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We propose a simple and fast procedure to retrieve the phase profile of arbitrary light pulses. It combines a first
experimental stage, followed by a one-step numerical stage. To this end, it is necessary to perform a Fresnel trans-
form, which is obtained just by propagating the light pulses through an optical fiber. We experimentally test this
proposal recovering the phase profile in the light pulses provided by a passively mode-locked laser. The proposal is
then compared with a temporal variation of the Gerchberg–Saxton recursive algorithm, which is specially modified
for this purpose. © 2014 Optical Society of America
OCIS codes: (120.5050) Phase measurement; (350.5030) Phase.
http://dx.doi.org/10.1364/OL.39.000598

In space optics, there are several successful recursive
algorithms for phase reconstruction from the intensity
of the signal and its Fourier or Fresnel transform (FT
and FrT, respectively) [1,2]. Despite this, the develop-
ment of nonrecursive procedures remains an attractive
field of research. Teague developed a nonrecursive ap-
proach for phase retrieval [3], which was further devel-
oped by others [4,5]. It was demonstrated that the
longitudinal derivative of the Fresnel spectrum is propor-
tional to the transversal derivative of the product of the
instantaneous intensity and frequency of the signal. This
was known as the transport-of-intensity equation (TIE); a
similar technique also holds for the fractional FT [6,7].
Later, Dorrer translated to the temporal domain the
TIE to determine the nonlinear coefficients of a highly
nonlinear fiber [8].
The phase recovery, or its first temporal derivative, i.e.,

the instantaneous angular frequency, is an important
characteristic of nonstationary signals. Its monitoring is
of great importance in fiber-optic communication sys-
tems today. Recently, it was shown that a spectrally
shifted differentiator can be used to retrieve the phase
profile of a given temporal optical waveform [9]. How-
ever, the operation is performed by using short or long
period fiber gratings, which have fixed operation wave-
lengths, and restrictive operation bandwidths. In [10,11],
a phase-recovery technique was proposed from temporal
intensity measurements at the input and output of a lin-
ear optical filter. However, precise knowledge of the fil-
ter’s impulse response is necessary in amplitude and
phase, together with the additional restriction in the later
to be limited to a maximum variation range of π rad
through the whole operation bandwidth.
In this work, we propose a simple phase-recovery tech-

nique that combines a first experimental stage followed
by a direct numerical stage. In the experimental stage, it
is necessary to acquire two temporal intensity profiles at
the input and output of a linear dispersive device. In
the numerical stage, a single equation is applied to re-
trieve the phase profile in just one step. This proposal
could be considered within the framework of the use of
dispersive elements to characterize optical signals by
using oscilloscope measurements. As an example,

dispersive FT has emerged as a successful technique
enabling fast measurements in optical sensing, spectros-
copy, and imaging (see [12] and references therein). As
a proof-of-concept, the proposal is experimentally tested,
retrieving the temporal phase profile of a passively mode-
locked laser. Then the results are compared with a time-
domain variation of the Gerchberg–Saxton algorithm
(GSA) [1,13].

The FrT of a given 1D complex signal f �t� �
jf �t�j exp�jφ�t�� can be expressed by
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where f α�t� is the FrT signal, and α is the FrT parameter.
By using Eq. (1), and after some algebraic manipulations,
it is possible to demonstrate the following equality [7]:
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where φ0 is an arbitrary phase constant and H�·� is the
Heaviside step function. The expression between the
square brackets in Eq. (2) is known as the temporal
TIE. It links the variations of the temporal intensity that
are due to dispersive propagation to the temporal inten-
sity and phase.

Now let us focus on the propagation of a given optical
temporal signal by a dispersive medium such as an opti-
cal fiber of length L. Dispersive media can be modeled as
linear time invariant systems by means of a transfer func-
tion. Let this transfer function S�ω� have flat amplitude
and quadratic phase response (i.e., linear group delay)
over a certain operative spectral bandwidth:

S�ω� � exp
�
j
1
2
Φ20ω

2

�
→
FT−1

s�t� ∝ exp�−jt2∕2Φ20�; (3)

where ω is the baseband angular frequency, s�t� is the
impulse response, which was obtained by inverse FT
of S�ω�, and Φ20 is the first-order dispersion coefficient;
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being Φ20 � Lβ20, where β20 is the second-order
derivative of the propagation constant. Additionally,
and only for simplicity, the average time delay has been
ignored. The propagation of a single pulse for a linear dis-
persive regime can be expressed by convolving f �t� with
s�t�. Therefore, except by a multiplicative constant, we
recognize in the right-hand side of Eq. (3) the FrT kernel
of Eq. (1), with FrT parameter α � Φ20. Thus we can per-
form the required FrT just by propagating the input op-
tical pulse by a dispersive device, such as an optical fiber,
or by reflection in a linearly chirped fiber Bragg grating.
Regarding the derivative of the signal intensity with re-
spect to the FrT parameter, see Eq. (2), we propose
its replacement by a finite difference as follows:

∂jf α�t�j2∕∂α
��
α�0

≈ �jf α�t�j2 − jf �t�j2�∕α
��
α→0

: �4�

From now on we will refer to the numerator of the right-
hand side of Eq. (4) as the temporal profile difference
(TPD). The approximation given by Eq. (4) improves as
the dispersion length L is reduced, since α � Φ20 � Lβ20.
However, in practice, the presence of noise imposes a
lower limit for the reduction of the dispersion length,
being necessary for a satisfactory phase recovery that
the TPD be higher than the noise level. As a rule of
thumb, the lower the signal-to-noise ratio (SNR) is, the
higher the necessary dispersion length. However, the
dispersion length cannot be increased indefinitely be-
cause the validity of Eq. (2) is restricted to the near-
field regime, where the following inequality holds
Δt2∕2πΦ20 ≫ 1, where Δt is the time width of the input
signal. In this way, by replacing Φ20 � Lβ20 and rearrang-
ing, we find the higher limit for the dispersion length:

L ≪ Δt2∕2πβ20: (5)

If inequality of Eq. (5) is not fulfilled, we would be in the
far-field Fraunhofer regime, where the transmitted signal
envelope is, within a phase factor, proportional to the FT
of the input signal envelope [14]. Generally, a trade-off
between precision and quality of the TPD will be neces-
sary to find the optimum dispersion length. Interestingly,
when an optical fiber is used as a dispersive medium, this
does not represent a major issue. Finally, we summarize
in Table 1 the proposed procedure for the phase profile
retrieving.
We will compare the results obtained with a time-

domain analog of the GSA. The GSA was originally

developed to retrieve the phase of a spatial image based
on intensity recordings in the image and diffraction
planes [1]. The method depends on there being a FT re-
lation between the waves in these two planes. However,
an adaptation of this concept is suitable for the present
problem, replacing the FT by a FrT [13], relaxing in this
way the use of high dispersion values. The procedure for
reconstruction requires the measurement of the enve-
lopes of the original and FrT signals, jf �t�j and jf α�t�j, re-
spectively; both are obtained by taking the square root of
the measured temporal intensity profiles (a previous
numerical area normalization and time alignment is also
necessary). The proposed algorithm is illustrated sche-
matically in Fig. 1, which should be followed clockwise.
To begin the procedure (upper-left corner), an initial
guess for φ�t� is required. The phase guess and measured
magnitude are combined and numerically FT. Once in the
frequency domain, the quadratic phase due to dispersion
S�ω� is applied [see Eq. (3)], and the waveform is trans-
formed back to time. At this point, only the calculated
phase θ�t� is retained; the calculated magnitude is re-
placed by the measurement jf α�t�j. The calculated phase
and measured magnitude are combined and numerically
FT. Once in the frequency domain, the quadratic phase
due to dispersion is removed by using S−1�ω�, and the
waveform is transformed back to time. The cycle is then
completed by using the measurement again at the begin-
ning, but retaining the calculated phase. The GSA is a
recursive process, and it should be repeated at the user’s
discretion.

When the input optical pulse is short enough that it
cannot be measured by an oscilloscope—let us denote
by f 0�t�—it becomes necessary to pre-stretch the pulse
by using another dispersive media, with transfer function
S0�ω�, until it can be detected. This detected pre-
stretched pulse plays the role of jf �t�j2, which should be
further dispersed and detected, being this signal jf α�t�j2.
The FrT technique, or GSA, is then applied as described
above to recover the phase of the pre-stretched pulse
φ�t�. Finally, the input optical pulse can be obtained,
in both modulus and phase, through f 0�t� � FT−1

fFTfjf �t�j exp�jφ�t��g∕S0�ω�g.
As a proof-of-concept, we demonstrate the feasibility

of these proposals by experimentally retrieving the phase
in the light pulses provided by an all-fiber passively
mode-locked laser. Since these pulses are long enough,
in this case it is not necessary to apply the pre-stretching
technique described above. Thus different FrTs were ob-
tained by using different lengths of a standard optical fi-
ber as the dispersive device. The light pulses provided by
the mode-locked laser were split by a 50∕50 coupler (see
Fig. 2). At one of the output ports, we detected the light
pulses of the mode-locked laser with a > 63 GHz

Fig. 1. GSA for temporal phase retrieval at the input by FrT.

Table 1. Procedure for Phase Recovery by FrT
Technique

Stage Description

Experimental 0. The dispersion of the optical fiber used to
perform the FrT should be known; otherwise
must be measured
1. Data acquisition of the temporal intensity
profiles of the optical pulse whose phase
will be retrieved and of its FrT

Numerical 2. Area normalization and time alignment
of both temporal intensity profiles
3. The phase is recovered using
Eqs. (2) and (4)
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sampling oscilloscope provided with a fast built-in photo-
detector (53 GHz); this signal is jf �t�j2 in Eq. (4). We also
simultaneously propagated the light pulses provided by
the mode-locked laser by an optical fiber of a given
length in order to obtain the FrT; this signal is also regis-
tered by the oscilloscope, being jf α�t�j2 in Eq. (4). If the
dispersion of the optical fiber is known, the experimental
stage finishes with the acquisition of both temporal
profiles.
The procedure to retrieve the phase profile continues

numerically by using as working files jf α�t�j2 and jf �t�j2
(see Table 1). An important digression is in order here;
the energy of the two signals should be equal, since the
FrT—as a member of the unitary canonical transforms—
preserves the signal’s energy. Further, both signals must
be synchronized as well, since time delay effects have
been ignored in the derivation of Eq. (2). Fortunately,
it is not necessary to perform these tasks experimentally,
since both operations can be more easily performed in
the numerical stage. The power losses are numerically
fixed, equalizing both pulse energies, i.e., areas, by multi-
plying one of both profiles by a numerical constant. The
time delay, on the other hand, is numerically removed by
temporally matching the intensity maxima of both pro-
files. The error that these numerical operations could in-
troduce in the measured phase has not been evaluated
yet, although, by repeating the measurements with differ-
ent lengths of fibers, we are reducing the possibilities of
having a systematic error from just one measurement.
The passively mode-locked ytterbium fiber laser pro-

vided light pulses at an emission wavelength λ0 �
1038 nm with a repetition rate of 23.15 MHz, which can
be satisfactory adjusted with a sech profile jf �t�j �
sech�t∕T0�, where T0 � 12 ps, i.e., a FWHM of 20 ps.
The dispersion line was made with a low numerical aper-
ture optical fiber (SM980 by Fibercore). We measured by
the interferometric technique the first-order dispersion at
λ0 of this optical fiber resulting in D � −44 ps∕nm × km,
and by using β20 � −λ20D∕2πc, with c the speed of light in
vacuum, results β20 � 25.1 ps2∕km. Therefore, by using
Eq. (5), with Δt � 4T0, results in L ≪ 14 km. Taking into
account this higher limit for the dispersion length, three
different fiber lengths were used L � 315, 214, and 101 m.
Thus, for each specific fiber length,Φ20 results in 7.94 ps2

(315 m), 5.4 ps2 (214 m), and 2.54 ps2 (101 m). The non-
linear length LNL was obtained from LNL � �γP0�−1 �
3.8 km, where P0 � 51 mW is the peak power of the
optical pulses (derived using a measured average power
of 23.54 μW) and the nonlinear parameter γ ≈
0.0052 W−1∕m (derived using a mode field diameter of
6.2 μm and a nonlinear parameter n2 � 2.6×
10−20 m2∕W). Since the selected dispersion lengths are
well below the nonlinear length, from now on we can
safely ignore the influence of nonlinear effects in our
measurements. Figure 3(a) shows the experimentally
measured light pulses to the input of the dispersive

device (together with its corresponding fitting), the ex-
perimentally measured FrT pulse—with parameter α �
Φ20 � 7.94 ps2 (315 m)—and the TPD. The temporal
phase profile was directly recovered from the raw data
applying Eqs. (2) and (4), being unnecessary to smooth
previously the data set [see Exp. FrT curve in Fig. 3(b)].
The instantaneous angular frequency—obtained by
the first-order temporal derivative of the temporal phase
profile, not shown—increases monotonously from the
leading to the trailing edge of the pulse; this is currently
known as an up-chirp.

We also fitted a phase profile for the light pulses of
the mode-locked laser, using as jf �t�j2, the sech profile
obtained by fitting the light pulses provided by the mode-
locked laser, shown in Fig. 3(a). However, since f �t� is
evidently chirped, we simulate this by adding to the sech
profile a linearly chirped term in the following way
f �t� � sech�t∕T0� × exp�−jCt2∕2T2

0�, where C is the
chirp-dimensionless parameter. On the other hand,
jf α�t�j2 was obtained by simulating the propagation of
this linearly chirped sech profile by a dispersive media
characterized by Eq. (3), with α � Φ20 � 7.94 ps2. From
these two simulated signals, we calculated a simulated
phase profile by using Eqs. (2) and (4). To this end,
we tried different chirp parameters to fit the simulated
phase profile to the experimental data. Best results were
obtained for a chirp parameter C � −11, the simulated
phase profile is also shown in Fig. 3(b) (Sim. FrT).
The degree of resemblance between both experimental
and simulated phase profiles is remarkable, indicating
that the light pulses provided by the mode-locked laser
are linearly up-chirped. We emphasize that we should
focus our attention to the region where the pulse energy
is localized. The theoretical parabolic phase profile with
C � −11 is also shown. Finally, we also shown in
Fig. 3(b) the phase recovered by our modification to
the GSA, after 170 roundtrips. They match with reason-
able accuracy, although it is evident that the recon-
structed phase obtained by the present method is
better than that obtained by the GSA. It should be men-
tioned also that the GSA depends on an educated guess
for the phase, whereas here it is not necessary. Finally, it
is notable to emphasize the different computation times
necessary for the phase recovery by using the FrT

Modelocked 
laser 50 GHz 

sampling 
oscilloscope

Fiber spool

( )f t

( )f tα

50/50 
coupler

Fig. 2. Experimental setup.

Fig. 3. (a) Measured temporal profiles at the input (plus the
corresponding fitting) and output of a fiber length of 315 m,
the TPD is also shown. (b) Phase recovered by the proposed
FrT technique, experimentally and numerically (Exp. FrT and
Sim. FrT, respectively), as compared with the phase experimen-
tally recovered by the modified GSA, a theoretical parabolic
phase profile with C � −11 is also shown.
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technique and the GSA. In the former, it is necessary just
one single mathematical step; as a result, the phase is re-
covered instantly, whereas in the GSA two FT and two
anti-FT are performed for every roundtrip. As a conse-
quence, the computation time required for the GSA is
considerably longer. Related with this, it is worth men-
tioning that the technique proposed in [10,11] is iterative,
i.e., the phase is recovered point-by-point through the
whole sample data.
Since the TPD shown in Fig. 3(a) is well above the

noise level, there is margin for a further reduction in
the fiber length in order to study the influence of the
approximation introduced by Eq. (4). Thus we experi-
mentally retrieve the phase by using α � Φ20 � 5.4 ps2

(214 m) and α � Φ20 � 2.54 ps2 (101 m). By applying
Eq. (2) via Eq. (4) once again, we experimentally retrieve
the phase profiles for these new dispersion lengths,
which are shown in Figs. 4(a) and 4(b), for 214 and
101 m, respectively. The simulated phase profiles are also
shown in both cases; again the degree of resemblance
between both experimental and simulated phase profiles
remains satisfactory. Finally, the phase recovered by
our modification to the GSA is also shown in Figs. 4(a)
and 4(b), matching with reasonably accuracy. The
phases finally recovered are essentially the same inde-
pendently of the fiber length used, although it is clear that
for the shorter fiber length (101 m) the TPD is the worst
determined. This is something to be expected, since for
short propagation lengths output and input pulses
become essentially the same signal.
We also studied the robustness of the proposed tech-

nique by simulating additive and independent white noise
in the input and output temporal profiles. In Fig. 5(a), we
show the phase directly recovered with the unsmoothed
data when the SNR � 10 dB, as compared with the theo-
retical phase (the pulse parameters and the dispersion
length are the same as in Fig. 3). As observed, the phase
can be satisfactorily recovered despite the strong pres-
ence of noise in the TPD [see the inset of Fig. 5(a)]. This
robustness against intensity noise is related to the inher-
ently low-pass behavior of the integral and the replace-
ment of the original derivative by a finite difference
[see Eqs. (2) and (4), respectively]. We conclude this
work by demonstrating the applicability of the FrT tech-
nique to a more general phase profile. To this end, we
simulated the phase-profile recovery of a super-Gaussian
pulse defined by f �t� � exp�−�1∕2� �1� jC��t∕2T0�2m�,
with m � 3, C � −3, T0 � 12 ps, and SNR � 20 dB. The
inset in Fig. 5(b) shows the TPD (with α � Φ20 � 2 ps2,

equivalent to the dispersion of 80 m of SM980 optical
fiber at 1034 nm). The retrieved temporal phase profiles
of the input optical pulse by using the FrT and GSA (67
roundtrips) are shown in Fig. 5(b), together with the theo-
retical phase profile. The degree of resemblance between
the phase profiles is satisfactory, demonstrating the appli-
cability of this technique to retrieve arbitrary phase
profiles.

In this work, we proposed and experimentally proved a
simple technique to retrieve the phase profile of a tem-
poral optical waveform. Since the measurement relies
on time-domain intensity detection, the technique is lim-
ited by the bandwidth of the oscilloscopes and detectors
(100 GHz in real-time electronic oscilloscopes,>500 GHz
in sampling optical oscilloscopes). Among the advan-
tages, we point out its experimental and computational
simplicity and that it is intrinsically well-suited for any
optical wavelength.
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Fig. 4. Same as in Fig. 3(b), but for a fiber length of 214 m (a)
and 101 m (b).

Fig. 5. (a) Simulated phase recovered by the FrT technique in
the presence of noise with SNR � 20 dB, as compared with the
theoretical phase. The inset shows the TPD. (b) Phase profiles
numerically recovered by the FrT technique and GSA for a
super-Gaussian pulse with a SNR � 20 dB; the theoretical
phase profile is also shown. The inset shows the TPD.
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