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1. Introduction

A possible classification of scientific activities focuses on the kinds of inference mechanisms applied to gain
further knowledge. Pure theoretical branches usually use mathematics and therefore deductive inference'
while more empirically oriented ones use statistical (i.e. inductive) inference disguised in various forms.
The question to be raised by a logician in the Peircean tradition is how to accommodate the third type
of inference, qualitative induction or abduction.” To answer this question, let us note first that the key
procedure in this kind of induction (which should be clearly distinguished from statistical induction) is
the inference from evidence to explanation. That is, abduction does not predict which evidence should be
observed given a theory—a deductive inference—mnor does it build a general description (prototype) of the
evidence—a statistical inference. Rather, in scientific matters, abduction is the reasoning process that helps

E-mail addresses: ftohmeQ@criba.edu.ar (F. Tohmé), gcaterin@endicott.edu (G. Caterina), rgangle@endicott.edu (R. Gangle).
1 On the other hand, the burden of mathematical activity lies in conjecturing possible results or arguments to prove statements.
This is also an abductive reasoning, of a kind that will not be discussed here.
2 For a full characterization of this type of induction see [30].
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to find theoretical constructs providing plausible explanations for how the data drawn from the real world
were in fact generated.

In the rest of this paper we will discuss the role of abductive reasoning and extend it to a more general
line of inquiry: to find qualitative descriptions of the information found in crude data. Section 2 is devoted to
presenting a discussion on the meaning of abduction. Section 3 presents a category-theoretical environment
for abduction, seen as a functor among “data” and “theoretical” categories. Sections 4 and 5 characterize in
two different, albeit related, ways the abduction functor, one in terms of an a prior: selection of potential
“theoretical” outcomes and the other on constraints on the admissible selections given the “data” inputs.
Finally, Section 6 discusses the conclusions of this work and presents possible lines for further inquiry.

2. Abductive reasoning and data analysis

Peirce emphasized the importance of Kepler's example for understanding how abduction works. The
German astronomer, working with the huge database of planetary observations collected by Tycho Brahe,
used his knowledge of geometry to conjecture that the planets follow elliptic paths around the Sun [26].
Without this insightful result, Newtonian physics would not have been possible. Similarly, a great deal
of scientific theorizing arises from the insights provided by the examination of data. Any scientist, faced
with some data, always tries to detect a pattern. In our terms, she tries to perform an informal abductive
inference.

One of the relevant contexts in which abduction could be applied is analogous to Kepler’s example.
Although it sounds rather obvious, let us emphasize that there is a gap between the formulation of a question
to be answered through measurement and the actual measurement providing the right answer. This difference
arises from the fact that problems are usually stated in qualitative terms while data can be quantitative.
In consequence, rough data (which certainly includes the quantitative counterparts of qualitative concepts)
must be organized according to the qualitative structure to be tested. That is, a correspondence between
theory and data must be sought. So, for example, in many socially oriented disciplines there exists a
crucial distinction between ordinal and cardinal magnitudes in the characterization of preferences. But
once measurements are involved it is clear that the theoretical relational structure must be assumed to be
homomorphic to a numerical structure [19].

This implies that if there exists a database of numerical observations about the behavior of a phenomenon
or a system, we might want to infer the properties of the qualitative relational structure to which the given
numerical structure is homeomorphic. Of course, this is impaired by many factors:

o The representation of the qualitative structure may not have a unambiguous syntactic characteriza-
tion [6].

« Heterogeneity in the representation hampers the unification of data sources.”

e Even if the observations fall in a numerical scale, the real world is too noisy to ensure a neat description
of phenomena under consideration.

e There are complexity issues that make it highly convenient to just look for approximations, instead of

a characterization that may make sense of every detail.

These factors, which usually preclude a clear cut characterization of the observations, leave ample room
for arbitrary differences. In this sense, the intuition and experience of the analyst determine the limits of
arbitrariness. Yet the reasoning process that justifies the decisions actually made is not often made clear.
More generally, since empirical scientists spend a great deal of their time looking for relations hidden in the
data, the process they apply to uncover those relations cries out for clarification.

3 On the heterogeneity of data see [38]. See also the discussions on the convenience of having iconic representations in [8].
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As an example, consider the question “Did the Argentine economy grow in the last year?” To provide an
answer, first, one has to define clearly what it means for an economy to grow and which variables can be
used to measure the phenomenon of growth. Economic theory states that economic growth means growth
of the national income. But in order to answer the question an economist has to define what real world data
will represent national income; i.e. she has to embed the available data into the framework given by the
theory. In this case the national product is an available variable which is easy to measure and is considered
(theoretically) equivalent to the national income. Therefore it is easy to check out whether the economy
grew or not. But in the case where the question is something like “Did poverty increase in the last twenty
years?” the procedure is far less straightforward. How do we define poverty and moreover, how do we make
the concept operational? This is where intuition is called in. Although theoretical concepts may be lacking,
a set of alternative models of the notion of poverty and its evolution in time should be provided in order
to check out which one better fits the real world data. Only when this question is settled it is possible to
consider the development of a theory formalizing the properties verified in the chosen model.

The inferences allowing for the detection of patterns in data cannot be reduced just to statistical induc-
tions. They are more a result of a detective-like approach to scarce and unorganized information, where the
goal is to get clues out of unorganized data bases of observations and to disclose hidden explanations that
would make them meaningful. In other words: it is a matter of making guesses, which later can be put in a
deductive framework and tested by statistical procedures. So far, it seems that it is just an “artistic” feat,
which can only be performed by experts.* This means that some degree of expertise in the area may be
useful to perceive patterns in a seemingly unorganized set of numerical values or to choose the way to state
a question. Of course, this does not preclude the possibility of looking at the problem at hand in new ways.
Heuristic tools like plotting the data, extracting statistics, running simulations or looking at barcodes [15]
may help to state hypotheses about the features of the process that in fact generated the data [25].

In any case, abduction is fundamental in the process of model building. That is, given a theory to be
tested or an informal question to be answered, a model has to be built, representing either the intended
interpretation of the theory to be tested or, more interestingly, the intended interpretation of a theory yet to
be formulated. In the process of choosing a model from among a potentially very large number of alternatives
is where the ability of the scientist is shown. Although statistics provides tools to calibrate models, these
methods are based on pure quantitative considerations without regard to the context of application.

The increasing interest of logicians in abductive reasoning has been catapulted by the requirements of
Artificial Intelligence [13]. One of the main goals in Al is to design a full architecture able to perform
something like the three kinds of Peircean inference. One of the hardest tasks is, of course, to build an
abductive engine. This requires a formalization of the procedure of abductive inference. Although previous
attempts to reproduce historical examples have been partially successful (for example several versions of a
system called BACON [34]), they have been the result of pure ad-hoc procedures. One of the problems we
find in those approaches is that they are based on a fundamental confusion between statistical induction and
abduction. More specifically, it is rather evident that any attempt to build theories up from data can only
yield very simple theoretical structures, more like prototypes than conceptual frameworks. These structures
are sometimes called phenomenological theories, and are distinguished from more elaborated structures,
which involve non-observable entities, called representational theories [2].

What clearly separates abduction from statistical induction is that it requires a previous meta-theoretical
commitment. Kepler, for example, was committed to the idea of simplicity and elegance of Nature. More
precisely, his idea was that there had to exist an optimal geometrical configuration explaining the data.
Then, for years, he tried to fit the data to different geometrical structures until he found that conic curves
provided the best match. Then, using the basic observation that the positions of the celestial bodies cycled,

4 This might be a reason for why formal logicians, until recently, did not intensively study abduction in contrast to the other
forms of inference.
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he concluded that only a closed conic could explain the data. Therefore, since ellipses fitted better than
circles, he concluded his search, postulating his well-known laws of planetary motion.

This historical example was carefully studied by the American polymath Charles Peirce, who drew from
it prescriptions of how to perform an abduction. First of all, data had to be structured by means of Peirce’s
own classifications of signs [27]. From his point of view, every set of data constitutes a sign, which therefore
can be classified according to Peirce’s exhaustive taxonomy. The advantage of this approach is that there
exists only a finite set of possibilities to match with the real world information. Once one of the possibilities
is chosen, it is assumed to provide a clear statement of the kind of structure hidden in the data, although
not necessarily as complex as a functional form.

The problem with Peirce’s approach is that on one hand his classification may seem rather arbitrary and
on the other the involved logical system can appear cumbersome and contrived. Despite this, if we take it
only as a heuristic guide, it seems promising. The available pieces of information cannot be all put on the
same level. In fact, to classify a set of data in terms of the meaningfulness of the information conveyed is
very useful in order to construct a testable hypothesis. While this is already a hard task, the remaining chore
is still harder: to work on the classified data base, trying to fit it to one of a bundle of possible functional
forms.

The mainstream in contemporary approaches to the formalization of abduction processes is summarized
by what Gabbay and Woods [14] call the AKM schema for abduction, advanced in, among others, Aliseda
3,4], Kakas et al. [18], Kuipers [20] and Magnani [24]. Roughly, given a knowledge base K and a conjecture
H about any event E that cannot be deduced from the former, the abduction yields a minimal consistent
revision of the knowledge base joint with the conjecture, K(H) such that E can be deduced from this
new knowledge base. The GW model, advanced by Gabbay and Woods, aims instead to address the failure
of K to deduce E with a refurbishing of the deductive apparatus, modifying the consequence relation. In
any case, the literature on abduction has boomed in the last years, both along these two great lines of
work as well as in other approaches, like the role of extra-theoretical information in abduction discussed by
Magnani [25].°

In this paper we pursue an alternative formal framework, less dependent on consequence relations, in
which to represent the form in which qualitative information is drawn from quantitative data. The key idea
is to introduce two categories, one for data and the other for conceptual structures. Abduction is captured
by a functor among both categories. Of particular importance in the characterization of this functor are the
criteria that can be imposed on the abduction. The resulting structure is a topos in which the sub-object
classifier may yield different truth values corresponding to the degree in which the abduction captures the
real world data.’

3. A framework for abduction

We will try to make this discussion a bit more formal and develop an approach to qualitative model
building. In the first place, we should note that we intend model to be understood as in first-order logic’:

Definition 1. We define a structure A as A = (D, IT), where D is the domain while II is a set of relations
among elements of D. Given a first-order language £, A becomes an interpretation of any consistent set
of well formed formulas of £, T (L), if there exists a correspondence from 7 (L) to A that obtains from

® A less than exhaustive list includes the following: Meheus and Batens [28], D’Agostino et al. [9] and Beirlaen and Aliseda [7] on
logical systems for abduction; Schurtz [31] on the different patterns that abduction may exhibit and Woods [39] on the cognitive
resources at play in abduction.

6 This is in line with previous work, like Lamma et al. [21] on the use of multi-valued logic in the process of learning concepts
up from data and Li and Pereira [23] on the use of category theory in the description of diagnoses in system behavior.

" For a precise characterization of these notions see [32].
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assigning constants in £ to elements in D and function symbols and predicate symbols of the language
to I1. A model of 7(£) is an interpretation where every interpreted formula is verified by A.

A structure can be thought of as a database plus the relations and functions that are, implicitly or
explicitly, true in it. In the case of the empirical sciences, it is assumed that the chosen structure A is
a representation of the real world features of interest. In many cases it adopts a quantitative form. That
is, it includes any kind of numerical relations among objects in the domain. Of course, other kinds of
mathematical relations are admissible. Therefore, A may include quantitative as well qualitative features.
An interpretation is a structure associated to a certain set of well-formed formulas (when deductively closed
this set is called a theory). If, when replacing the constants by elements in the interpretation and the
predicate symbols by relations in the structure, all the formulas are made true in the interpretation, the
structure is called a model. To say that abduction helps in model building means that it is a process that
embeds the real-world information in a certain structure that is assumed to be the model of a theory or at
least of a coherent part of one.

In many areas of inquiry it is usual to find that there is not a clear distinction between what is meant
by “theory” and by “model”. One reason is that for most applications, it is excessive to demand a theory,
which has to be deductively closed, which means that all its consequences should be immediately available.
In usual practice, statements are far from being deduced in a single stroke. On the other hand—and this
explains clearly the confusion between theory and model—most scientific theories have an intended meaning
more or less clear in its statements. This does not preclude the formulation of general and abstract theories,
but their confrontation with data are always mediated by an intended model [35].

One concern that may arise from our approach is related to the limitations given by working within
the framework of a first order language. With respect to this observation, we first notice that first-order
is sufficient to capture set structures a la Zermelo—Fraenkel [11]. Furthermore, in a Peircean vein, the
existential graphs (EG), which can represent statements in a graphic way, can be translated into a first-
order language, at least for o or 3 graphs [36].° Analogously, other graphical forms of representation like
[17] can be translated into a first-order language interpretable in terms of elements and relations among
them.

Of course more complex statements (quantifying over predicates) are no longer representable in a first-
order language. In this work, however, we care for the translation of the data base of observations in a
formal structure satisfying the following (first-order) conditions [22]:

e Each element of interest in the data has a symbolic representation.

o For each (simple) relationship in the data, there must be a connection among the elements in the
representation.

e There exist one-to-one correspondences between relationships and connections, and between elements
in the data and in the representation.

This representation of the real world information which we denote with A, facilitates the abduction by
means of its comparison with alternative structures. Notice that a numerical data base may in this respect
be taken at face value, that is, the variables and their values already immediately constitute a symbolic
representation.

To analyze how to get this abduction we start by considering a first-order language £ and defining two
categories, S and DR of structures and data representations, respectively:

8 On the other hand, v graphs can be translated into a modal framework, which in turn has been shown to be reducible to a
first-order one [29].
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Definition 2. Given a first-order language L,

e The category S has as objects structures A, each one a model for some consistent class of statements
of £, and morphisms among them, f: A — A’ where:
- A= (D,II), A’ = (D', II") and f is a one-to-one function from D to D’
— for any relation 7(dy,...,dy,) € II of arity n there exists a 7(f(dy1),..., f(d,)) € II' of the same arity.
o The category DR has objects of the form A = (O, L, R), where O is a class of rough data, L is a set of
constants from L, one for each element of interest in O, and R is a class of relations over L drawn from
the relations among elements of interest in O and morphisms g among them where’
— g: A — A is a one-to-one function from L € A to L' € A'.
— For any n-ary relation r(aq,...,a,) € R there exists a 7(f(a1),..., f(an)) € R'.

We can see that both S and DR are basically the same categories of structures over £, but the latter’s
objects include “rough data”. That is, observations, pieces of evidence, experimental results, etc., not yet
expressed in L. This is in order to distinguish structures according to their origin, theoretical (the objects
of S) and empirical (those in DR)). For each object A in S an associated object A can be defined, constructing
a set O of potential data pieces that could be translated as A. Thus A = (O, A). With this proviso we have
that:

Proposition 1. S and DR are well defined categories.

Proof. Trivial. In both cases the morphisms are one-to-one functions. Identity is of course one-to-one. And
one-to-one functions can be composed and this composition is associative. O

It is natural to define an ordered set (Obj(S), <g), where Obj(S) is the class of objects from S such that
given A, A’ € Obj(S), we say that A <g A’ iff there exists a morphism f : A — A’ in S. Analogously, we
define <pr over Obj(DR). We have:

Proposition 2. (Obj(S), <s) and (Obj(DR), Xpr) are partially ordered sets.

Proof. Both <g and =<pr satisfy reflezivity and transitivity, since they are defined in terms of morphisms
in a category and thus there exist identity morphisms for each object and morphisms can be composed.
Antisymmetry obtains by noticing that since morphisms are one-to-one functions, two objects of these
categories that have morphisms back and forth between them, must be identical. O

Furthermore:
Lemma 1. The categories S and DR have products and coproducts as well as initial objects.

Proof. Consider S (the case of DR is completely analogous). An object A?, with A? = (D% 1?) and
DY = 1% = (). Thus, for any other A there exists an injection f : A’ — A, which can be identified with
the set-inclusion among components. That is, A? is an initial object in the category. On the other hand,
since (Obj(S), <g) is a poset, the min and max over objects are defined as the product and coproduct,
respectively. For instance, in the case of two objects A; and Ay, A; X Ay = min(A1, As) is such that
there exists morphisms p; : Ay X Ay — A; (i = 1,2), i.e. min(A1,As) <g A; and for every other object
A and morphisms f; : A — A; (or A <g A;) there exists a unique morphism f : A — A; X Ay or
A <g min(Aq, As). The characterization of A; + Ay as max(Aj, As) is obtained in the same form. O

9 Notice that O is immaterial. g captures the structural relations between A and A’, seen as reduced models [33].
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4. The abduction functor: a priori criteria

We can now see how abduction works. An important aspect of this procedure is the way in which
additional criteria guide the process. For this, let us assume that these criteria are given a priori, i.e. they
restrict the possible outcomes without considering the concrete features of the data to which the procedure
could be applied. That is:

Definition 3. Given A, an object in DR and a class of structures {A}¢ C Obj(S), selected for verifying a
set of criteria C, an abduction chooses one of them, say A*.

In words, given a class of criteria, there might exist several possible structures that may explain the data
in A. To abduce A, is to choose one of them.

The abduction procedure can be captured by a functor A from DR to S, which given an object A
from DR yields a structure A(A) in S. A trivial abduction would be one yielding (D, II) = (L, R), for
A= (0, L, R). Much more interesting cases arise when the abduction has to respect some given theoretical
criteria.

Before going into the formalism, let us emphasize two elements in the characterization of A. One is the
class of criteria and what they might be and the other is how a single structure may be selected. With respect
to the criteria, notice that in the case of Kepler’s abduction he had at least one criterion in mind: trajectories
of celestial bodies should be described by simple geometrical expressions. Under this criterion, Kepler had
to choose one among a few structures comparing the movements implied by them with the behavior of a
given set of real-world elements (the known planets of the solar system). Each of those structures was a
simple geometric representation of the solar system. He eventually chose the one that fitted the data best.

In general, the criteria represent all the elements that a scientist may want to find incorporated into the
chosen structure. Given the criteria in C, the structures that satisfy them form a class {A}¢, which in turn
leads to a subcategory of S, denoted S¢, where the objects are the structures in {A}¢ and the morphisms
are those of S restricted to these structures.

Of course, this set of possible structures may be empty, if C cannot be satisfied by any structure. If
this is not the case, we can define an abduction according to the criteria C as a functor A¢ : DR — Se¢.
Notice that in this setting it may no longer be possible to define A¢ as a trivial abduction. This is because
Ac(A) = (D, IT) must be an object of S¢ while (L, R) may not, for A = (O, L, R).

This last consideration indicates that there are many ways in which A¢ could be defined. To avoid a
proliferation of alternative definitions we care only for the class of possible abduction functors modulo a
natural transformation, and from them select the most appropriate one. More precisely:

Definition 4. Given two functors A¢ : DR — S¢ and Be : DR — S¢, a natural transformation 1 between
them is a map n : A¢ — B¢ such that for any pair A, A" of objects in DR, the diagram in Fig. 1 is
commutative.

This allows for the selection of a representative of each class of abduction functors that are natural
transformations one of the other. As said, there are many candidates to represent abduction under a class

Ac(A) = Be(A)
Ac (AjDRA/)l lBC(AjDRA’)
(

Ac(N') —— Be(A)

U

Fig. 1. Natural transformation between A¢ and Bc.
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A s Fode(A) Ac(A)
\ lf(f) l!f
F(Ac) Ac

Fig. 2. Left adjoint of F.

Ac

N
F(A) A Al Ac(A)

W

Fig. 3. A¢c and F minimize hypotheses and maximize consequences.

of criteria. But we can restrict them further taking into account a functor F : S¢ — DR representing the
way in which from theoretical structures we can derive expected observations and therefore data structures:

Definition 5. Consider F : S¢ — DR and A¢ : DR — S¢ such that v : Idpr — F o A¢ is a natural
transformation such that for every A object of DR and A¢ and object of S¢ for every g : A — F(Ac)
there exists a unique f : A¢(A) — Ac such that g is obtained as F(f) ov, as indicated in the commutative
diagram of Fig. 2.

In categorical terms, A¢ is the left adjoint of F. As shown in Fig. 3, we can interpret this adjointness as
a kind of “Ockham’s Razor”: abduction minimizes hypotheses while F maximizes the number of possible
consequences. It is worthwhile to notice that the very formalism of Category Theory as applied in this context
gives us the efficiency property of abduction seen as the counterpart of the “instantiation” of theoretical
structures. Adjunction provides the formal machinery for that in the most natural way.

Since S¢ and DR generate two posets, (Obj(S¢), <s.) and (Obj(DR), =pr) adjointness is captured by
means of a Galois connection. That is:

A =g, Aco F[A]
and

A ~DR FOAC[AL

where both F and A¢ are monotonic [10].

Such an F may be conceived as a functor that up from a structure, understood as a model of a set
of theoretical statements, obtains the largest number of possible observations that would satisfy those
statements. This idea is captured by the following characterization:

Definition 6. Given a structure A, an object of S¢ we define F(A) as A = (O, AT) where At is a maximal
element in {A: A <g. A and 3(O,A) € Obj(DR)}.

Notice that F is well-defined since {A : A <g. A and 3(O, A) € Obj(DR)} # ). The worst case is when
this set is a singleton, i.e. F(A) = A. On the other hand, we have that:

Theorem 1. The left adjoint of F is Ac(A) = min{A : A <pr F(A)} for A= (O,A).
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A(A) —2> A/(A)
A(AjDRA/)l lA/(AjDRA/)

A(N) —— A'(A)

U

Fig. 4. Natural transformation between A and A’.

Proof. Just consider an object A. F(A) gives a A with component AT such that A <g. A™T. Suppose by way
of contradiction that A¢(A) returns a A’ <g. A. But then, by the monotonicity of F, F(A’) <pr F(A).
But by the definition of F, and the transitivity of <g., we would have F(A’) = F(A). Contradiction. O

To provide an operational characterization of Ac consider A = (O, A%) and F(A) = {\ € WFF(L) :
A = A}, where WFF(L) is the class of well formed formulas of language £ (i.e. without free variables) and
= is the classical relation of semantical consequence. That is, F(A) consists of those well formed formulas
satisfied by the data in A.

Consider now

S¢ = {A € Obj(Sc) : A |= A for every A € F(4)}
which are the objects in the category S¢ that support the data in A. Then we have:
Proposition 3. Ac(A) = min(SY).

Proof. Consider A = (O, A). Each A’ € S2 is such that F(A’) = (O*, A*) with {\ € WFF(L) : A A} C
{A € WFF(L) : A* = A} and thus A <pr F(A’). By Theorem 1, A¢(A) is the product of all these A’, i.e.
min(SZ). O

5. The abduction functor: restrictions over the process

As we have seen, abduction can be well defined if criteria are applied a priori in an analysis of the data,
in order to select which structures might be appropriate candidates. But criteria can also be defined in
terms of the data, that is, in order to perform data-guided abductions. In that case, we are interested not
in some constraints on the category S but on functors between DR and possible subsets of S.

More precisely, we will call an abduction any functor that, given an object A in DR yields a set of
acceptable structures in S, hopefully a singleton. Furthermore, we will try to capture the idea that the less in-
formation given by an object in DR the larger must be the number of potential structures supporting it. This
means that we are interested in objects (abduction procedures) of the category Functors(DRP,20Pi(8))

where!?:

o The objects are contravariant functors from DR to the category of sets in Obj(S).!* Any such object
A is a contravariant functor because, if A <pr A’ in DR then A(A’") C A(A) in Obj(S).

o Given two objects in the category, A and A’, a morphism between them is a natural transformation
n: A— A’ such that the diagram of Fig. 4 commutes.

Each object in Functors(DR®P, QObj(S)) is a presheaf on DR valued in S. The category of such presheaves
is a topos [12]. In particular we have that:

10 See definitions and related results in [16], [5] and [1].
11 The latter category is trivially well defined: its objects are sets S C Obj(S) and a morphism f : S — S’ between two objects S
and S’ in the category exists if and only if S C S’.
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Theorem 2. Functors(DRP,20%1(8)) has a sub-object classifier 2 : DR — 2°Pi(S) such that:

(i) If A is an object in DR, 2(A) = {LA} pr<ppa, where LY = {A : A = (0, A) € Obj(S) and A <pr A'}.
(i) Given A’ <pr A, 2u 4 : 2(A) = Q(A) is such that for any S € 2(A), 24 4(S) =SNLY.

Proof. Trivial. In a category of presheaves on a category C, the sub-object classifier {2 yields on any object
A of C the set of all sieves on A. In the case that C is a poset, a sieve corresponds to the lower sets below A.
To obtain (i), given any A, we take all the downward sets with respect to <pgr below A and take from them
the components corresponding to structures in S. Similarly, given p < ¢ in C with order =<, 2, ,: £2, — (2,
is such that for S € £2,, (2, ,(5) is the intersection of S with the downward set {r € C : r < p}. Replacing
p=gqby A <pr A and {r € C:r <p} by LA we obtain (ii). O

The elements in §2(A) for any object A in DR can be seen as “truth values” or validity degrees in a
question for which structures in S correspond better to the data in A. The higher in the hierarchy of such
values the more appropriate would be the answer. This would be then L/, which yields all the structures
in S that are included in the corresponding structures in A and in all objects below A in DR.

Abduction, thus, is captured by taking the highest ranked sub-object given A. That is, A*(A) = L4,
where A* is abduction seen as an object in Functors(DRP,2°Pi(8S)), instead of a functor between DR, and
S as in the previous section.

If we consider an alternative to S3,'?

S# = {A € Obj(S) : A = A for every A € F(A') with A’ <pr A}
we obtain the following variant of Proposition 3:
Proposition 4. A*(A) = SZ.

Proof. Each A € L/ by definition corresponds to a A’ <pgr A and thus A = X for every A € F(A’). Then
LA C SA. On the other hand, for every A € S/, since it supports a class of sentences F(A’) for A’ <pgr A,
there exists A” = (O”,A) in DR with A" <pr A’ and A" <pr A” and so, by the antisymmetry of <pg,
A"=Aelr O

But so far, it remains that many structures may be chosen. To reduce the number of selected structures,
leading to a restricted version of A*, denoted A%, a class of criteria C can be imposed on A*. Among them
consider the following;:

Definition 7.

o ¢ (Maximal Information): given two structures Ai, Ay in S, such that F(A;) = {\ € WFF(L) : A; |
AL if we have that F(A;) C F(Ay) while F(Ay) ¢ F(Ay), discard Aj.

o cMP (Completeness w.r.t. A): given two structures A1, Ay in S such that F(A) C F(Ay) but F(A) €
F(A1), discard A;.

conc (

e C Concordance w.r.t. A): a given structure A in S is kept if for every A € F(A) either A or =\
belongs to F(A).

Then we have the following result:

12 Notice the different quantifier. In SZ it is universal over F(A) while in 82 it is universal over F(A’) for a A’ in the downward
set from A.
13 Analogously to the definition of F(A).
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Proposition 5. If C = {c™ c®™}, A%(A) = max(S2).

Proof. Trivial: According to ¢ and given the ordering <s over S only the largest A is kept. Furthermore,

com

according to c®“™ no larger A is included. This leaves only max(S4). O

Similarly:
Proposition 6. If C = {c™, c®"¢}, then A%(A) = max(S2).

These results show that a unique structure can be selected if the restrictions on structures that can
be abduced obey certain methodological criteria like Maximal Information, Completeness or Concordance.
This is not without a cost: if the only wifs in the chosen structure are the ones drawn from the database,
it is not possible to provide more than a description (data fitting) of the available information. This means
in turn that if only methodological criteria are to be used, the result of the inference is the generation of a
prototype, i.e. only a statistical inference is performed.'*

Finally, if both types of criteria are included, say C*? and C™ (for a priori and methodological, respectively)
we obtain a more general kind of abduction, denoted Af., o= such that:

Theorem 3. IfC™ = {Cmi, Ccom} or C™ = {cmi7ccon0}7 we have that Azapucm (/1) = mm(Sé‘) = maX(Sf)

Proof. Trivial since by any of the two versions of C™ a single structure, max(S#) is obtained (in Scar) and
this object equals the result under C™, i.e. max(S%). O

A sensible question is whether a general abduction functor like Afa, -m behaves adequately in the
presence of both negative and positive pieces of information in A. Any such abduction faces two different
risks. One, already mentioned above, is the possibility of overfitting the resulting structure. That is, to
select a A that accommodates “too much” to the data, which may come from noisy or unreliable sources.
But the presence of substantial a priori criteria may reduce the chance of this happening, since in most
cases an excessive precision in the incorporation of empirical information hampers the quality sought out
by concrete criteria.

Similarly, the other possible risk is that the predictive power of A may be severely hampered by the
presence of inconsistencies among the positive and negative instances in the data. But the fact that A
corresponds to the highest ranked sub-object in §2(A) ensures that all the knowledge that can be obtained
up from A is the closest approximation to the data evidence. This may leave room for the presence of
ambiguous pieces of information in A, which as said above, is not necessarily a deductively closed set of
well-formed formulas.

6. Conclusions

In any case, a relational structure A* chosen according to both a priori and methodological criteria,
is conceived as a model of a theoretical body 7. To derive it, one might choose one from a collection of
closed sets of wifs of £, each one having A* as a model. One candidate is just F(A*). Other possible
theories may involve information not present in the data. In the case that T is F(A*), the theory is called
phenomenological. Otherwise, the theory is said to be representational and involves non-observable properties
and entities. In the case of Kepler’s abduction, the corresponding phenomenological theory is provided by

14 In statistical analyses these criteria are usually violated since sometimes inferences are drawn from partial samples from a bigger

database (violation of c“°™?), some observations are discarded as outliers (violation of ¢""), or some information in the database
is not used (violation of ¢"¢).
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the three laws abduced by Kepler from Tycho Brahe’s databases. On the other hand, the finally accepted
corresponding representational theory is Newtonian mechanics, which yields a rationale for the planetary
motions.

Nonetheless, in many empirical fields, the scientist who performs the abduction does not feel compelled
to find a 7 corresponding to A* since that’s a task she leaves to theoreticians. It is interesting, however,
to see that while the criteria used to select A* may be made public, those for choosing a 7 do not respond
to more than a few prescriptions of scientific “hygiene”.!® Beyond that, theoreticians are free to select any
possible set of formulas that may correspond to the accepted model.

At any rate it seems that abductive reasoning must abandon the realm of implicit activity to become an
open activity, one that may be discussed with the same seriousness as the values of statistical estimates.

In this respect, the scientific community might rightly ask that abductive inferences be publicly reported,

providing:

e The set of methodological criteria to be considered, precisely stated.

o The alternative hypotheses that are postulated (obeying a priori criteria). Each one should be repre-
sented by a system of relations, which constitutes a necessary condition for the respective hypothesis.

e The tests showing which of the hypotheses is accepted. The acceptance criteria should be already stated
in the set of methodological criteria.

Therefore, any discussion of the inference can be based either on the criteria used or on the set of
postulated hypotheses. In the first case, the criteria may be wrong, biased, insufficient, etc. In the second
case, any new hypotheses added to the list should conform to the originally stated criteria or provide
justification for why they deviate. Both types of discussion may enliven the scientific evaluation of the
available information.'®

Above and beyond the interest of such critical and methodological consequences, however, the strongest
potential of a category-theoretical approach to the problem of abduction based on adjoint functors between
“theoretical” and “empirical” categories resides perhaps in what the present paper leaves almost entirely
tacit, namely the naturally controlled variability of possible mappings, due to the structure-preserving
character of categorical functors, between organized complexity that may already be explicit in the empirical
data on the one hand and systems of theoretical representation (such as distinct languages and notations)
on the other.

In effect, the characterization given above treats the collection of data O as essentially a structureless
aggregate of elements, that is, a mere set. However, the model of abduction via adjoints easily accommodates
collections of data endowed with much richer structure, particularly if such structure may be represented in
category-theoretical terms (which is often the case). Because of the generality of the role of adjoint functors
in our account of abduction—the structure of which may be characterized independently of how the rough
data is actually given on the one hand and what particular theoretical language is used on the other, that
is, how each of these is organized internally—a broad spectrum emerges of various possible combinations of
forms of data-presentation (in the empirical category) and data-representation (in the theoretical category).
What matters for the account is the field of possible correlations between the mode of presentation of the
data and the mode of representing it in some theoretical framework, not the specific details of one or the
other term of any particular correlation.

Thus, corresponding to the possibility of tracking more richly structured collections of data in the set O of
the “empirical” category is the possibility of constructing highly variable frameworks for the formal-language
component of the “theoretical” category. In such constructions, it will generally be necessary at a minimum

15 Ockham’s razor and consistency with the accepted theories, among them.
16 For a description of how this may work for Economics, but can be extended easily to other disciplines see [37].
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to accommodate the basic operations of first-order logic, such as universal and existential quantification and
the representability of n-ary relations, but such operations are always available in any category that is also
a topos, which means that a large space of different kinds of theoretical representation (one that includes
both classical and non-classical logics) becomes available for possible application and experimentation in
conjunction with various organized forms of raw data. Because the use and results of distinct correlations
between forms of data and structures of representation would effectively characterize an open-ended variety
of different modalities of abductive inference, the door is opened for a systematic, scientific investigation
into the possibilities and limits of general abductive processes taken in their aggregate as a unique, albeit
highly complex theoretical object.
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