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Abstract: The sodium/ bicarbonate cotransporter (NBC) is, with the Na+/H+ exchanger (NHE), an important alkalinizing 
mechanism that maintains cellular intracellular pH (pHi). In the heart exists at least three isoforms of NBC, one that pro-
motes the co-influx of 1 molecule of Na+ per 1molecule of HCO3

-(electroneutral isoform; nNBC) and two others that gen-
erates the co-influx of 1 molecule of Na+ per 2 molecules of HCO3

- (electrogenic isoforms; eNBC). In addition, the eNBC 
generates an anionic repolarizing current that modulate the cardiac action potential (CAP), adding to such isoforms the 
relevance to modulate the electrophysiological function of the heart. Angiotensin II (Ang II) is one of the main hormones 
that regulate cardiac physiology. The alkalinizing mechanisms (NHE and NBC) are stimulated by Ang II, increasing pHi 
and intracellular Na+ concentration, which indirectly, due to the stimulation of the Na+/Ca2+ exchanger (NCX) operating in 
the reverse form, leads to an increase in the intracellular Ca2+ concentration. Interestingly, it has been shown that Ang II 
exhibits an opposite effect on NBC isoforms: it activates the nNBC and inhibits the eNBC. This inhibition generates a 
CAP prolongation, which could directly increase the intracellular Ca2+ concentration. The regulation of the intracellular 
Na+ and Ca2+ concentrations is crucial for the cardiac cellular physiology, but these ions are also involved in the develop-
ment of cardiac hypertrophy and the damage produced by ischemia-reperfusion, suggesting a potential role of NBC in 
cardiac diseases. 

Keywords: Angiotensin II, calcium overload, cardiac arrhythmias, cardiac hypertrophy, electrogenic sodium/bicarbonate co-
transporter, electroneutral sodium/bicarbonate cotransporter, sodium overload. 

INTRODUCTION 

 The fine regulation of intracellular pH (pHi) is essential 
for the heart. Fluctuations of pHi occur physiologically in 
cardiac myocytes, as during changes in heart rate [1,2], but 
also a major decrease can occur during pathological condi-
tions, such as myocardial ischemia [3,4]. Four sarcolemmal 
ion transporters regulate pHi homeostasis in order to main-
tain its value near to 7.2 and prevent the adverse effects of 
large fluctuations in pHi. Two of these transporters mediate 
acid-loading, the Cl-/HCO3

- exchanger (anion exchanger, 
AE) and the Cl-/OH- exchanger (CHE). On the other hand, 
two other transporters mediate the acid-extrusion, either ex-
porting H+, the Na+/H+ antiporter (NHE), or introducing 
HCO3

- into the cell, the Na+/HCO3
- symporter (NBC).  

 In the present review we will specifically outline the im-
portance of NBC in the maintenance of the cardiomyocytes 
pHi. Also, due to the relevance of Angiotensin II (Ang II) in 
heart function, we will review the regulation of NBC by this 
hormone. Finally, we will recap the knowledge about the 
impact of NBC on intracellular Na+ ([Na+]i) and Ca2+ con-
centrations ([Ca2+]i), emphasizing the potential relevance of 
NBC in structural and electrical cardiac disorders.  
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ROLE OF THE CARDIAC NBC IN pHi AND [Na+]i 
REGULATION 

 Although the physiological role of NHE as an alkaliniz-
ing mechanism has been well demonstrated [5,6], that of 
NBC has long been underestimated, sometimes because the 
investigations were carried out in HCO3

- free-buffered solu-
tions. Another issue is that until few years ago, there was not 
available a selective NBC inhibitor. Fortunately in 2008 the 
group of Dr. Vaughan-Jones presented and characterized a 
novel and selective NBC inhibitor [7], that has been success-
fully used to demonstrate the importance of total NBC activ-
ity in the control of cardiac pHi [8]. 
 At present it is known that NBC is responsible for 40-
50% of total acid extrusion in cardiac myocytes [9,10]. 
Moreover, although at acidic pHi (near to 6.8) the relative 
importance of NBC is only of 30% against the 70% of NHE 
[8,11,12], both transporters are equally operative at pHi 
closed to basal [8,13,14]. 

 Interestingly, it has been demonstrated that NBC increase 
the [Na+]i, being responsible for 30% of this increase at pHi 
6.8 [12]. The increase in [Na+]i stimulates the reverse mode 
of Na+/Ca2+ exchanger (NCX), leading to an increase in 
[Ca2+]i [15-17]. This process is involved in Ang II and Endo-
thelin-1 (ET-1) -induced positive inotropic effects [17,18] 
and cardiac hypertrophy [19,20]. Furthermore, this phe-
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nomenon might be involved in NBC-induced cardiac pa-
thologies [21]. 

ELECTRONEUTRAL (nNBC) AND ELECTROGENIC 
(eNBC) ISOFORMS OF NBC IN THE HEART 

 Cardiac NBC was initially described by Lagadic-
Gossmann et al. as an electroneutral transporter (nNBC), 
with a stoichiometry of 1 Na+/1 HCO3

-[9]. Some years later 
Dr. Cingolani’s group demonstrated that NBC exhibits an 
electrogenic behavior (eNBC), with a stoichiometry of 1 
Na+/2 HCO3

- [10]. In addition, we have later described and 
characterized the eNBC current as an anionic bicarbonate 
and sodium-dependent current which reversed at around -85 
mV (INBC) [22,23]. Moreover, the functional diversity of the 
eNBC in ventricular myocytes from rat, rabbit and guinea 
pig has been described in detail by Yamamoto et al. [24].  
 The controversy around the cardiac NBC stoichiometry 
has been resolved and it is now accepted that both mecha-
nisms are present in cardiac cells [13,25]. In the heart exist at 
least two electrogenic isoforms, called NBCe1 (also named 
NBC1) and NBCe2 (also named NBC4) which are encoded 
by the SLC4A4 gene [26], and the SLC4A5 gene [27],  
respectively, and one electroneutral isoform, named NBCn1 
(also named NBC3), that is encoded by the SLC4A7 gene 
[28]. 
 We have described the influence of eNBC in the configu-
ration of the cardiac action potential (CAP) [27]. Using the 
patch-clamp technique, we have demonstrated that the 
change of the extracellular solution from a HEPES- (HCO3

--
free solution) to a HCO3

-- containing solution hyperpolarized 
resting membrane potential (RMP) by 3-5 mV and evoked a 
25% CAP shortening, both in rat [22] and cat [23] ventricu-
lar myocytes. Reciprocally, it has been shown that eNBC 
increased pHi in response to the change in RMP induced by 
hiperkalemic extracellular solutions [10,24,29] or after in-
creasing the heart rate [30]. 
 While the roles of NBCe1 and NBCn1 have been well 
established, the true relevance of the NBCe2 is still unre-
solved. Although it was initially reported to be present in the 
heart, the existence of NBCe2 in the cardiomyocytes was 
recently challenged [31,25]. Moreover the NBCe1 seems to 
be the only active electrogenic mechanism in normal cat and 
rat ventricular myocytes [25,32]. We have also recently re-
ported that this NBC isoform is physically and functionally 
coupled to the carbonic anhidrase in rat ventricular myocytes 
[33].  
 A novel contribution to the knowledge about NBC was 
presented by us last year [25]: We have produced and char-
acterized two different and selective functional antibodies 
against the extracellular loops of NBCe1, that were called a-
L3 and a-L4, which recognized the extracellular loop 3 and 
loop 4, respectively. The pre-incubation of the myocytes 
with a-L3 canceled NBCe1 function, which allowed us to 
demonstrate that this isoform was the main, if not the only, 
electrogenic active isoform in normal cardiac myocytes. On 
the other hand, the pre-incubation with a-L4 improved the 
NBCe1 activity [25]. Inhibitory antibodies of NBCe1 have 
been previously used to investigate the implication of this 
isoform in the contractile dysfunction induced by ischemia-

reperfusion [34]. However, a direct activator of NBCe1 has 
never been used before our work. Nevertheless, besides that 
NBCe1 seems to be the only active electrogenic isoform in 
cardiac myocytes under physiological conditions, it still un-
known the relevance of each NBC isoform during the devel-
opment and progress of cardiac pathology. Thus, we pro-
posed these antibodies as new pharmacological tools that 
will allow us to investigate the participation of NBCe1 in 
isolation in cardiac pathophysiology.  

SYSTEMIC AND LOCAL ANG II IN THE HEART 

 Ang II is an important hormone that regulates the excita-
tion and contraction in the heart. Ang II is an octapeptide 
that was classically known to be synthesized from Ang I by 
the angiotensin-converting enzyme (ACE) present in the 
endothelial vessels in response to increases levels of Aldos-
terone (Ald), conforming the endocrine system known as 
renin- angiotensin- aldosterone-system (RAAS). Moreover, 
at present it is well recognized that Ang II is produced and 
secreted in several tissues, including the heart [35]. Dr. Sa-
doshima’s group has shown for the first time that Ang II 
exerts autocrine and paracrine effects when it is secreted 
from intracellular vacuoles in response to myocyte stretch-
ing, leading to cardiac hypertrophy [36,37]. Furthermore, Dr. 
Cingolani’s group have deeply investigated the presence of 
this autocrine pathway in the slow force response (SFR) to 
myocardial stretch, proposing the NHE stimulation as the 
final effect triggered by the endogenous Ang II action 
[38,39]. Furthermore, it was shown that >75% of cardiac 
Ang II was synthesized locally, and that its source was also 
in situ-synthesized Ang I [40]. In concordance, it has been 
demonstrated that Ald synthase exist in the myocyte [41], 
supporting the existence of a local RAAS [42]. On the other 
hand, it is important to mention that, under pathological con-
ditions, like post-myocardial infarction and in response to 
pressure and volume overload, increased cardiac Ang II  
levels [43-45] and upregulation of AT-1 receptors [46] were 
reported.  
 It is well-known that Ang II effects involve MAP kinases 
(MAPK) stimulation and reactive oxygen species (ROS) 
generation [47-50]. In this regard, it has been demonstrated 
that low concentration of ROS, instead of being deleterious, 
acts as intracellular molecules that regulate myocyte physi-
ology [50-52]. Moreover, the exposure of cardiac myocytes 
to extracellular H2O2 activates the ERK 1/2 kinase and 
stimulates NHE in a dose and time- dependent manner 
[53,54].  
 Interestingly, at present it is accepted that many effects 
initially thought to be produced directly by Ang II, are really 
induced by ET-1 [19,55], Ald [56,57] and more recently, 
after the transactivation of the epidermal growth factor re-
ceptor (EGFR) [58-61]. Because of the close relationship 
between Ang II and the regulation of ion membrane trans-
porters, in the last few years the investigation of Ang II-
induced NBC modulation gained increasing interest. 

REGULATION OF NBC BY ANG II 

 It was demonstrated that Ang II stimulates total NBC 
activity during the recovery of pHi after an intracellular  
 



26     Current Cardiology Reviews, 2013, Vol. 9, No. 1 Aiello and De Giusti 

acidosis both in rat [11] and cat [8] adult ventricular myo-
cytes in a ROS- [8] and ERK 1/2- dependent manner [8,11]. 
Moreover, the recently described phenomenon of “ROS-
induce-ROS-release” [62-64] was also involved in Ang II-
induced NBC stimulation [8]. In addition, in neonatal rat 
myocytes, Ang II was reported to simulate NBC activity in a 
phosphoinositide-independent mechanism after activation of 
AT-2 receptors [65]. 
 We have recently shown for the first time a differential 
effect of Ang II on NBC isoforms [29]. We demonstrated 
that Ang II inhibits eNBC in a p38 kinase-dependent, but 
ERK 1/2 and ROS-independent manner, whereas activates 
nNBC via an ERK 1/2 and ROS-dependent mechanism (Fig. 
1). Thus, we suggested that Ang II, binding to the AT-1 
receptor, activates the nNBC and inhibits the eNBC through 
parallel pathways [29]. Since previous studies, in which the 
effect of the hormone on both isoforms was not discrimi-
nated, have shown that Ang II stimulates total NBC activity 
[8,11], it might be possible to speculate that Ang II-induced 
stimulation of nNBC is able to overrule the inhibition of 
eNBC [29]. Consistently, when we measured total NBC ac-
tivity during the recovery from acidosis, we found a stimula-
tory effect of Ang II which was further enhanced when p38-
kinase was blocked, demonstrating that Ang II-induced in-

hibiton of eNBC was only partly compensating the excita-
tory effect of the hormone on nNBC [29]. Furthermore, in 
the presence of NHE inhibition with HOE642, Ang II also 
significantly increased resting pHi, again likely due to nNBC 
stimulation overcoming eNBC inhibition [29]. 
 Although we presented the first evidence for the Ang II-
induced cardiac eNBC inhibition, this effect was in agree-
ment with several studies that demonstrated a biphasic regu-
lation of NBCe1 by Ang II in renal tubules: low concentra-
tions (picomolar to nanomolar) stimulated NBCe1 activity 
whereas higher concentrations (nanomolar to micromolar) 
inhibited it in an arachidonic acid-dependent way [66,67]. 
Consistently, it has been previously reported that p38 kinase 
is related with the arachidonic acid pathway and its metabo-
lites in several tissues [68-71]. Further investigations are 
needed to evaluate the participation of arachidonic acid in 
Ang II-induced cardiac eNBC regulation. Moreover, it 
would be interesting to investigate the effect of low 
concentrations of Ang II in cardiac NBC activity. 

INVOLVEMENT OF NBC IN CARDIAC PATHOLOGY 

 Although little is yet known about the implication of 
NBC in cardiac pathologies, in the last years there was a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Schematic diagram showing the proposed Ang II- induced opposite effects on NBC isoforms and the possible implications in car-
diac pathologies, as hypertrophy and arrhythmias. p38: p38 kinase; ERK 1/2: ERK kinase. 
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considerable increase in the knowledge about this issue, 
which suggested the involvement of NBC in several heart 
diseases, such as myocardial ischemia [34,72-77], infarction 
[78] and cardiac hypertrophy [31,79]. Interestingly, Ang II is 
also involved in these pathologies.  

a) Ischemic Disease and Myocardial Infarction 

 Myocardial infarction is a major cause of death and 
disability worldwide. It is mainly developed during an 
unstable period of a coronary atherosclerosis disease. The 
term myocardial infarction reflects the existence of 
cardiomyocyte death caused by prolonged ischemia, which is 
the result of a perfusion imbalance between supply and 
demand.  
 Previous studies have demonstrated that cardiac NBC is 
activated during ischemia-reperfusion [72-77]. Moreover, 
Khandoudi and coauthors [34] have demonstrated that selec-
tive inhibition of NBCe1 during reperfusion after ischemia 
significantly improved contractile recovery, indicating that 
this transporter contributes to the characteristic intracellular 
Na+ and Ca2+ overload produced by this pathology. These 
authors also showed that NBCe1 is over-expressed in human 
heart failure [34]. 
 Experimentally, it was demonstrated that local myocar-
dial infarction (MI) leads to an increase in both, mARN level 
and NBC protein expression and, as a consequence, NBC 
activity was enhanced [78]. Chronic treatment with blockers 
of the Ang II signaling, either with ACE inhibitor or AT-1 
receptor antagonists, effectively reduced mRNA and protein 
NBC upregulation and transport activity [78], demonstrating 
a close relationship between NBC, Ang II and myocardial 
infarction. 

b) Cardiac Hypertrophy 

 Cardiac hypertrophy is a response of the heart to a vari-
ety of extrinsic and intrinsic stimuli, some of which finally 
lead to a maladaptative state. On the basis of the external 
stimuli and ongoing molecular changes, cardiac hypertrophy 
is divided in two types; the physiological cardiac hypertro-
phy, mostly seen in athlete’s heart and the pathological car-
diac hypertrophy induced by mechanical stress, due to pres-
sure overload or volume overload. In the physiological car-
diac hypertrophy the increase of the cardiac muscle reduces 
ventricular wall stress and compensates for the increased 
hemodynamic demand, improving heart contractility. It is 
generally associated with increased cardiac mass without 
collagen deposition. Opposite, the pathological cardiac hy-
pertrophy is characterized by the fibrosis and induction of 
fetal gene expression, which lead to a reduction in cardiac 
output and enhancement of the risk of sudden death, ar-
rhythmia and heart failure [80,81]. 
 Yamamoto et al. have demonstrated that NBCe1 and 
NBCn1 were over-expressed in ventricular myocytes iso-
lated from hypertrophied rat hearts subjected to non-
ischemic pressure overload [31]. Moreover, these changes 
are prevented by Losartan [31]. When these authors evalu-
ated the function of both isoforms in the hypertrophied 
hearts, they could not find a clear upregulation of NBCe1 
[31]. Consistently, we have recently shown preliminary data 

suggesting that, although NBCe1 is also over-expressed in 
hypertrophied hearts of spontaneous hypertensive rats 
(SHR), its activity is impaired [79]. It is possible that Ang II 
induced the NBCe1 internalization, explaining the discor-
dance between the protein expression and the transport activ-
ity. In agreement, Ang II-induced NBCe1 internalization was 
described in Xenopus oocytes transfected with this NBC 
isoform [82]. Nevertheless, it is important to mention that it 
could not be determined yet if the changes on NBC were the 
cause or the consequence of the development of cardiac hy-
pertrophy. Additional studies are required to fully resolve 
this important issue.  

ROLE OF NBC-INDUCED [NA+]i AND [CA2+]i OVER-
LOAD: POTENTIAL IMPLICATIONS IN CARDIAC 
HYPERTROPHY 

 It is well-known that increased [Ca2+]i activates hypertro-
phic pathways, such as the one of calcineurin [83,84]. Ca2+ 
regulation is closely linked to [Na+]i because one of the 
routes for Ca2+ influx into the myocytes is via the reverse 
mode of NCX. When [Na+]i increases, NCX is shifted to less 
forward mode activity (Ca2+- efflux) and/or to reverse opera-
tion mode, leading to [Ca2+]i overload [85-87]. 
 In animal models of hypertrophy, as well as in human 
heart failure, it has been demonstrated an increase in [Na+]i 
and [Ca2+]i [88-90]. Furthermore, it was shown that chronic 
inhibition of NHE, which attenuates the [Na+]i overload, 
prevented or reverted cardiac hypertrophy [91-94]. On the 
other hand, the over-expression of NHE induced cardiac 
hypertrophy [95]. 
 As it was demonstrated that NBC is responsible for 30% 
of Na+ influx into the myocyte at pHi 6.8 [12], it may be also 
important in the development of cardiac hypertrophy. In this 
regard and as commented above, it has been shown that 
nNBC function is up-regulated in cardiac hypertrophy [31], 
while eNBC transport seems to be impaired [79]. Taking into 
account the stoichiometry of both NBC isoforms, which 
could lead to the consideration of eNBC as a “Na+- sparing” 
bicarbonate transporter, it is feasible to anticipate that this 
remodeling in NBC isoforms function in the hypertrophied 
hearts would lead to more deleterious effects on [Na+]i and 
[Ca2+]i overload.  

ROLE OF NBC- INDUCED [Na+]i AND [Ca2+]i OVER-
LOAD: POTENTIAL IMPLICATION IN DELAYED 
AFTER DEPOLARIZATIONS (DADs) 

 It has been shown that either the inhibition of the Na+/K+ 

ATPase [96,97] or the NHE stimulation [98] generate [Na+]i 
overload and cardiac arrhythmias. The proposed mechanism 
is the following: [Na+]i overload reduces Ca2+ extrusion 
and/or increases Ca2+ influx through the NCX. The increase 
in [Ca2+]i enhance the sarcoplasmic reticulum (SR) calcium 
load, exceeding the ryanodine receptor channel (RyR) 
threshold necessary to be opened and finally leading to spon-
taneous diastolic calcium release. The transient increase in 
citosolic Ca2+ (waves) activates an inward (depolarizing) 
current (Iti), mediated by the forward mode of NCX 
[99,100]. Iti is responsible for the generation of DADs which, 
when are sufficiently large to achieve the threshold, generate 
spontaneous CAP, leading to triggered activity [101].  
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 As NBC activity promotes the increase in [Na+]i [12], it 
is also possible to speculate that Ang II and ROS-induced 
NBC stimulation [8] might be implicated in DADs genera-
tion (Fig. 1). According to this, it was demonstrated that Ang 
II induces DADs in a ROS-dependent manner [102]. 
 However, it is important to note that increased SR Ca2+ 
load is not sufficient to promote diastolic spontaneous SR 
Ca2+ release [97], and that also a functional or structural al-
teration in RyR is needed to induce DADs [103-107]. In ad-
dition, it was recently demonstrated that ROS can directly 
oxidise the RyR, making it leaky [108-111]. Interestingly, 
the inverse conclusion seems to be also true: just an impaired 
RyR is not sufficient to induce Ca2+ release, since a parallel 
increase in SR Ca2+ load is also required [112]. 

ROLE OF eNBC INHIBITION-INDUCED CAP PRO-
LONGATION: POTENTIAL IMPLICATION IN 
EARLY AFTER DEPOLARIZATIONS (EADs) 

 Classically, Ang II is known to modulate the properties 
of ion channels leading to CAP prolongation [113-116]. It has 
been reported that Ang II both inhibits repolarizing currents 
as IK1, IKr and Ito [114,116-118] and stimulates depolarizing 
currents as ICaL [119,120]. Moreover, we have recently dem-
onstrated that Ang II abrogated the eNBC-induced CAP 
shortening, likely due to the inhibition of the repolarizing 
current generated by the transporter [29]. 
 In this regard, it has been shown that CAP prolongation 
enhances the occurrence of EADs, due to the recovery from 
the inactivation and the reactivation of voltage-dependent L-
type Ca2+ channels [102,121,122] and the impairment of 
sodium current [102,122]. In addition, Ang II was shown to 
increase the occurrence of EADs in a ROS and CaMKII-

dependent manner [102]. Furthermore, it was shown that 
chronic inhibition of NHE could reverse the ionic (sodium 
overload and disturbance in calcium management) and elec-
trical (CAP prolongation) cellular remodeling during heart 
failure, and reduce arrhythmic events [98]. 
 The relationship between NBC and EADs is currently 
unknown, but keeping in mind the relevance of eNBC for 
CAP configuration [29], and the regulation of [Na+]i by total 
NBC activity [31], it might be also possible that Ang II-
induced eNBC inhibition and nNBC stimulation participate 
in the generation of EAD, secondary to CAP prolongation 
and [Na+]i overload, respectively (Fig. 1).  
 Importantly, there is a close relationship between CAP 
prolongation and hypertrophy. Prolongation of CAP is con-
sistently observed in several experimental models of cardiac 
hypertrophy and failure [123]. It is also known that this can 
lead to QT prolongation in the electrocardiogram, that in turn 
promotes arrhytmogenic events [98,124]. Interestingly, Le-
beche et al. have reported that CAP prolongation promotes 
an increase in [Ca2+]i, which activate a hypertrophic signal-
ing pathway, that might be a cause and not a consequence of 
cardiac hypertrophy [125].  

eNBC ACTIVITY: BENEFICIAL OR DETRIMENTAL?  

 The double participation of eNBC in cardiac physiology 
makes it difficult to call as a “beneficial” or “detrimental” 
mechanism (Fig. 2). Since eNBC is a cellular “Na+- loading” 
mechanism, it might contribute to [Na+]i and [Ca2+]i overload 
and arrhythmias generation [21,73]. In concordance, 
Khandoudi et al. reported that blockade of rat cardiac eNBC 
during reperfusion results in cardioprotection [34]. Thus, we 
can speculate that the Ang II-induced eNBC inhibition 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Schematic representation of eNBC activity showing the balance between its beneficial repolarizing current (right) and the conse-
quences of its Na+-loading effect (left) in cardiac pathologies. 
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would carry beneficial effects under this pathological state. 
Similar paradigmatic speculations about the effect of Ang II 
on eNBC could be made with cardiac hypertrophy and heart 
failure, which are cardiac diseases associated to elevated 
Ang II concentration [40,126].  
 However, in cardiac hypertrophy or heart failure, the 
potential attenuation of [Na+]i overload that might be pro-
duced by eNBC inhibition [31] could be overruled by the 
deleterious effects that might be carried by the prolongation 
of CAP also induced by the blockade of eNBC [29]. Moreo-
ver, Camilión de Hurtado et al. have demonstrated that a 
rate-dependent decrease in pHi, probably due to the in-
creased anaerobic glycolisis, was markedly reduced in the 
presence of CO2/bicarbonate in comparison to a free-
bicarbonate solution [30]. In this work, the authors proposed 
that eNBC activity, which leads to HCO3

- influx, substan-
tially increases the cell ability to recover from enhanced pro-
ton production [30].  

FINAL CONCLUSION 

 The purpose of this review was to focus the attention on 
the cardiac NBC and specially consider its regulation by Ang 
II and the implications of this modulation, either in physiol-
ogy or in the development of cardiac diseases. Classically, 
the NBC is known as an alkalinizing mechanism. However, 
it is important to keep in mind that this is not its only func-
tion, but it also controls [Na+]i, and indirectly [Ca2+]i through 
the NCX activity and SR behavior. Moreover, eNBC modu-
lates the shape and the duration of the CAP, adding to this 
isoform the important role of contributing to cellular electro-
physiology. 
 We consider of significant relevance the fact that a hor-
mone as Ang II, which has a central role in cardiac patho-
physiology, regulates NBC activity. Moreover, this peptide 
exerts an opposite effect on each NBC isoform due to the 
activation of two different and parallel pathways. The inhibi-
tory effect that Ang II exerts on eNBC, via the activation of 
the p38-kinase, seems to be more relevant for CAP duration 
than for pHi regulation. On the opposite, the stimulatory ef-
fect of this hormone on nNBC, dependent on ROS produc-
tion and ERK 1/2- activation, overrule the negative effect on 
eNBC, leading to an increase in pHi, [Na+]i, and [Ca2+]i that 
could be important to explain, at least in part, the hypertro-
phic effects of Ang II signaling.  
 The knowledge of the singular regulation of each NBC 
isoform should be the base for following investigations. The 
use of specific inhibitors of the ERK 1/2 or p38- kinases 
pathways and the employment of functional antibodies as 
new pharmacological tools, will allow the study of the dif-
ferential implication of eNBC and nNBC in cardiac patholo-
gies. As an example of clinical relevance, it is feasible to 
suggest that the stimulatory antibody (a-L4) against eNBC, 
which would induce CAP shortening, could be useful to in-
vestigate the potential protective effect of eNBC activation 
during the development of cardiac hypertrophy or the dam-
age during reperfusion after ischemia. Nevertheless, besides 
the fact that the amount of pharmacological tools has been 
growing up, we are still in debt, and the more precise knowl-
edge about development of cardiac diseases that we can elu-

cidate, the more close we will be to find the specific treat-
ment for them.  
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