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Abstract. The Calderón operator S is the sum of the the Hardy
averaging operator and its adjoint. The weights w for which S
is bounded on Lp(w) are the Calderón weights of the class Cp.
We give a new characterization of the weights in Cp by a single
condition which allows us to see that Cp is the class of Muckenhoupt
weights associated to a maximal operator defined through a basis
in (0,∞). The same condition characterizes the weighted weak-
type inequalities for 1 < p < ∞, but that the weights for the
strong type and the weak type differ for p = 1. We also prove
that the weights in Cp do not behave like the usual Ap weights
with respect to some properties and, in particular, we answer an
open question on extrapolation for Muckenhoupt bases without the
openness property.

1. Introduction.

Let P and Q be the Hardy averaging operator and its adjoint,

Pf(t) =
1

t

∫ t

0

f(x)dx, Qf(t) =

∫ ∞
t

f(x)

x
dx, (t > 0).

The Calderón operator S is defined as S = P +Q. Given 1 ≤ p <∞,
it is said that a nonnegative measurable function w defined in (0,+∞)
is a Calderón weight of the class Cp (see [1]), and we write w ∈ Cp, if
S is bounded on Lp(w), or, equivalently, if P and Q are both bounded
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on Lp(w). For p > 1 it is known that w ∈ Cp if and only if there exists
C > 0 such that for all t > 0 it holds that

Mp :

(∫ ∞
t

w(x)

xp
dx

)1/p(∫ t

0

w1−p′(x) dx

)1/p′

≤ C

and

Mp :

(∫ t

0

w(x) dx

)1/p(∫ ∞
t

w1−p′(x)

xp′
dx

)1/p′

≤ C.

The case p = 1 is easier to describe: w ∈ C1 if and only if

(1.1) Sw(x) ≤ Cw(x) a.e.

If w is a Calderón weight, the best constant in Mp and Mp, that is,
the least constant C satisfying Mp and Mp, will be denoted by [w]Cp .
Similarly, [w]C1 will denote the best constant in (1.1). It is known that
[w]Cp is essentially equal to the norm of the Calderón operator on Lp(w),
in the sense that the quotient of both quantities is bounded above and
below by constants depending only on p. For all these definitions and
results, see [1] and [13]. The Calderón operator plays a significant
role in the theory of real interpolation. Such theory associated with
Calderón weights is developed in [1].

The first aim of this paper is to show that the two conditions Mp

and Mp mentioned in the preceding paragraph can be replaced by a
single condition.

To this end, we introduce a maximal operator which turns out to
be related to the Calderón weights. Given a measurable function f we
define the maximal operator

Nf(t) = sup
b>t

1

b

∫ b

0

|f(x)| dx.

Notice that Nf is a decreasing function, and that Nf ≤ Sf for non-
negative f . Indeed, for f ≥ 0 and b > t we have

1

b

∫ b

0

f(x) dx ≤ 1

t

∫ t

0

f(x) dx+

∫ b

t

f(x)

x
dx ≤ Sf(t).

The operator N is the maximal operator on (0,+∞) associated to
the basis of open sets of the form (0, b), for b > 0. We recall in Section
2 the concept of basis and the corresponding classes of Ap weights. In
the case of N we denote as Ap,0 (1 < p <∞) the class of nonnegative
functions defined in (0,+∞) such that

(1.2) [w]p,0 := sup
b>0

(
1

b

∫ b

0

w

)(
1

b

∫ b

0

w1−p′
)p−1

< +∞.
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For p = 1, we write A1,0 for the class of nonnegative functions such
that Nw(x) ≤ Cw(x) a.e. and [w]1,0 denotes the smallest constant for
which the inequality holds.

Theorem 1.1. For 1 ≤ p < ∞, N is of weak type (p, p) with respect
to the measure w(t)dt if and only if w ∈ Ap,0. More precisely,

(1.3) sup
λ>0

λw({t : Nf(t) > λ})1/p ≤ [w]
1/p
p,0 ‖f‖p,w.

For 1 < p < ∞, N is bounded on Lp(w) if and only if w ∈ Ap,0.
Moreover,

(1.4) ‖Nf‖p,w ≤
pp
′

p− 1
[w]p

′−1
p,0 ‖f‖p,w.

We prove this theorem in Section 2. With such a result in hand we
can easily obtain our main theorem whose proof will be provided in
Section 3.

Theorem 1.2. (a) Let 1 < p < ∞ and let w be a nonnegative mea-
surable function. Then S is bounded on Lp(w) or is of weak-type (p, p)
with respect to the measure w(t)dt if and only if w ∈ Ap,0. That is, Cp
and Ap,0 coincide for 1 < p <∞. Moreover,

(1.5) ([w]p,0)1/p ≤ ||S||Lp(w) ≤ 2C(p)([w]p,0)max{1,p′−1},

where C(p) = max{p′pp′−1, (p′)p−1p}.
(b) N is bounded on L1(w) if and only if w ∈ C1, and S is of weak-

type (1, 1) with respect to the measure w(t)dt if and only if w ∈ A1,0.

So far as we know, (1.2) gives a new characterization of the Calderón
weights for p > 1 by means of a single condition which is clearly related
to Muckenhoupt’s Ap condition. It is worth remarking that in the proof
of this result (for p > 1) we do not need to know the conditions Mp

and Mp. On the other hand, note that we can also relate the usual
Ap weights to the Calderón weights: w : R → [0,+∞] satisfies Ap if
and only if for each a ∈ R the weights wa(t) = w(t − a) restricted to
(0,+∞) are Calderón weights and supa∈R[wa]Cp < +∞.

In the case p = 1, C1 is strictly contained in A1,0 (for instance,
1 ∈ A1,0 \ C1). The theorem says that C1 characterizes the strong-
type inequality and A1,0 characterizes the weak-type inequality. A
remarkable fact is that, unlike for the usual Hardy-Littlewood maximal
operator, there are nontrivial weights for N in the strong (1, 1) case
(for instance, |t|−α for 0 < α < 1).
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Once we know that the Calderón weights are of Muckenhoupt type
for an appropriate basis, it is natural to wonder whether they share the
properties of the usual Ap weights. Strikingly, some of them fail:

• The basis associated to the operator N does not have the open-
ness property with respect to its weights, that is, there exist
w ∈ Cp such that w is not in Cq for any q < p (Proposition 4.1).
• Let Cexp be the class of weights w on (0,∞) which satisfy for

some constant C > 0 that

(1.6)
1

b

∫ b

0

w ≤ C exp

(
1

b

∫ b

0

logw

)
for all b > 0. The inclusion ∪pCp ⊂ Cexp is strict (Proposition
4.4).
• There exist weights in Cp for which the reverse Hölder inequal-

ity fails, and there exist weights for which the reverse Hölder
inequality holds but do not belong to ∪pCp (Remark 4.5).

Moreover, we also provide a negative answer to an open question related
to extrapolation of weighted inequalities for bases without the openness
property (Proposition 4.3). All these negative results will be proved
in Section 4 along with a result providing sufficient conditions on w to
ensure the openness property.

In Section 5 we consider the Riemann-Liouville and Weyl averaging
operators from which the operators P and Q are particular cases. They
are defined for α ≥ 0 respectively as

Iαf(t) =
α + 1

tα+1

∫ t

0

(t− x)αf(x) dx

and

Jαf(t) = (α + 1)

∫ ∞
t

(x− t)α

xα+1
f(x) dx,

for t > 0. Let Sα := Iα + Jα. It is clear that I0 = P , J0 = Q and
S0 = S. It is also easy to see that Iαf ≤ Pf , Jαf ≤ Qf and Sαf ≤ Sf
for nonnegative measurable fuctions f . Therefore, Sα is bounded on
Lp(w) for w ∈ Cp.

The boundedness of Iα on Lp(w) is characterized by two independent
conditions and the boundedness of Jα in Lp(w) by two other conditions
(see [16] and [12]). Therefore, a priori, the boundedness of Sα is char-
acterized by four conditions. Again, we are able to show that those
conditions can be reduced to w ∈ Cp, hence, the single condition (1.2)
is the only one we need to characterize the boundedness of Sα on Lp(w)
for p > 1 and the condition C1 for p = 1. Moreover, in both cases, the
conditions are independent of α.
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Theorem 1.3. Let w be a nonnegative measurable function.
(1) Let 1 < p <∞. The following assertions are equivalent.

(a) w ∈ Cp (or w ∈ Ap,0).
(b) There exist α ≥ 0 such that Sα is bounded on Lp(w).
(c) For all α ≥ 0, Sα is bounded on Lp(w).
(d) There exist α ≥ 0 such that Sα is of weak-type (p, p) with respect to
w(t)dt.

(e) For all α ≥ 0, Sα is of weak-type (p, p) with respect to w(t)dt.

(2) Let p = 1. Then (b) and (c) are equivalent to w ∈ C1 and (d)
and (e) are equivalent to w ∈ A1,0.

The fact that w ∈ Ap,0 in the form (1.2) is sufficient for (c) to hold
when p > 1 was observed by H. Heinig in [9], but he did not prove the
necessity of the condition. The proof of Theorem 1.3 is in Section 5.

In the last section we introduce higher dimensional versions of the
Calderón operator and the maximal function. The extension to such a
setting of the results obtained in (0,+∞) is straightforward.

Let us indicate that the Calderón operator is almost the same as the
operator

Hf(t) =

∫ ∞
0

f(x)

t+ x
dx,

arising in the continuous version of Hilbert’s inequality (see [8, Chapter
IX]). Indeed, it is immediate that for nonnegative f it holds that

Hf(t) ≤ Sf(t) ≤ 2Hf(t).

Consequently, all the results we state for S are valid for H.

Let us fix some notation. For a measurable set B, we denote as
|B| its Lebesgue measure and as w(B) the integral of the weight w on
B. If B is the interval (a, b), we write w(a, b) for its measure. The
characteristic function of B is denoted as χB.

2. Weights for the maximal operator

Muckenhoupt’s theory of weighted inequalities was extended by B.
Jawerth and formulated in the framework of bases of open sets in Rn

(see [10]). The concept of basis is fairly general and it was already
observed by Jawerth that Rn can be replaced by a measure space with
σ-finite measure. Among the bases, we are interested in those for which
the weighted inequalities are characterized by a condition of Mucken-
houpt type, called Muckenhoupt bases. We recall here the concept and
adapt it to our setting, that is, to the half-line. The reader can find in
[3, Chapter 3] the formulation in Rn.
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A basis B in (0,+∞) is a collection of open sets B contained in
(0,+∞). Given a basis B, the maximal operator associated with B is
defined by

MBf(t) = sup
B∈B:t∈B

1

|B|

∫
B

|f(x)|dx

if t ∈ ∪B∈BB and MBf(t) = 0 otherwise. Given a basis B and a weight
w, we say that w belongs to the Muckenhoupt class associated to B,
Ap,B, 1 < p <∞, if there exists a constant C such that for every B ∈ B,(∫

B

w

)(∫
B

w1−p′
)p−1

≤ C|B|p.

The infimum of all such C is called the Ap,B constant of w.
We say that the basis B has the Ap,B openness property or is Ap,B

open if given any w ∈ Ap,B for some p > 1, there exists q < p such that
w ∈ Aq,B.

The basis B is a Muckenhoupt basis if for each p, 1 < p < ∞, and
for every w ∈ Ap,B, the maximal operator MB is bounded on Lp(w),
that is, ∫ ∞

0

MBf(x)pw(x)dx ≤ C

∫ ∞
0

|f(x)|pw(x)dx,

with a constant C independent of f and depending only on the Ap,B
constant of w.

Observe that with these definitions, N can be identified with MB0
where B0 = {(0, b) : b > 0}. The corresponding class Ap,B0 is denoted
in this paper as Ap,0 (see (1.2)) for simplicity of notation. Theorem 1.1,
stated in Section 1 and proved below, says that B0 is a Muckenhoupt
basis. Working with B0 is particularly simple, because the elements of
the family are nested.

Before proceeding with the proof of the theorem we state some prop-
erties of the weights.

Proposition 2.1. Let w be a nonnegative measurable function, not
identically zero. Assume that N is of weak-type (p, p) with respect to
w(t)dt. Then w(t) > 0 a.e. and w(0, b) is finite for all b > 0 (in
particular, w ∈ L1

loc).

Proof. Let E be a bounded measurable set of positive Lebesgue mea-
sure. Then

NχE(x) =
|E|
x

for x ≥ supE.

Using the weak-type (p, p), for b ≥ supE we have

(2.1)
|E|
b
w(0, b)1/p ≤ Cw(E)1/p.
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If w(E) = 0, it follows that w(0, b) = 0 for all b > supE, hence
w(0,+∞) = 0. On the other hand, since we can choose the right-hand
side finite for some E (otherwise, w(x) = ∞ a.e.), the inequality also
implies that w(0, b) has to be finite for all b. �

In the proof of Theorem 1.1 we shall consider the maximal operator
Ng associated to a fixed positive measurable function g. We define Ng

as

Ngf(t) = sup
b>t

∫ b
0
|f(x)|g(x) dx∫ b

0
g(x) dx

.

The boundedness properties we need are in the following lemma.

Lemma 2.2. Let g be a nonnegative measurable function such that
0 < g(0, b) <∞ for all b > 0.

(i) Ng is of weak type (1, 1) with respect to the measure g(t)dt.
Actually,

(2.2)

∫
{t:Ng(f)(t)>λ}

g ≤ 1

λ

∫
{t:Ng(f)(t)>λ}

|f |g

for all λ > 0 and all measurable functions f .

(ii) Ng is of strong type (p, p), 1 < p < ∞, with respect to the
measure g(t)dt. More precisely, it holds that∫

|Ng(f)|pg ≤ (p′)p
∫
|f |pg.

Proof. The proof of the lemma is straightforward. By standard inter-
polation arguments, it suffices to prove (i) since ||Ng(f)||∞ ≤ ||f ||∞.

Observe that Ngf is decreasing and continuous. Therefore, if {t :
Ng(f)(t) > λ} is not empty, then it is either a bounded interval (0, d)
or all of (0,+∞). In the first case it holds that

(2.3) λ

∫ d

0

g(x) dx =

∫ d

0

|f(x)|g(x) dx,

whereas in the second case we have

λ

∫ ∞
0

g(x) dx ≤
∫ ∞

0

|f(x)|g(x) dx.

Thus we obtain (2.2). Notice that if g(0,+∞) = +∞ and f is inte-
grable with respect to g, only the first case is possible and the equality
holds. �

We proceed to the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let us prove first the necessity of Ap,0 for the
weak-type inequality. Let Ek = {x : w(x) > 1/k} and wk = wχEk

.

Take f = w1−p′
k χ(0,b). Then

(2.4) Nf(x) ≥ 1

b

∫ b

0

w1−p′
k

for 0 < x < b. Thus, (0, b) ⊂ {x : Nf(x) > λ} taking as λ the
right-hand side of (2.4). If the weak type inequality holds,(

1

b

∫ b

0

w1−p′
k

)(∫ b

0

w

)1/p

≤ C

(∫ b

0

w
(1−p′)p
k w

)1/p

,

and (
1

b

∫ b

0

w1−p′
k

)1/p′ (∫ b

0

w

)1/p

≤ C.

Letting k tend to infinity, w ∈ Ap,0 follows.
To show the necessity, arguing as in the proof of the preceding lemma,

we have (2.3) with g ≡ 1, that is,

λd =

∫ d

0

|f |.

Then

λ

(∫ d

0

w

)1/p

≤ 1

d

(∫ d

0

w

)1/p(∫ d

0

|f |pw
)1/p(∫ d

0

w1−p′
)1/p′

,

and (1.3) follows.
Using Lemma 2.2 the proof of the strong type with Ap,0 weights is a

particular case of the results of Jawerth in [10]. The strikingly simple
argument introduced by A. Lerner in [11] provides the dependence on
the constant as stated in the theorem. Indeed, if w ∈ Ap,0, 0 < x < b,
and σ = w1−p′ we have(

1

b

∫ b

0

f

)p−1

≤ [w]p,0

(∫ b
0
f∫ b

0
σ

)p−1 ∫ b
0

1∫ b
0
w

≤ [w]p,0

∫ b
0
|Nσ(fσ−1)|p−1∫ b

0
w

≤ [w]p,0Nw(w−1|Nσ(fσ−1)|p−1)(x).

Therefore,

|Nf(x)|p ≤ ([w]p,0)p
′ |Nw(w−1|Nσ(fσ−1)|p−1)(x)|p′
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Consequently, using Lemma 2.2 twice,∫
|Nf |pw ≤ ([w]p,0)p

′
pp
′
∫
|Nσ(fσ−1)|pσ

≤ ([w]p,0)p
′
pp
′
(p′)p

∫
|f |pw.

This ends the proof of the theorem. �

Remark 2.3. For the usual Hardy-Littlewood maximal operator, if it is
of weak-type (p, p) with respect to a general measure µ, then the mea-
sure has to be absolutely continuous with respect to Lebesgue measure,
that is, dµ(t) = w(t)dt. For a proof, see [7, Theorem 6.1, Chapter VI].
Then the Ap condition on the density w characterizes all the weighted
inequalities.

This is not the case for the operator N . For instance, the measure
dµ(t) = dt+ δ1, where δ1 is the Dirac mass at 1 serves as a counterex-
ample. Indeed, using the fact that Nf is decreasing and N is bounded
on Lp we have∫ ∞

0

|Nf(t)|pdt+|Nf(1)|p ≤ 2

∫ ∞
0

|Nf(t)|pdt

≤ C

∫ ∞
0

|f(t)|pdt ≤ C

∫ ∞
0

|f(t)|pdµ(t).

We want to make it clear that in this paper we are considering only
weighted inequalities with weights that are absolutely continuous with
respect to Lebesgue measure.

3. Proof of the main theorem

Proof of Theorem 1.2. (a) Since Nf(t) ≤ Sf(t) for nonnegative f , it
is enough to show that w ∈ Ap,0 is sufficient for the weak-type and the
strong-type for S. Clearly, we only need the latter.

Let w ∈ Ap,0. Then σ = w1−p′ ∈ Ap′,0. Since Pf ≤ Nf , we deduce
that P is bounded on Lp(w) and on Lp

′
(σ). By duality, Q is also

bounded on Lp(w) and so is S. On the other hand, using (1.4) we also
have

||P ||Lp(w) ≤ p′pp
′−1([w]p,0)p

′−1,

and

||Q||Lp(w) = ||P ||Lp′ (σ) ≤ (p′)p−1p([σ]p′,0)p−1.

Since [σ]p′,0 = ([w]p,0)p
′−1, we have the right-hand side inequality of

(1.5). The left-hand side inequality holds for ||N ||Lp(w), then also for
||S||Lp(w).
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(b) In the case p = 1, we only need to show that w ∈ C1 is necessary
for the strong-type of N and that w ∈ A1,0 is sufficient for the weak-
type of S.

Fix b > 0 and let f be the characteristic function of (b − ε, b) for
ε < b. Then

Nf(t) ≥ εmin

(
1

b
,
1

t

)
.

If N is bounded on L1(w), we have

ε

(
1

b

∫ b

0

w +

∫ ∞
b

w(x)

x
dx

)
≤ C

∫ b

b−ε
w.

Dividing by ε and letting ε tend to zero, due to the local integrability
of w (see Proposition 2.1) we obtain that w ∈ C1 as a consequence of
Lebesgue’s differentiation theorem.

The sufficiency of w ∈ A1,0 for the weak-type of S is a consequence
of the pointwise inequality Pf(t) ≤ Nf(t). On the one hand, the
inequality implies that if N is of weak-type (1, 1), so is P . On the
other hand, it also implies that w satisfies Pw(x) ≤ Cw(x) and, since
P is the adjoint of Q, this implies that Q is bounded on L1(w). �

The usual extrapolation theorems (see, for instance, [3]) can be ap-
plied to the class of Calderón weights, taking either S or N as the
positive operator from which we extrapolate. Results about extrapola-
tion theorems for Calderón weights appear in [1]. Note that, unlike for
the usual Hardy-Littlewood maximal operator, we obtain nontrivial
L1-weighted inequalities starting from Lp-weighted inequalities. But
the boundedness on L1(w) will hold for w ∈ C1, not for w ∈ A1,0.

Concerning factorization of Cp weights, we have two choices. For

1 < p < ∞, w ∈ Cp can be written as w = w0w
1−p
1 , where either

w0, w1 ∈ C1 or with w0, w1 ∈ A1,0. Since C1 ⊂ A1,0, the former choice
is also of the latter form, but not conversely. For instance, w ≡ 1 is
trivially factorized using A1,0-weights because 1 ∈ A1,0, but 1 /∈ C1.

4. Properties of the Calderón weights

In this section we study some properties of the Calderón weights that
are different from those of the usual Ap weights.

Proposition 4.1. Let 1 < p < ∞. There exists w ∈ Cp (w ∈ Ap,0)
such that w 6∈ Cq (w 6∈ Aq,0) for any q < p.
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Proof. For each natural number i, let Ii = (2i + 2−i, 2i + 1), let Ω =
∪∞i=1Ii and let Ωc be its complement. Then we define the weights

u(x) = χΩc(x) +
∞∑
i=1

1

(x− 2i)2
χIi(x) and w = u1−p.

We shall show that w satisfies (1.2), but not its counterpart for q < p.
First we note that if β is negative, u(x)β ≤ 1, so that for any integer

k ≥ 1 ,

(4.1) 2k < |Ωc ∩ (0, 2k+1)| ≤
∫ 2k+1

0

u(x)β dx < 2k+1.

For α ≥ 0 we have∫
Ii

u(x)1+α dx =
2i(2α+1) − 1

2α + 1

so that

cα2k(2α+1) ≤
k∑
i=1

∫
Ii

u(x)1+α dx ≤ Cα2k(2α+1).

Since u(x) = 1 on Ωc, with different constants cα and Cα we also have

(4.2) cα2k(2α+1) ≤
∫ 2k+1

0

u(x)1+α dx ≤ Cα2k(2α+1).

Let us check now that w satisfies (1.2). If b ≤ 2 the inequality is
obvious with constant C = 1 since w(x) = 1 in the interval (0, b). Let
b > 2 and let us choose the natural number k such that 2k < b ≤ 2k+1.
Then (∫ b

0

u1−p
) 1

p
(∫ b

0

u

) 1
p′

≤ (2k+1)1/p(C2k+1)1/p′ ≤ Cb,

using (4.1) for the first integrand and (4.2) for the second.
Let us see that w does not satisfy Aq,0 for q < p. Let k ≥ 1. From

(4.2) we have

1

2k+1

∫ 2k+1

0

u(x)(1−p)(1−q′) dx ≥ cp,q2
2k(p−q)/(q−1).

where cp,q is positive and depends only on p and q. From (4.1) we have∫ 2k+1

0

u(x)1−p dx > 2k.
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Therefore(
1

2k+1

∫ 2k+1

0

u(x)1−p dx

) 1
q
(

1

2k+1

∫ 2k+1

0

u(x)(1−p)(1−q′) dx

) 1
q′

≥ c̃p,q2
2k(p−q)/(q).

Since the right-hand side tends to infinity with k for q < p, w does not
belong to Cq. �

The Muckenhoupt basis without the openness property shown in
[3, Chapter 3] consists of a single set. The basis considered here is
composed of infinitely many sets. We find this setting suitable to test
the validity of an open question on extrapolation of weighted norm
inequalities proposed in [3]. Let us first reproduce the result that mo-
tivates the question. We give the statement for operators rather than
for pairs of functions.

Proposition 4.2 ([3, Proposition 3.21]). Let B be a Muckenhoupt basis
which is Ap,B open. The following are equivalent:

(a) There exists r0 > 1 such that for all r ∈ (1, r0) and all w ∈ A1,B,
T is bounded on Lr(w).

(b) For all p ∈ (1,+∞) and all w ∈ Ap,B, T is bounded on Lp(w).

The open question proposed in [3] is whether such equivalence holds
for bases which are not Ap,B open. Our following result provides an
answer in the negative.

Proposition 4.3. There exists an operator T bounded on Lr(w) for
all w ∈ A1,0 and all r ∈ (1,+∞) but such that for each p ∈ (1,+∞)
there exists w ∈ Ap,0 for which T is unbounded on Lp(w).

Proof. Let us define T as

(4.3) Tf(t) = inf
0<s<1

21/s N1+sf(t),

where Nqf(t) = N(|f |q)(t)1/q.
Let r > 1. Choose s0 = min(1, (r − 1)/2). Then N1+s0 is bounded

on Lr(w) for w ∈ A1,0 ⊂ Ar/(1+s0),0, with constant depending only on

r and the A1,0-constant of w. Since Tf(t) ≤ 21/s0 N1+s0f(t), the same
holds for T .

Let p > 1. We consider the weight w = u1−p defined in (4.4), for
which we know that w is in Ap,0, but not in Aq,0 for q < p. Our
objective is to see that T is not bounded on Lp(w).
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Let Ii and Ω be as in the proof of Proposition 4.1. Let us define

f(t) =
∞∑
i=10

1

2i/p i

1

(t− 2i)2
χIi(t).

To check that f ∈ Lp(w), notice that

f(t)pw(t) =
∞∑
i=10

1

2i ip
1

(t− 2i)2
χIi(t),

and hence ∫ ∞
0

f(t)pw(t) dt ≤
∞∑
i=10

1

ip
<∞.

Let us seek a suitable lower bound for Tf(t). For 0 < s < 1 we have

1

2k+1

∫ 2k+1

0

f(x)1+sdx ≥ 1

2k+1

1

(2k/p k)1+s

∫
Ik

dx

(x− 2k)2(1+s)

≥ 2k(1+2s)−1

2k+1(2k/p k)1+s(1 + 2s)
≥ 22ks

12(2k/p k)1+s
.

Therefore, if t ∈ (0, 2k+1),

21/s N1+sf(t) ≥ 21/s

(
1

2k+1

∫ 2k+1

0

f(x)1+sdx

) 1
1+s

≥ 21/s22ks/(1+s)

12(2k/pk)
.

Thus

Tf(t) ≥ 1

12(2k/pk)
inf

0<s<1
21/s2ks ≥ C22

√
k(2k/pk)−1,

for t ∈ (0, 2k+1).
Since w ≡ 1 in Ωc and

∣∣Ωc ∩ (0, 2k+1)
∣∣ > 2k, we have∫ 2k+1

0

(Tf)pw ≥
∫

Ωc∩(0,2k+1)

(Tf)pw ≥ C22p
√
kk−p.

As the last term may be made arbitrarily large with k, we conclude
that Tf /∈ Lp(w). �

The characterization of the weights in Cp by (1.2) allows us to prove
that they satisfy (1.6), which is a reverse Jensen inequality. This can
be done as for the usual Ap weights (see [6, page 405]). Nevertheless, in
the case of the Calderón weights we have the following negative result.

Proposition 4.4. There exists a weight w ∈ Cexp such that w does not
belong to Cp for any p.
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Proof. For each natural number i, let Ii = (2i, 2i + 1), let Ω = ∪∞i=1Ii
and let Ωc be its complement. Then we define the weight

(4.4) w(x) = χΩc(x) +
∞∑
i=1

(x− 2i)iχIi(x).

We first notice that

(4.5)
1

2
≤ 1

b

∫ b

0

w ≤ 1

for all b > 0. Indeed, the second inequality holds because w(x) ≤ 1 for
all x, and the first one because w(x) = 1 on the set Ωc ∩ (0, b) whose
length is larger than b/2.

On the other hand, since logw(x) < 0 on Ω and logw(x) = 0 on Ωc,
for b ∈ (2k, 2k+1] we have∫ b

0

logw(x) dx ≥
k∑
i=1

i

∫ 1

0

log x dx = −k(k + 1)

2
.

Then
1

b

∫ b

0

logw ≥ min
k
−k(k + 1)

2k+1
= −3

4
.

This inequality together with (4.5) gives that w ∈ Cexp.
It remains to check that w /∈ Cp for any p > 1. But this is imme-

diate beacuse w1−p′ is not integrable on intervals of the form (0, b) for
sufficiently large b. �

In spite of the result Proposition 4.4, the class Cexp plays the same
role as the corresponding class Aexp for the usual Muckenhoupt weights
in the following characterization: w ∈ Cp if and only if w and w1−p′

belong to Cexp. The proof is straightforward and we do not include it.

Remark 4.5. (a) A consequence of Proposition 4.1 is that there are
weights in the Cp classes for which the reverse Hölder inequality(

1

b

∫ b

0

u1+α

)1/(1+α)

≤ C

b

∫ b

0

u

does not hold for any α > 0. Indeed, it is obvious that if w satisfies
(1.2), the reverse Hölder inequality for w1−p′ implies that w is in Aq,0
for q given by (q′−1)(1+α) = p′−1. (We shall make use of this result
in Proposition 4.6.) Actually, rather than using an indirect argument,
we can propose a precise counterexample using the weight u defined in
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the proof of Proposition 4.1. Indeed, it is in Cp for any p ∈ (1,∞) and
using (4.2) we obtain

cα22kα/(1+α) ≤

(
1

2k+1

∫ 2k+1

0

u(x)1+α dx

)1/(1+α)

and

1

2k+1

∫ 2k+1

0

u(x) dx ≤ Cα,

which are incompatible with a reverse Hölder inequality.
(b) On the other hand, the weight w considered in the proof of Propo-

sition 4.4 shows that there exist weights satisfying a reverse Hölder
inequality which do not belong to ∪pCp. The reverse Hölder inequality
for w is obvious because w1+α also satisfies (4.5).

The Coifman-Rochberg characterization of A1 weights says that w ∈
A1 if and only if w(t) = Mg(t)θk(t), where Mg is finite almost ev-
erywhere, θ ∈ [0, 1), and k and k−1 are bounded (see [2]). The corre-
sponding result for A1,0 with N instead of M satisfies the if part of the
statement, which can be proved as for A1, but not necessarily the only
if part. Indeed, w(t) = |1 − t|−1/2 is in A1,0, but cannot be equal to
Ng(t)θk(t), which is bounded on (1/2,∞), because Ng(t) is decreasing.

Our next result gives some sufficient conditions on a weight which
ensure that it has the oppeness property.

Proposition 4.6. Let 1 < p < ∞. Let ρ ≥ 0 and w ∈ Cp such that
either w(t)tρ is a nondecreasing function or w(t)t−ρ is a nonincreasing
function. Then there exists q, 1 < q < p, such that w ∈ Cq.

In the proof of this proposition we shall use the following remark.

Remark 4.7. Taking E = (b/2, b) and E = (0, b/2) in (2.1) we deduce
that w ∈ Cp satisfies the following doubling conditions:

(4.6) w(0, b) ≤ (2C)pw(b/2, b) and w(0, b) ≤ (2C)pw(0, b/2),

for all b > 0. Therefore, for A = 1− 1/(2C)p < 1 it holds that

w(0, b/2) ≤ Aw(0, b).

By iteration it follows that

(4.7)

∫ b/2j

0

w(x) dx ≤ Aj
∫ b

0

w(x) dx

for all b > 0 and all nonnegative integers k.
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Furthermore, it can be seen that w ∈ Cp if and only if w ∈ Mp and
w satisfies the first inequality in (4.6) (and also if and only if w ∈ Mp

and w satisfies the second inequality in (4.6)).

Proof of Proposition 4.6. We shall assume that w(t)t−ρ is a nonincreas-
ing function. If we have the other hypothesis, we can use a similar ar-
gument or, alternatively, we can obtain the conclusion as a consequence
of Theorem 2 in [15].

We already mentioned in Remark 4.5 that the openness property
is an immediate consequence of a reverse Hölder inequality for w1−p′ ,
namely, there exist α > 0 and C > 0 such that

(4.8)
1

b

∫ b

0

w(1+α)(1−p′) ≤ C

(
1

b

∫ b

0

w1−p′
)1+α

.

Let b > 0 given and let α > 0 to be chosen below. We set bj = b/2j,
and observe that bj/2 = bj+1 = bj − bj+1. Taking into account that

(w(t)t−ρ)
(1+α)(1−p′)

is a nondecreasing function we have that∫ b

0

w(1+α)(1−p′) =
∞∑
j=0

∫ bj

bj+1

(w (x)x−ρ)(1+α)(1−p′) xρ(1+α)(1−p′)dx

≤
∞∑
j=0

(w (bj) b
−ρ
j )(1+α)(1−p′) b

ρ(1+α)(1−p′)+1
j+1 .

Using again the same property,∫ b

0

w(1+α)(1−p′) ≤
∞∑
j=0

(
1

bj

∫ bj−1

bj

(w (x)x−ρ)(1−p′)dx

)1+α

b
ρ(1+α)(1−p′)+1
j+1

≤
∞∑
j=0

(
b
−ρ(1−p′)
j−1

bj

∫ bj−1

bj

w1−p′
)1+α

b
ρ(1+α)(1−p′)+1
j

= C(p, α, ρ)
∞∑
j=0

(∫ bj−1

bj

w1−p′
)1+α

b−αj .

Since w1−p′ ∈ Cp′ , we have that this weight satisfies the doubling
conditions (4.6) and (4.7). Therefore, there exist C > 0 and a constant
γ such that 0 < γ < 1 and∫ bj−1

bj

w1−p′ ≤ C γj
∫ b

0

w1−p′ .
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Consequently,∫ b

0

w(1+α)(1−p′) ≤ C

(∫ b

0

w1−p′
)1+α

b−α
∞∑
j=0

(
γ1+α2α

)j
.

Choosing α > 0 such that γ1+α2α < 1, and combining the previous
estimates we obtain (4.8) for such α. �

5. Proof of Theorem 1.3

Case 1 < p < ∞. By using Theorem 1.2, the inequality Sαf ≤ Sf
(for f ≥ 0), and the fact that the boundedness on Lp(w) implies the
weak-type, it is clear that we only need to prove that (d) implies (a).

Let b > 0. Set Ek = {x : w(x) > 1/k} and wk = wχEk
. Take

f = w1−p′
k χ(0,b). Then for t ∈ (2b, 3b),

Sαf(t) = Iαf(t) ≥ 1

(3b)α+1

∫ b

0

(t− x)αw1−p′
k (x)dx ≥ w1−p′

k (0, b)

3α+1b
.

Since (d) holds we have

(5.1)
w1−p′
k (0, b)

3α+1b
w(2b, 3b)1/p ≤ Cw1−p′

k (0, b)1/p.

Take now f = χ(2b,3b). For t ∈ (0, b) we have

Sαf(t) = Jαf(t) ≥
∫ 3b

2b

(x− t)α

xα+1
dx ≥ 1

3α+1
.

Using again (d) we get

(5.2)
w(0, b)1/p

3α+1
≤ Cw(2b, 3b)1/p.

Combining (5.1) and (5.2), and letting k tend to infinity, we get the
condition Ap,0.

Case p = 1. We need to prove that (b) implies w ∈ C1 and that (d)
implies w ∈ A1,0. We start with the latter.

Given a weight w and b > 0, for ε > 0 we consider

E = {x ≤ b : w(x) ≤ inf
t∈(0,b)

w(t) + ε},

which has positive Lebesgue measure. If f = χE, for t ∈ (2b, 3b) we
have

Sαf(t) ≥ |E|
3α+1b

.
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Using the weak-type (1, 1) we have

|E|
3α+1b

w(2b, 3b) ≤ Cw(E) ≤ C( inf
t∈(0,b)

w(t) + ε)|E|.

Letting ε tend to zero we get

(5.3)
w(2b, 3b)

b
≤ 3α+1C inf

t∈(0,b)
w(t).

On the other hand, (5.2) is true for p = 1 if we have the weak-type
(1, 1). This together with (5.3) shows that w ∈ A1,0.

Finally we prove that (b) implies w ∈ C1. More precisely, we shall
prove that (b) implies the pointwise inequality Sw(t) ≤ CSαw(t) for
some constant depending only on α. Since (b) is characterized by
Sαw(t) ≤ Cw(t) a.e., we obtain w ∈ C1.

Fix b > 0 and let f(x) = b−1χ(b/4,b/2)(x). Then Sαf(x) ≥ c1/b for
x ≤ b and

Sαf(x) = Iαf(x) ≥ c2

x
for x > b.

Taking cα = min(c1, c2) and using (b) we obtain

cαSw(b) ≤ C

b

∫ b/2

b/4

w(x) ≤ CαSαw(b).

The theorem is fully proved.

Remark 5.1. We have written directly the proof of both cases, p = 1
and p > 1, because of their simplicity. Alternatively, one could use
an extrapolation argument and avoid part of the proof. Indeed, let
us denote as Wp(Sα) the class of weights for which Sα is bounded on
Lp(w). By extrapolation, if an operator T is bounded on Lp0(w) for
some p0 ∈ [1,∞) and for all weights w ∈ Wp0(Sα), then T is bounded
on Lp(w) for all 1 ≤ p < ∞ and for all weights w ∈ Wp(Sα). Using
this extrapolation theorem, the result for p > 1 is a consequence of the
case p = 1.

6. Higher dimensional results

A higher dimensional analogue of the operator N appears in [5] in a
different context, together with its fractional version. It is defined for
locally integrable functions in Rn as

Nf(x) = sup
r≥|x|

1

rn

∫
|y|<r
|f(y)|dy.
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This operator is up to a constant factor the maximal operator associ-
ated to the basis of Rn formed by the Euclidean balls centered at the
origin. The corresponding Ap,0 classes are defined accordingly.

In a similar way, we can define the higher dimensional analogues of
the Hardy operator P and its adjoint Q as

Pf(x) =
1

|x|n

∫
|y|≤|x|

f(y)dy and Qf(x) =

∫
|y|≤|x|

f(y)

|y|n
dy.

Conditions for the boundedness of P and Q on Lp(w) analogous to Mp

and Mp are proved in [4]. It is easy to check that all our results con-
cerning N and S = P +Q can be carried out to the higher dimensional
setting.

Note that Nf , Pf and Qf are always radial functions, regardless of
whether f is radial or not. If, moreover, f is radial, f(x) = f0(|x|), the
n-dimensional operators N , P and Q acting on f and evaluated at x
coincide up to a constant factor with the corresponding operators on
(0,+∞) acting on f0(t1/n) and evaluated at |x|n. This is obtained by
a simple change of variable and the details are left to the reader.
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