎞
⎠

=
∑

T ∈Th

⎛
⎝∫

T

(P p
h f +�uh)

(
e− I p

h e
)+∑

�∈ET

∫
�

J�(e− I p
h e)+

∫
T

( f −P p
h f )(e− I p

h e)

⎞
⎠

Then, the result follows using the Cauchy-Schwartz inequality, Lemma 2, the definition of
η� and the fact that the triangulation satisfies the minimum angle condition and (7). ��
For T ∈ Th , let

bT (x, y) :=
{

b̂T (F−1(x, y)) in T,
0 in � \ T,

where b̂T is the standard cubic bubble given by b̂T := λ1λ2λ3, where λ1, λ2 and λ3 denote
the barycentric coordinates of T̂ .

For � ∈ E�, we denote by T1 and T2 the two triangles sharing � and we enumerate
the vertices of T1 and T2 so that the vertices of � are numbered first. Then, associated with
ω� = T1 ∪T2, we can define a transformation F� : D̂ → ω�, where D̂ = T̂1 ∪ T̂2 with T̂1 = T̂
and T̂2 is the triangle of vertices (0, 0), (1, 0), (0,−1). The bubble function associated with
� is defined as:

b�(x, y) :=
{

b̂�(F
−1
� (x, y)) in ω�,

0 in � \ ω�,

where b̂� is the piecewise quadratic edge bubble function defined by b̂� := λ
T̂1
1 λ

T̂2
2 .

To guarantee that the error indicator is efficient to guide an adaptive refinement scheme,
we should prove that ηT is bounded by the H1 norm of the error on a neighborhood of T
up to higher-order terms. This kind of estimates is in general based on the use of inverse
inequalities which hold in piecewise polynomial spaces (see, for example, Ciarlet (1978,
pag.140) for the h version of the finite element method and Melenk and Wohlmuth (2001)
for the hp version). Next Lemma shows some inverse inequalities for functions in V p

h .

Lemma 3 For any v ∈ V p
h we have that

|v|1,T ≤ C
p2

T
hT

‖v‖0,T ∀T ∈ Th (22)

|v|0,T ≤ CpT ‖vb
1
2
T ‖0,T ∀T ∈ Th . (23)
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Moreover, if v = 0 in ∂T , then

|v|1,T ≤ C
pT

hT
‖ v

b
1
2
T

‖0,T ∀T ∈ Th . (24)

Proof Given v ∈ V p
h , for any T ∈ Th , we know that v(x, y) = v(F(ξ, η)) = v̂(ξ, η). Then,

from Lemma 1 and the inequality (23) in Melenk and Wohlmuth (2001), we obtain

|v|1,T ≤ C |JF |1/2∞,T̂
|DF−1|∞,T |v̂|1,T̂ ≤ Cp2

T |JF |1/2∞,T̂
|DF−1|∞,T ‖v̂‖0,T̂ (25)

≤ Cp2
T |JF |1/2∞,T̂

|DF−1|∞,T |JF−1 |1/2∞,T ‖v‖0,T . (26)

Now, Theorem 1 provides the first estimate. Analogously, inequalities (23) and (24) are
obtained using estimates (22) and (24) in Melenk and Wohlmuth (2001), respectively. ��

The following lemma provides an upper estimate for the first term in the definition of ηT

[cf. (17)].

Lemma 4 There exists a positive constant C pT such that

hT

pT

∥∥Pp
h f +�uh

∥∥
0,T ≤ C pT

pT

(
C pT |e|1,T + hT ‖Pp

h f − f ‖0,T
)
. (27)

Proof Using (15) with v = (Pp
h f +�uh)bT ∈ H1

0 (T ) ⊂ V , we obtain
∫
T

(
Pp

h f +�uh
)2

bT =
∫
T

(Pp
h f − f )(Pp

h f +�uh)bT +
∫
T

∇e · ∇ ((Pp
h f +�uh)bT

)

≤ ‖Pp
h f − f ‖0,T ‖(Pp

h f +�uh)bT ‖0,T +|e|1,T |(Pp
h f +�uh)bT |1,T .

Since (Pp
h f + �uh)bT ∈ Wp , where Wp is a subspace of V with dim(Wp) < ∞, for the

same arguments of Lemma 3, we can infer that there exists a constant C pT such that:

|(Pp
h f +�uh)bT |1,T ≤ C pT

hT
‖(Pp

h f +�uh)b
1
2
T ‖0,T ,

‖Pp
h f +�uh‖0,T ≤ C pT ‖(Pp

h f +�uh)b
1
2
T ‖0,T .

Therefore, we obtain

∥∥Pp
h f +�uh

∥∥
0,T ≤ C pT

⎡
⎣∫

T

(
Pp

h f +�uh
)2

bT

⎤
⎦

1/2

≤ C pT ‖Pp
h f − f ‖0,T + C2

pT

hT
|e|1,T ,

and the proof concludes. ��

Remark 1 We observe that, in the particular case in which

(Pp
h f +�uh)bT |T (x, y) = (g ◦ F−1)(x, y) = g(ξ, η),

for some g ∈ PpT +3, from Lemma 3, we have that C pT = pT .

Next, we prove an upper estimate for the second term in the definition of ηT [cf. (17)].
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Lemma 5 For all δ > 0, there exists a positive constant Cδ such that, if � ∈ E�, then

|�|1/2
p1/2
�

‖J�‖0,� ≤ Cδ p1+δ
�

[(
C pT

p�

)2

|e|1,ω� + |�|C pT

p2
�

‖Pp
h f − f ‖0,ω�

]
(28)

where ω� := ⋃ {T ∈ Th : � ∈ ET }.
Proof We follow the arguments proposed in Armentano et al. (2011), Melenk and Wohlmuth
(2001). According to Lemma 2.4 from reference Melenk and Wohlmuth (2001) and Eq. (27)
from reference Armentano et al. (2011), we know that for all β > 0, there exists Cβ > 0,
depending only on β, such that

‖J�‖0,ω� ≤ Cβ pβ�

⎛
⎝∫
�

bβ� J 2
�

⎞
⎠

1/2

. (29)

Moreover, using equations (29), (30) from reference Armentano et al. (2011), we have that
for all β > 1

2 , there exists another constant Cβ > 0 (depending only on β), such that for all
ε > 0 there exists vε ∈ H1

0 (ω�) satisfying

vε |� = bβ� J�, (30)

‖vε‖2
0,ω� ≤ Cβε |�|

∫
�

bβ� J 2
� , (31)

|vε |21,ω� ≤ Cβ
[
εp2(2−β)
� + ε−1

] 1

|�|
∫
�

bβ� J 2
� . (32)

In what follows, we denote by Cβ a generic positive constant, not necessarily the same at
each occurrence, which depends only on β.

For � ∈ E�, we use (15) with v = vε to write∫
ω�

∇e · ∇vε =
∫
ω�

( f +�uh)vε +
∫
�

J�vε.

Hence, using (30), (32), (31) and (27) and Lemma 4, we obtain∫
�

bβ� J 2
� =

∫
�

J�vε

≤ |e|1,ω� |vε |1,ω� +
(∥∥Pp

h f +�uh
∥∥

0,ω�
+ ‖Pp

h f − f ‖0,ω�

)
‖vε‖0,ω�

≤ Cβ
|�|1/2

{[
εp2(2−β)
� + ε−1+εC4

pT

]1/2 |e|1,ω�+ε
1
2 |�| C pT ‖Pp

h f − f ‖0,ω�

}⎛⎝∫
�

bβ� J 2
�

⎞
⎠

1/2

.

Choosing ε = p−2
� in this estimate, we have

⎛
⎝∫
�

bβ� J 2
�

⎞
⎠

1/2

≤ Cβ
|�|1/2

{
[p� + C2

pT

p�
] |e|1,ω� + |�| C pT

p�
‖Pp

h f − f ‖0,ω�

}
,

from which, taking β = 1
2 + δ and using (29), we obtain (28). Thus, we conclude the proof.

��
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Now, we conclude the efficiency of the error indicator, with a constant depending on the
polynomial degree.

Theorem 3 For all δ > 0, there exists a positive constant Cδ such that for all T ∈ Th, we
get

ηT ≤ Cδ p1+δ
T

[(
C pT

pT

)4

|e|1,�T
+ hT

C pT

p2
T

‖Pp
h f − f ‖0,�T

]
,

where �T := ⋃{
T ′ : T and T ′ share an edge

}
.

Proof It is an immediate consequence of Lemmas 4 and 5 and the assumption (7). ��
Remark 2 We observe again that, in the particular case in which

(Pp
h f +�uh)bT |T (x, y) = (g ◦ F−1)(x, y) = g(ξ, η),

for some g ∈ PpT +3, from Lemma 3, we have that C pT = pT and so in this case, we can
conclude that: for all δ > 0, there exists a positive constant Cδ such that for all T ∈ Th ,

ηT ≤ Cδ p1+δ
T

[
|e|1,�T

+ hT

pT
‖Pp

h f − f ‖0,�T

]
.

Remark 3 In the case of polygonal domains from (3), we have that F ≡ F0 and therefore
the estimates of Remarks 1 and 2 agree with the standard results of Melenk and Wohlmuth
(2001).

4.1 Adaptive refinement strategy

In this section, we present the adaptive refinement strategy that is the same used in Armentano
et al. (2011, 2012), Melenk and Wohlmuth (2001). Indeed, to determine which elements
should be refined, we use the mean value strategy: all the triangles T ∈ Th with ηT ≥ θηM

are marked to be refined, where

η2
M := 1

#Th

∑
T ∈Th

η2
T .

Here, θ ∈ (0, 1) is a parameter which can be arbitrarily chosen with the additional consider-
ation that at each step, for each marked triangle, it has to be decided whether to perform a p
refinement or an h refinement.

In the case of p refinement, the degree pT of the marked element is increased by one
and the triangle is kept fixed. While in the case of h refinement, the marked element T is
subdivided into four triangles: T = ⋃4

j=1 T ′
j . We assign to the new elements T ′

j the same
degree of T : pT ′

j
= pT . The conformity of the mesh is preserved by means of a longest edge

subdivision strategy on the unrefined neighboring triangles (see Verfürth 1996).
In order to decide whether to apply a p or an h refinement to a particular triangle, we follow

the approach proposed in Melenk and Wohlmuth (2001), which is based on the comparison
of the current local estimated error with a prediction of this error obtained from the preceding
step. If at the preceding step there was an h refinement leading to T = ⋃k

j=1 T ′
j , k = 2, 3, 4,

then the prediction indicator is defined as follows:

(
η

pred
T ′

j

)2

:= γh

⎛
⎝
∣∣∣T ′

j

∣∣∣
|T |

⎞
⎠

pT +1

η2
T ,
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Table 1 Refinement algorithm
If η2

T ≥ θη2
M then

if η2
T ≥

(
η

pred
T

)2
then

subdivide T into 4 triangles T ′
j , 1 ≤ j ≤ 4

longest edge strategy to maintain mesh conformity
pT ′

j
:= pT

(
η

pred
T ′

j

)2
:= γh

( ∣∣∣T ′
j

∣∣∣
|T |

)pT +1

η2
T

else
pT := pT + 1(
η

pred
T

)2 := γpη
2
T

end
else(

η
pred
T

)2 := γn

(
η

pred
T

)2

end

where γh is a control parameter to be determined. On the other hand, if at the preceding step
there was a p refinement on the element T , then the prediction indicator is defined by

(
η

pred
T

)2 := γpη
2
T ,

where γp ∈ (0, 1) is a reduction factor which is chosen arbitrarily. Finally, for elements,
neither p nor h refined at the preceding step:

(
η

pred
T

)2 := γn

(
η

pred
T

)2
,

where γn is a reduction or amplification factor also arbitrarily chosen. In all cases, we proceed
to an h refinement of T when the error indicator ηT is larger than the prediction indicator
η

pred
T and to a p refinement otherwise.

Altogether, we arrive at the algorithm shown in Table 1.
We set ηpred

T := 0 for all elements T on the initial triangulation, so that the first step is a
purely h refinement on all elements.

5 Numerical examples

In this section, we present some numerical results that allow us to assess the performance of
the proposed hp-adaptive scheme on curved domains. We present three examples. In the first
one, a problem with available regular solution is considered. The algorithm is also applied
without using curvilinear elements to exhibit the loss of convergence rate. A similar analysis
is performed in the second example, but for this case, the solution has a singularity due to
the presence of a reentrant vertex in the domain. In the third example, the algorithm is used
to solve a problem of practical interest on a rather complex domain.

The color palette used in the figures indicates the polynomial degree of each element.

5.1 Test 1: Annular domain

In this first test, we have considered an annular domain centered in the origin with inner
radius ri = 0.5 and outer radius ro = 1. The domain and the initial mesh with linear finite
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Fig. 3 Domain and initial mesh
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Fig. 4 Refined meshes: step 2 (left) and 8 (right)

elements in all triangles are shown in Fig. 3. The source term in (1) is f = 1. The exact
solution expressed in polar coordinates is

u = (r2
o − r2) ln(r/ri )− (r2 − r2

i ) ln(ro/r)

4 ln(ro/ri )
.

In this numerical example, the control parameters appearing in the algorithm have been
chosen as follows: θ = √

0.5, γh = 12, γp = 0.4 and γn = 3. After four steps, the hp-scheme
reaches the asymptotic behavior producing meshes with the same degree of polynomial p in
all triangles. Thereafter, the adaptive algorithm only performs uniform p-refinement. Hence,
the hp-version degenerates to the p-version, as expected in this example with regular solution.
Figure 4 shows the meshes obtained with the adaptive hp-algorithm corresponding to step 2
and 8 of the refinement procedure.

It has been shown in Guo and Babuška (1986a,b) that a proper combination of h and p
refinement, for such regular cases, allow us to obtain a rate of convergence

|e|H1(�) ≤ Ce−α√
N ,

where N is the number of degrees of freedom in the finite element approximation (see Eq.
(3.2) in Guo and Babuška 1986b). Figure 5 exhibits a plot of log |e|H1(�) and log η� versus
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Fig. 5 Annular domain. Error and estimated error curves

Table 2 Concentric cylindrical
tubes

Effectivity indices

Step N eff

0 120 0.16916

1 480 0.15547

2 744 0.16628

3 1, 224 0.18794

4 2, 208 0.13197

5 3, 480 0.13324

6 5, 040 0.11319

7 6, 888 0.10988

8 9, 024 0.10155

√
N , which shows that both the error |e|H1(�) and the estimated error η� attains such an

exponential rate with α = 0.23.
Since in this test, we know the analytical solution, we have used it to compute the so called

effectivity indices:

eff := |e|H1(�)

η�
.

We report in Table 2 these indices at all steps. The table also includes the total number of
degrees of freedom N for each step. It can be seen from this table that the effectivity indices
remain bounded above and below throughout the refinement process.

We now proceed to solve the same problem using standard triangular elements with straight
edges. The domain� is approximated by a polygonal domain�h , and the presence of curved
boundaries causes now a domain approximation error (�\�h)∪(�h \�)which we have not
taken into account in the analysis. In this case, we have modified the adaptive algorithm as
follows: when a new vertex appears on the straight edges approximating a curved boundary,
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Fig. 6 Approximate annular
domain: refined mesh, step 10
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Fig. 7 Approximate annular domain: error curve

it was moved radially to the boundary. Note that the resulting family of meshes is not nested
and, consequently, the error might increase.

Figure 6 shows the mesh and the distribution of degrees of polynomials obtained with the
adaptive hp-algorithm corresponding to step 10 of the refinement procedure. We can see that
the algorithm produces a large number of degrees of freedom that are spent approximating
both boundaries. This does not occur when curved elements are used because the h-refinement
is unnecessary in that case.

The appearance of this extra h-densification when noncurvilinear elements are used, causes
a deterioration of the rate of convergence, which now is algebraic instead of exponential.
Figure 7 exhibits this fact showing that the order of convergence obtained is
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Fig. 8 Annulus domain: comparison of convergences
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Fig. 9 Domain and initial mesh (left) and refined mesh: step 40 (right)

|e|H1(�) ≤ C N−β,

with β = 1.72.
Finally, Fig. 8 presents both rates of convergence in the same scale. This figure clearly

indicates the performance improvement of the algorithm achieved using curvilinear elements.

5.2 Test 2: Pacman-shaped domain

In this second test, we have considered a Pacman-shaped domain centered in the origin with
radius r = 1 and interior angle at the origin equal to 5

3π . The domain and the initial mesh
with quadratic finite elements in all triangles are shown in Fig. 9 (left). The initial mesh has
75 degrees of freedom.

123



An hp finite element adaptive scheme on curved domains

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

(a) (b)

(c) (d)

Fig. 10 Successive zooms at the vertex of the refined mesh at step 40

The source term in (1) and the corresponding exact solution in polar coordinates are
f = 1.6 r−0.7 sin(0.3 θ) and

u = r0.3 (1 − r) sin(0.3 θ).

The control parameters appearing in the algorithm have been chosen as follows: θ = √
0.7,

γh = 20, γp = 0.4 and γn = 3. Figure 9 (right) shows the mesh obtained with the adaptive
hp-algorithm corresponding to step 40 of the refinement procedure. This final mesh has
20998 degrees of freedom.

The behavior of the adaptive algorithm in the neighborhood of the singularity can be
appreciated from Fig. 10. This figure shows a sequence of zooms of the mesh at step 40
around the origin (the singular points). Zooms 10a–c and d enlarges the original mesh 103,
106, 109 and 1012 times, respectively. We observe the typical hp adaptive behavior: the
closer to the singularity, the more dominant the h-refinement is, and in the elements nearest
the singularity, there is no p-refinement at all. On the other hand, we see in Fig. 9 (right) that
in the elements with edges lying on the curved boundary, the algorithm generates elements
with high p-enrichment, and almost no h-refinement.

In this case, we are dealing with a singular solution. With an appropriate hp-refinement
strategy, an exponential rate of convergence can still be achieved, but slightly lower than
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Fig. 11 Pacman-shaped domain. Error and estimated error curves
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Fig. 12 Refined meshes: step 12 (left) and step 40 (right)

that obtained for the regular case (Guo and Babuška 1986a,b). This occurs because now the
exponent is proportional to 3

√
N instead of

√
N . More precisely, (see Eq. (2.22) in Guo and

Babuška 1986b)

|e|H1(�) ≤ Ce−α 3√N . (33)

Figure 11 exhibits a plot of log |e|H1(�) and log η� versus 3
√

N , which shows that both the
error |e|H1(�) and the estimated error η� attains such an exponential rate with α = 0.355.

Similarly to the previous test, we now proceed to solve the same problem using standard
triangular elements with straight edges. As we explained above, the new vertices, which
appear on the straight edges approximating a curved boundary due to the h-refinement,
will be displaced radially to the circular boundary. We start the adaptive procedure using a
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Fig. 13 Successive zooms at the vertex of the refined mesh at step 40

mesh similar to that in Fig. 9 (left) with the curved elements replaced by standard quadratic
triangles.

In Fig. 12, the meshes obtained in steps 12 (left) and 40 (right) of the adaptive process are
presented. Figure 13 presents the zooms analogous to those included in the case of curved
elements, showing that the behavior of the algorithm near the reentrant vertex is qualitatively
the same as before. However, Fig. 12 (right) shows the emergence of a strong h-refinement
in the proximity of the circular boundary.

The algorithm is designed not only to reduce the global error, but also to obtain an equidis-
tribution of local errors. In this case, the singularity in the origin is too strong and therefore,
the new degrees of freedom added in the first steps concentrate in the neighborhood of the
reentrant vertex. This fact is illustrated in Fig. 12 (left), which shows that the h-refinement is
still insignificant near the circular boundary at step 12. From this step, the error indicators of
the elements in the proximity of the origin and the ones near the circular boundary become
comparable and the algorithm begins to refine in both places simultaneously.

Once again, the h-densification near the circular boundary turns the exponential decay of
error (33) into the algebraic rate of convergence

|e|H1(�) ≤ C N−β,

with β = 1.413. This experimental fact is showed in Fig. 14.
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Fig. 14 Approximate pacman-shaped domain: error curve
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Fig. 15 Pacman-shaped domain: comparison of convergences

In Fig. 15, we compare both rates of convergence including a graphic analogous to that
presented in Fig. 8. As before, we can see the performance improvement of the algorithm,
when curvilinear elements are used. However, unlike what happens in regular case, both
convergence curves have an overlapping zone during the first steps of the adaptive process.
The reason of this was explained above: the presence of the strong singularity causes a
concentration of degrees of freedom near the origin until the equidistribution of local error
is achieved around step 12.
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5.3 Test 3: Torsional stress in a splined shaft

Curved side splined shafts are common linkage components in key mechanical systems. The
cross sections of such shafts present reentrant vertices, which become stress concentration
points when the member is subjected to torsional loads.

The well-known theory by Saint-Venant poses the following problem to obtain the stress
state of a noncircular shaft subjected to a torque MT : find a function u ∈ H1

0 (�) such that
−�u = 1 and compute the corresponding stress components

σ13 = − MT

2k

∂u

∂y
and σ23 = MT

2k

∂u

∂x
,

where k = |u|21,�. The angle of twist of the shaft per unit length θ1 can be computed as

θ1 = MT

4Gk
, (34)

where G is the shear modulus.
In this example, we consider a cylindrical shaft with six equidistributed teeth, whose cross

section � is shown in Fig. 16 (left). The inner radius of the shaft is ri = 1, and the outer
radius is ro = 1.125. Figure 16 (left) also exhibits the first triangulation of �, where curved
element is used in triangles with at least one edge lying on the boundary ∂�. The adaptive
process starts with quadratic elements in all triangles and 792 degrees of freedom. Figure 16
(right) exhibits the refined mesh after 20 adapted steps. The final mesh has 122898 degrees
of freedom, and the highest polynomial degree achieved is 7.

The behavior of the hp-adaptive processes is analogous to that described for the previous
examples: h-refinement near the singularities and gradually increasing p-enrichment away
from them. Exponential order of convergence is also achieved in this case for the error
estimator η as a function of 3

√
N , where N is the number of degrees of freedom. Figure 17

(left) sketches the torsion stress field shape (σ13, σ23). The norm of the stress varies from
zero in the center of the shaft to infinity at the reentrant vertices. In order to visualize the
stress distribution pattern, we have truncated the range setting the top of the scale to MT /2k.
This value corresponds to approximately 1.7 times the maximum torsional stress 2MT /π

of a circular shaft of radius 1 subjected to the same twisting moment MT . The magnitude
‖(σ13, σ23)‖/(MT /2k) of this field is presented in Fig. 17 (right), which shows that the
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Fig. 16 Splined shaft, initial mesh (left) and refined mesh: step 20 (right)
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Fig. 17 Torsion stress field (left) and stress concentration zones (right)

Fig. 18 Zoom of stress
concentration zones

50

Stress [Mt/(2k)]

0.00005

Longitude

stresses are relatively small in most of the cross section. The stress concentration zones are
strongly localized very close to the reentrant vertices. To illustrate in more detail the shape of
the stress field in those areas, we have included Fig. 18, which shows a zoom of a singularity.
Note that the tension is about 50 times higher than the top of the scale of the previous graph
at the mesh node closest to the vertex. This fact shows the need for an efficient adaptive
algorithm to accurately compute the stress distribution in this kind of practical problems.

Finally, we obtained k = 0, 4562580275023. Thus, from (34), the torsional stiffness of
the shaft C := MT /θ1 results C = 0, 893111 G Ip , where Ip = ∫

�
r2d� = 2, 043454157 is

the polar moment of inertia of the cross section. That is, the torsional stiffness of the splined
shaft is about 11 % lower than the one of a circular shaft with the same polar moment of
inertia.
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