
Optical Fiber Technology 20 (2014) 403–408
Contents lists available at ScienceDirect

Optical Fiber Technology

www.elsevier .com/locate /yof te
Phase and amplitude measurements for high bandwidth optical signals
http://dx.doi.org/10.1016/j.yofte.2014.05.001
1068-5200/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lbulus@ib.edu.ar (L.A. Bulus Rossini), pcostanzo@ib.edu.ar

(P.A. Costanzo Caso).
Laureano A. Bulus Rossini a, Pablo A. Costanzo Caso a,⇑, Emanuel Paulucci b, Ricardo Duchowicz b,
Enrique E. Sicre c

a Instituto Balseiro (CNEA – UNCuyo), Avenida Bustillo 9500, (8400) Bariloche, Argentina
b Centro de Investigaciones Ópticas (CONICET La Plata – CIC), La Plata (1900), Argentina
c Instituto de Tecnología, Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa, Buenos Aires (C1073AAO), Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 December 2013
Revised 10 April 2014
Available online 2 June 2014

Keywords:
Phase measurements
Transport-of-intensity equation
Fiber optic device
In this paper a novel technique for obtaining the amplitude and phase of optical pulses with time extents
as short as tens of ps is presented. The method which is based on the transport-of-intensity equation only
requires, for a practical realization, of passive fiber optic devices. It employs as the main component a
dispersive element with a known second order dispersion coefficient. Two different setup implementa-
tions are considered, for which simulations are carried out in order to test the method performance tak-
ing into account both, realizable models of the involved devices and typical pulses found in optical
transmission systems. The characterization of optical pulses affected by dispersion and nonlinear effects,
such as self-phase modulation, is used to evaluate the performance of the method and show the practical
feasibility of the future implementation.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

All-optical signal processing techniques have taken the atten-
tion of the photonics and optical communications scientific com-
munity because of its potential advantages regarding aspects
such as high processing bandwidth and immunity to electromag-
netic interference [1]. The use of passive optical devices translates
into simpler and more economic systems than the active optoelec-
tronic counterpart, and obviously but worth mentioning, there is
no energy consumption in the process. In recent years, many opti-
cal devices have been proposed for switching, filtering and coding
signals typically found in optical communication and microwave-
photonics scenarios [2,3].

In fiber optic applications, there is much interest in the charac-
terization of optical pulses since the deployment of high bit rate
transmission systems which use coherent detection methods that
require to estimate the phase value in the demodulation process,
e.g. optical pulses present in advanced modulation formats such
as QPSK or 16 QAM. Another important use of optical phase recov-
ery methods is in sensing applications, to increase the sensitivity
and range of operation fiber optic sensors.

During the 90’s, several methods have been proposed to mea-
sure the phase of an ultrashort optical pulse and some of them
were even converted into commercial devices (Chilla y Martínez
[4], Kane y Trebino [5], O’Shea y Trebino [6], Iaconis y Walmsley
[7]). Along this development process, also emerged techniques that
due to the procedure and/or the technology used for their imple-
mentation, they are only capable of measuring the amplitude and
phase of pulses with durations in the order of picoseconds. In
1993 it was presented a method called chronocyclic tomography
[8] which determines the phase of a pulse from the reconstruction
of its associated Wigner Distribution Function (WDF) employing
tomographic measurements of the spectrum. In the year 2003,
from the base of the latter technique, Dorrer and Kang [9] pre-
sented a method which allows to obtain the phase from spectrum
measurements of the pulse after being passed through a phase
modulator in the temporal domain. That same year, Alieva et al.
[10,11], introduced a way to reconstruct the amplitude and the
phase of a signal, utilizing measurements of the squared modulus
of the fractional Fourier transform with close fractional orders.

In this paper, we present a technique for pulse characterization
based on the transport-of-intensity equation and propose a scheme
for its photonic implementation which uses only passive fiber optic
devices.
2. Signal recovery method

The method here presented is derived from the relationship
between the first order WDF moment of a given signal and the
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instantaneous frequency m(t) or, equivalently, the first order deriv-
ative of the signal phase. This relationship can be written as
Z þ1

�1
xWuðt;xÞdx ¼

@uðtÞ
@t
juðtÞj2; ð1Þ

being Wuðt;xÞ the WDF associated to a signal u(t) = |u(t)|exp(ju(t))
which can be alternatively defined as

Wuðt;xÞ ¼
Z þ1

�1
uðt þ s=2Þu�ðt � s=2Þe�jxsds

¼ 1
2p

Z þ1

�1
Uðxþx0=2ÞU�ðx�x0=2Þe�jx0tdx0; ð2Þ

where U(x) means the Fourier transform of u(t). On the other hand,
the WDF associated to a signal uf(t) whose spectral phase has been
quadratically modulated as Uf(x) = U(x)exp(�jU2x2/2) is equal to
the WDF associated to the original signal u(t), but affected by a tem-
poral shear. This property is expressed as

Wuf
ðt;xÞ ¼Wuðt �U2x;xÞ; ð3Þ

where Wu and Wuf
are the WDFs associated to the original and the

filtered signals, respectively. The temporal optical power of the
modulated signal can be written in terms of its associated WDF as

Iuf
ðtÞ ¼ juf ðtÞj2 ¼

Z þ1

�1
Wuf
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Z þ1

�1
Wuðt �U2x;xÞdx:
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By differentiating (4) with respect to the modulation coefficient
it results

@Iuf
ðtÞ

@U2
¼
Z þ1
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@

@U2
Wuðt �U2x;xÞdx; ð5Þ

and by performing the variable change t0 = t �U2x, Eq. (5) can be
rewritten as
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Now, by taking into account that the variations of the WDF with
respect to t and t0 are identical, i.e. oWu/ot0 = (oWu/ot)(ot/ot0) = oWu/
ot, Eq. (6) becomes @Iuf

ðtÞ=@U2 ¼ �ð@=@tÞ
Rþ1
�1 xWuðt;xÞdx. By

replacing Eq. (1) into this last expression, it yields
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Eq. (7), sometimes referred as the temporal transport-of-inten-
sity equation, has been used to measure temporal phase shifts
induced by self-phase modulation or cross-phase modulation
[12], and is the fundament of the method here presented which
can be considered as the temporal domain analogue of an spectral
approach proposed by Dorrer et al. [9]. Although Eq. (7) was
derived from a WDF property, an approach based directly on the
transport-of-intensity equation might also be used to obtain the
same expression. There is an important issue regarding the unique-
ness of the retrieved phase from the transport-of-intensity equa-
tion, that needs to be mentioned. Although the recovered phase
is unique under a linear propagation condition, it has been shown
that the solution has an ambiguity when there are zeros in the
intensity distributions [13].

From Eq. (7) it is possible to recover the phase of a given signal.
Nevertheless, in order to obtain a feasible and easily attainable
procedure, some approximations should be made. First, the deriv-
ative with respect to the modulation coefficient can be replaced by
a centered finite difference approximation as
@Iuf
ðtÞ

@U2
ffi

Iuf
ðtÞ
���
U2

� Iuf
ðtÞ
���
�U2

2U2
: ð8Þ

The quadratic spectral phase modulation can be produced by
transmission of the signal through an optical fiber, being U2 the
second order dispersion coefficient at the central angular fre-
quency x0, multiplied by the fiber length. This may be understood
by analyzing the propagation of a light pulse through a nonlinear
dispersive medium under a slow envelope approximation and con-
sidering that the nonlinear response is instantaneous, and weak, in
order to apply a first-order perturbation theory. This situation, can
be modeled employing the nonlinear Schrödinger equation which
is shown as Eq. (9).
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þ j
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being b2 and b3 the second and third order dispersion (TOD) coeffi-
cients, respectively, a the attenuation coefficient, c the nonlinear
parameter, and s = t � z/vg = t � b1z the time reference moving with
the pulse at group velocity (traveling-wave coordinate system). Eq.
(9), under typical conditions of propagation through a short length
optical fiber (attenuation term might be discarded since az � 0), can
be simplified to Eq. (10a) or to its spectral version, Eq. (10b), by
neglecting the TOD term due to its usually much smaller value than
the second order one (b3Dx33� b2Dx2, being Dx the spectral
width of the pulse), and considering a linear regime case when
the optical power value is low enough (c|u|2 � 0).
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Finally, Eq. (10b) or its form after integration, U(z,x) = U(0,x)
exp(jb2x2z/2), shows how transmission of the signal u(t) through
an optical fiber of length z having second order dispersion coeffi-
cient b2 may be used to achieve the quadratic spectral phase mod-
ulation needed to implement Eq. (8), being U2 = �b2z. Another
implementation of such spectral phase modulation is the use of
the reflection characteristic of a linearly chirped fiber Bragg grating
(LCFBG) with dispersion parameter or group delay slope U2.

In this way, the temporal optical power derivative can be imple-
mented by two temporal detections of the signal, each one affected
by the same amount of second order dispersion, but having oppo-
site signs. Taking advantage of this implementation, the optical
power IuðtÞ can be approximated by the average of the two detec-
tions of the dispersed signal as

IuðtÞ ffi
Iuf
ðtÞ
���
U2

þ Iuf
ðtÞ
���
�U2

2
: ð11Þ

It is worth noting that Eqs. (8) and (11) are only valid whenever
the second order dispersion coefficient U2 remains small. Thus, in
order to find the restrictions for U2, lets consider a pulse with tem-
poral and spectral widths Dt and Dx, respectively, being both
symmetrical in a first approach. Since U2 is equal to the tangent
of the shearing angle of the WDF domain produced by the qua-
dratic spectral phase modulation, it can be easily shown that the
second order dispersion coefficient should be much lower than
the ratio of the temporal width to the spectral width; i.e.,

U2>Dt=Dx: ð12Þ

Fig. 1 shows two different implementations of the system pro-
posed for recovering the amplitude and phase information of a
pulse. The schematic diagram of Fig. 1(a) uses two single mode
optical fibers (SMF), a standard one and a dispersion compensating
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Fig. 1. Schematic diagrams of two different implementations of the phase recovery
technique. (a) Based on SMF. (b) Based on LCFBG. SSMF, standard single mode fiber;
DCF, dispersion compensating fiber, LCFBG, linearly chirped fiber Bragg grating; OC1

and OC2, optical circulators.
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fiber (DCF), both having the same amount of second order disper-
sion. The fibers quadratically modulate the spectral phase of each
pulse obtained from the left 50/50 coupler. The lower branch pulse
is delayed a certain time T (longer than the pulse width) just to
avoid the overlapping of the dispersed pulses on the photodetector
after the combination performed by the right coupler. In the other
implementation shown in Fig. 1(b), the input pulse u(t) is split into
two signals by the left 50/50 coupler. One pulse, after propagation
through the left circulator (OC1) and reflection from the left side of
the LCFBG, is again circulated by OC1 and detected after passing the
right 50/50 coupler. The second pulse, after being delayed by a
time T and circulated by OC2, experiments a second order disper-
sion of opposite sign, since it is reflected from the right side of
the LCFBG. Thus, in both implementations, after two consecutive
detections, the phase of u(t) can be recovered employing Eqs. (7),
(8), and (11). It is worth noting that both implementations of
Fig. 1 make use of directional couplers as signal dividers/combin-
ers, so there’s a 90� phase shift between the signals after/before
each device. Nevertheless, in both implementations, the signals
present in the two branches of the system are equally phase shifted
90� so this effect can be disregarded in the analysis.
3. Numerical results

In order to illustrate the performance of the proposed method, it
is considered the characterization of three different types of pulses.
First, it is presented the characterization of a pulse that has been
mainly affected by SPM and by second order chromatic dispersion,
employing the device based on a LCFBG that is sketched in Fig. 1(b).
To this end, the signal to be recovered u(t) arises from an unchirped
Gaussian pulse of initial RMS width T0 = 50 ps when it is transmit-
ted through 20 km of NZ-DS (Non-Zero Dispersion-Shifted) fiber
equivalent to 2.6 � LNL and 0.07 � LD2, being LNL = (cP0)�1 the non-
linear distance and LD2 = T0

2|b2| the second-order dispersion length.
Fig. 2(a) and (b) shows two numerical results comparing the ideal
optical power and phase distributions of u(t) with the recovered
signals, when two different LCFBGs are employed, both having
the same length (3.5 cm) and dispersion parameter
(U2 = 67.0 ps2), but different ripple levels. This value of U2 is
approximately twenty times smaller than the temporal width to
spectral width ratio, i.e. Dt/Dx = 146 ps/(2p17.3 GHz) = 1341 ps2,
fulfilling the condition established by Eq. (12). The temporal and
spectral widths are considered to be where 95% of the pulse energy
is comprised. In Fig. 2(a) and (b) are displayed the original and the
recovered pulses when it is used the corresponding LCFBGs of
Fig. 2(c) and (d), respectively. It can be observed that, in both cases,
the pulse has been successfully recovered, being the optical power
and phase waveforms quite similar to the original ones. Neverthe-
less, it is necessary to note that the LCFBG having a higher ripple
level provides a slightly poorer phase reconstruction. The difference
in the ripple level associated with each LCFBG can be observed in
the reflectivity and group delay curves shown in Fig. 2(c) and (d),
when a raised cosine apodization and no apodization is used,
respectively.

As is shown in the Fig. 2(a) and (b), both the recovered optical
power and phase have a great resemblance with the original pulse
proving the ability of the proposed method and device to measure
and characterize optical pulses. Finally, it is important to mention
that the detection of the dispersed pulses it was calculated by con-
sidering a Signal-to-Noise Ratio SNR = 25 dB, where the noise was
supposed to have Gaussian statistics, and the results shown in
Fig. 2(a) and (b) were obtained employing an average of N = 100
realizations of the detected optical powers.

Next, we analyze how the SNR affects the performance of the pro-
posed system when a single shot detection of the pulse is character-
ized (no averaging over realizations is performed), and the device
based on SMF sketched in Fig. 1(a) is used. In this case the pulse
recovered has hyperbolic secant shape, a RMS width T0 = 100 ps
and a linear chirp parameter C = 6 (linear variation of the optical fre-
quency). Fig. 3 shows the original and the recovered pulses for two
SNR values of 15 and 30 dB, in (a) and (b), respectively. It can be
observed that the system is able to approximately recover the pulse
phase even from a single shot detection when the SNR value is 30 dB.
However, when the SNR value present in the detection stage is
15 dB, the device cannot obtain an acceptable phase waveform. This
is in accordance with the fact that we are not trying to estimate a dis-
crete value represented by a digital signal, but rather obtain its phase
and optical power waveforms. The task of characterizing a pulse
inherently requires a high SNR value, i.e. a relatively high signal
power since all the noise corrupting the signal is the one introduced
by the detection stage, or equivalently needs a mean to reduce the
noise variance, e.g. by averaging the detected realizations of the dis-
persed pulse amplitude for this particular method.

It is worth noting that in the last example, the simulation of the
system was performed considering a standard SMF and a DCF, both
including dispersion coefficients up to the third order, being the
optical fiber sections of the device 4134 m and 267 m long, for
the SMF and the DCF, respectively. Nevertheless, the relatively
low value of both TOD coefficients verify the approximation
b3Dx33� b2Dx2, that was taken into account to reach
Eqs. (10a) and (10b), and which is needed to obtain the quadratic
spectral phase modulation required by the method. Therefore,
the implementation of Fig. 1(a) shows a good performance even
for regular optical fibers since it tolerates the small amount of
TOD that they usually have. Of course, for this type of implementa-
tion, the attenuation of both fiber sections needs to be compen-
sated, especially because DCFs generally have a relatively much
higher value of attenuation coefficient than standard SMFs.

Now, in order to complete the performance evaluation of the
proposed measurement technique and system implementation,
we consider the characterization of a more complex pulse shape.
In this case the device of Fig. 1(a) is used to recover the phase
and optical power of a Gaussian pulse which has undergone the
effects of TOD and a residual second order dispersion, e.g. a pulse
which has propagated through a long haul optical fiber link with
almost perfect second order dispersion compensation. Fig. 4(a)
shows the retrieved and original pulses for a SNR value of 40 dB
when an averaging of N = 100 realizations of the detected optical
power is performed. It can be appreciated that the phase jumps



Fig. 2. Recovery of a pulse that has been affected by SPM using the system of Fig. 1(b) and employing two different LCFBGs of 3.5 cm long having the same dispersion
parameter U2 = 67.0 ps2. (a) Original and recovered pulse using the LCFBG shown in (c). (b) Original and recovered pulse using the LCFBG shown in (d). Reflectivity and group
delay of the LCFBG when (c) has a raised cosine apodization (low ripple level) and (d) has no apodization (high ripple level).

Fig. 3. Effect of the SNR value over the performance of the system in single shot detection mode. Original and recovered pulse when (a) SNR = 15 dB and (b) SNR = 30 dB.

Fig. 4. Recovery of a pulse that has been affected by TOD using the system of Fig. 1(a) with SNR = 40 dB and an averaging of N = 100 realizations. (a) Optical power and phase
of the original and the recovered pulse. (b) Original and recovered instantaneous frequency.
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inherent to this kind of pulse cannot be accurately recovered, even
with such high SNR value and variance reduction processing. This
pitfall of the method implementation may be understood by a
more thorough analysis of the recovery technique. The first step
of the phase retrieving process is to obtain the instantaneous
angular frequency xi = ou/ot of the pulse as shown in Eq. (13),
which corresponds to Eq. (7) rewritten in a more adequately form.

xiðtÞ ¼ �
1

IuðtÞ

Z
@Iuf
ðtÞ

@U2
dt: ð13Þ



Fig. 5. Average WMSE and its standard deviation for the same pulse shape of Fig. 2(a). WMSE of the optical power and the phase for (a) SNR = 15 dB and (b) SNR = 40 dB. The
phase error is displayed as a percentage of the whole phase excursion in the temporal interval considered (95% of the pulse energy).
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As has been stated in the previous section, the derivative of the
optical power of the pulse, after its spectral phase has been qua-
dratically modulated, is approximated by the centered finite differ-
ence shown as Eq. (8). The particular kind of pulse we are
considering has phase jumps, or equivalently instantaneous fre-
quency peaks, as it can be observed in Fig. 4(b) where the original
and the recovered instantaneous frequency, fi = xi(2p), of the pulse
is shown. The maximum values of the fi peaks are not accurately
retrieved since they appear in a very short range of time where
the optical power is almost null. This situation would be more
notorious for the case of a pulse affected only by TOD (without
residual second order dispersion) since its instantaneous frequency
peaks would ideally tend to be Dirac delta functions. Therefore, the
instantaneous frequency (or the phase) of such kind of pulses is
very difficult to estimate from the integration of a derivative
approximation consisting of the subtraction of two optical power
detections of light pulses with a slow envelope representation. In
addition, the recovery of a phase with transitions in the time inter-
val where the optical power of the pulse has a low value, is also
affected by two issues regarding the implementation which cannot
be overlooked: the noise introduced in the detection stage and the
temporal resolution of the sampling stage, that should not be lar-
ger than the duration of the phase transition.

4. Choosing a proper value of U2

The value of U2 which determines both optical powers of the

dispersed pulses, Iuf
ðtÞ
���
U2

and Iuf
ðtÞ
���
�U2

(see Eqs. (8) and (11)),

should be carefully chosen. If it is too small, the optical power of
the recovered pulse is excellently approximated by the average
but the derivative in Eq. (8) becomes strongly unstable due to
the amplification effect of the detection error which is inherent
to the method. This situation is avoided by choosing a value of
U2 large enough. However, in this case the optical power is not
truly represented by the average in Eq. (11), and Eq. (8), although
becoming stable, would not provide a good derivative approxima-
tion. In order to define a proper value of the dispersion parameter
and to establish a valid range of the method, the deviations of both,
the recovered optical power and phase waveforms with regard to
the original pulse, are analyzed when different values of U2 are
selected. For this purpose, it is calculated the Weighted Mean
Squared Error (WMSE) selecting a temporal range where 95% of
the pulse energy is comprised and employing the optical power
as the weighting function. In order to isolate the impact of the dis-
persion parameter on the recovery procedure, it is employed the
system shown in Fig. 1(a). Fig. 5 shows the average WMSE and
its standard deviation of the optical power and the phase. The
waveform to be recovered is the same pulse affected by SPM and
chromatic dispersion which was used in Fig. 2. Now, the abscissa
is normalized to the dispersion value 0.1Dt/Dx (the tenth part of
the pulse’s temporal to spectral width ratio). These results were
obtained considering a detection noise with Gaussian statistics,
SNR of 15 dB in (a), and SNR = 40 dB in (b), for the same given sys-
tem conditions, and a temporal optical power average over N = 100
realizations. It should be selected a value of U2 which provides a
compromise between a low value of the WMSE for both, the optical
power and the phase. Therefore, for a given pulse having temporal
and spectral width of Dt and Dx, respectively, this condition
establishes an interval for U2 where the optical power and phase
are reconstructed with an error lower than a specified limit value.
Fig. 5(a) shows that for the normalized U2 approximately between
0.5 and 2 (it is equivalent to U2 between 0.05 Dt/Dx and 0.2 Dt/
Dx), permits to obtain an average WMSE lower than 5% in the
phase and optical power measurements, for SNR = 15 dB. Similarly,
when the SNR is 40 dB from Fig. 5(b), the measured phase presents
an average WMSE lower than 5% when the normalized U2 is
between approximately, 0.02 and 4, while for the optical power,
the normalized U2 has to be lower than 2. Clearly, the performance
gets increased for higher SNR values as can be appreciated by com-
paring Fig. 5(a) and (b).
5. Conclusions

The proposed system is based in the simple, but powerful,
transport-of-intensity equation and can be applied to any shape
of pulses. However, the approximations performed in order to
obtain a feasible and practical implementation, with real devices,
limit the operation range. One of these restrictions is given by
the bandwidth of the photoreceiver which limits the shortest dura-
tion of the input pulses. For instance, employing a photodetector
with a bandwidth of 20 GHz would enable the characterization of
pulses with a duration not lower than approximately 50 ps.
Another important parameter to be taken into account in the
design of the system is the noise present in the detection process.
If the system presents a SNR value lower than approximately
15 dB, the numerical simulations realized on many types of pulses
confirm that the performance is considerably reduced and the opti-
cal power and phase measurements have an unwanted large vari-
ance. This situation can be understood by considering that the
approximation of the derivative, Eq. (8), becomes unstable due to
the error amplification caused by the present noise. This limit is
also dependant on the pulse shape and might be higher for com-
plex waveforms. When the SNR values are between the range of
approximately 15–35 dB, the system performs very well when
the variance of the detection noise is reduced by averaging. Of
course, for the latter kind of processing, a repetitive type of pulse
is needed. In the best case scenario of the system operating with
a high enough SNR value, i.e. approximately higher than 35 dB,
the proposed implementation may even be used in a single shot
mode. Nevertheless, care should be taken when the input power
is increased in order to obtain a larger SNR value. If the optical
power of the input pulse rises above the limit for which the
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nonlinear effects of the optical fiber cannot be neglected the prin-
ciple of operation of the device would no longer be valid and its
performance shall worsen.

Finally, it is worth mentioning that the main advantage of the
proposed technique lies on the possibility to employ simple and
economic passive optical devices together with a sampling oscillo-
scope (including a photodetector with the previously cited charac-
teristics) to retrieve the phase and optical power of large
bandwidth pulses in the ps-range, such as those observed in mod-
ern optical communication systems.
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