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ABSTRACT. The aim of this paper is to study the class of distributive nearlattices with a necessity

modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms

are applications that preserving the infimum when exists and, as special case, we obtain a representation
and duality for distributive nearlattices with a necessity modal operator. We study certain particular

subclasses and give some applications.
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1. Introduction and preliminaries

The Tarski algebras are the algebraic counterpart of the {→}-fragment of the classical propo-
sitional logic. In [1], Abbott establishes a correspondence between Tarski algebras and join-
semilattices with greatest element which every principal filter is a Boolean lattice. A natural
generalization of the Tarski algebras are the nearlattices: join-semilattices with greatest element
which every principal filter is a bounded lattice. A special class are the distributive nearlattices.
This algebras have been studied by different authors. We refer the reader to the following bibliog-
raphy: [18], [21], [12], [13], [14], [20] and [5]. A full duality between distributive nearlattices with
greatest element and certain topological spaces was developed in [9], extending the results given
in [8] for Tarski algebras and the duality of Stone for bounded distributive lattices [22].

In [6], the author studies the algebraic semantics of the {→,�}-fragment of the classical modal
logic introducing the class of Tarski algebras with a modal operator as a generalization of the
Boolean algebras with a modal operator. Since the distributive nearlattices are a generalization of
the Tarski algebras, it is natural to extend some of these results. The main purpose of this paper is
to study the class of distributive nearlattices with a necessity modal operator �. As in a nearlattice
the infimum of any two elements automatically exists when they share a common lower bound, we
define the notion of modal operator as an operator � that preserves existing finite infimum. Recall
that a modal operator in a Boolean algebra B can be considered as a meet-homomorphism defined
in B. In [19], Halmos works with join-homomorphisms which generalize the modal operator ♦,
while meet-homomorphisms generalize the modal operator �. In the same way we can define a
modal operator � in a nearlattice A as a particular class of function. Taking into account this
observation we introduce the notion of ∧-semi-homomorphisms between distributive nearlattices.
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Consequently, a distributive nearlattice with a necessity modal operator is a distributive nearlattice
endowed with a ∧-semi-homomorphism.

In the remaining part of this section we review some definitions and the topological duality
developed in [9]. In Section 2 we define the category of distributive nearlattices with ∧-semi-
homomorphisms and we prove that there exists a correspondence between ∧-semi-homomorphisms
of distributive nearlattices and certain binary relations. In Section 3 we introduce the distribu-
tive nearlattices with a necessity modal operator �, or �-distributive nearlattices. We develop a
topological representation and duality for �-distributive nearlattices using the simplified represen-
tation given in the Section 2. In Section 4 we study certain classes of �-distributive nearlattices,
in particular, the variety of S5-nearlattices which is a generalization of the class of monadic alge-
bras. Finally, in Section 5, we apply the duality to characterize the lattices of the congruences,
subalgebras and the free �-distributive lattice extension of a �-distributive nearlattice.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element, or simply semilattice. Recall that
the binary relation ≤ defined by x ≤ y if and only if x ∨ y = y is a partial order. A filter of A
is a non-empty subset F ⊆ A such that 1 ∈ F , if x ≤ y and x ∈ F then y ∈ F , and if x, y ∈ F
then x ∧ y ∈ F , whenever x ∧ y exists. The intersection of any collection of filters is a filter. For
any non-empty subset X ⊆ A, the filter generated by X, in symbols F (X), is the smallest filter
containing X. A filter F is said to be finitely generated if F = F (X) for some finite non-empty
subset X. If X = {a} then F ({a}) = [a) = {x ∈ A : a ≤ x}, called the principal filter of a. Let us
denote by Fi (A) and Fif (A) the set of all filters and filters finitely generated of A, respectively.
A subset I ⊆ A is called an ideal if for every x, y ∈ A, if x ≤ y and y ∈ I then x ∈ I, and for
all x, y ∈ I then x ∨ y ∈ I. The smallest ideal containing X is called ideal generated by X and
will be denoted by I (X). A non-empty proper ideal P is prime if for every x, y ∈ A, if x ∧ y ∈ P ,
whenever x ∧ y exists, then x ∈ P or y ∈ P . The set of all ideals and prime ideals of A will be
denoted by Id (A) and X (A), respectively.

Definition 1. Let A be a semilattice. We say that A is a nearlattice if each principal filter is a
bounded lattice with respect to the induced order.

The meet is not everywhere defined and the class of nearlattices consists of partial algebras only.
However, nearlattices can be regarded as total algebras through a ternary operation. Hickman in
[21] and Chajda and Kolař́ık in [14] proved that the nearlattices form a variety. In [3] the authors
found a smaller equational base.

Lemma 1.1 ([3]). Let A be a nearlattice. Let m : A3 → A be the ternary operation given by
m (x, y, z) = (x ∨ z) ∧z (y ∨ z). The following identities are satisfied:

(1) m (x, y, x) = x,

(2) m (m (x, y, z) ,m (y,m (u, x, z) , z) , w) = m (w,w,m (y,m (x, u, z) , z)),

(3) m (x, x, 1) = 1.

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities (1)–(3). If we
define x∨y = m (x, x, y) then A is a semilattice. Moreover, for each a ∈ A, [a) is a bounded lattice
where for x, y ∈ [a) their infimum is x ∧a y = m (x, y, a). Hence, A is a nearlattice.

We are interested in a particular class of nearlattices.

Definition 2. Let A be a nearlattice. We say that A is distributive if each principal filter is a
bounded distributive lattice.

Example 1. A Tarski algebra can be defined as a join-semilattice with greatest element such that
each principal filter is a Boolean lattice with respect to the induced order. Indeed, if 〈A,→, 1〉 is
a Tarski algebra then the join of two elements x and y is given by x ∨ y = (x → y) → y and for
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each a ∈ A, [a) = {x ∈ A : a ≤ x} is a Boolean lattice where for x, y ∈ [a) the meet is given by
x ∧a y = (x→ (y → a))→ a and x→ a is the complement of x in [a). Thus, every Tarski algebra
is in particular a distributive nearlattice. For more details see [1] and [2].

We denote by DN the variety of distributive nearlattices. From the results given in [18], if
A ∈ DN then we have the following characterization of the filter generated by a non-empty subset
X of A:

F (X) = {a ∈ A : ∃x1, . . . , xn ∈ [X) ,∃x1 ∧ · · · ∧ xn (x1 ∧ · · · ∧ xn = a)} .

Theorem 1.1 ([20]). Let A ∈ DN . Let I ∈ Id (A) and let F ∈ Fi (A) such that I ∩ F = ∅. Then
there exists P ∈ X (A) such that I ⊆ P and P ∩ F = ∅.

The Stone’s representation theorem for distributive lattices states that every distributive lattice
is isomorphic to a ring of sets. We recall that a ring of sets A is a family of subsets of a set X
that is closed under the operations of unions and intersections. These results are the basis for
topological dualities developed by Stone in [22]. For distributive nearlattices we have a similar
representation theorem proved by Halaš [20].

Theorem 1.2 ([12]). Let A ∈ DN . Then the map ϕA : A → Pd (X (A)) defined by ϕA (a) =
{P ∈ X (A) : a /∈ P} is an embedding of A into Pd (X (A)). Thus, A is isomorphic to the subal-
gebra ϕA [A] = {ϕA(a) : a ∈ A} of Pd (X (A)).

Recall the Stone style duality for distributive nearlattices developed in [9]. First we give some
topological concepts. A topological space with a base K will be denoted by 〈X,K〉. We consider
the family

DK (X) = {U : U c ∈ K} .
A subset Y ⊆ X is basic saturated if Y =

⋂
{Ui ∈ K : Y ⊆ Ui}. The basic saturation of Y is the

smallest basic saturated containing Y and will be denoted by Sb (Y ). Analogously, the closure
of Y is the smallest closed containing Y and will be denoted by Cl(Y ). If Y = {y} we write
Sb({y}) = Sb(y) and Cl({y}) = Cl(y). On X is defined a binary relation ≤ as x ≤ y if and only if
y ∈ Sb(x). It is easy to see that the relation ≤ is a partial order if and only if 〈X,K〉 is T0. The
dual order of ≤ is denoted by �, i.e., x � y if and only if x ∈ Sb(y). Note that x � y if and only if
y ∈ Cl(x). The order ≤ and the dual order � will be indexed by the set where it is used. It follows
that if U ∈ DK (X) then U is increasing with respect to the dual order. We say that Y ⊆ X is
irreducible if for every U, V ∈ DK (X) such that U ∩ V ∈ DK(X) and Y ∩ (U ∩ V ) = ∅ implies
Y ∩U = ∅ or Y ∩V = ∅ and we say that Y is dually compact if for every family F = {Ui : i ∈ I} ⊆ K
such that

⋂
{Ui : i ∈ I} ⊆ Y implies that there exists a finite family {U1, . . . , Un} of F such that

U1 ∩ · · · ∩ Un ⊆ Y .

Definition 3. Let 〈X,K〉 be a topological space. Then 〈X,K〉 is an N-space if:

(1) K is a basis of open, compact and dually compact subsets for a topology TK on X.

(2) For every U, V,W ∈ K, (U ∩W ) ∪ (V ∩W ) ∈ K.

(3) For every irreducible basic saturated subset Y of X there exists a unique x ∈ X such that
Sb (x) = Y .

Theorem 1.3 ([9]). Let 〈X,K〉 be a topological space where K is a basis of open and compact
subsets for a topology TK on X. Suppose that (U ∩W ) ∪ (V ∩W ) ∈ K for all U, V,W ∈ K. The
following conditions are equivalent:

(1) 〈X,K〉 is T0, and if A = {Ui : i ∈ I} and B = {Vj : j ∈ J} are non-empty families of DK (X)
such that

⋂
{Ui : i ∈ I} ⊆

⋃
{Vj : j ∈ J} then there exist U1, . . . , Un ∈ [A) and V1, . . . , Vk ∈ B

such that U1 ∩ · · · ∩ Un ∈ DK (X) and U1 ∩ · · · ∩ Un ⊆ V1 ∪ · · · ∪ Vk.
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(2) 〈X,K〉 is T0, every U ∈ K is dually compact and the assignment HX : X → X(DK(X))
defined by

HX (x) = {U ∈ DK(X) : x /∈ U} ,
for each x ∈ X, is onto.

(3) Every U ∈ K is dually compact and for every irreducible basic saturated subset Y of X there
exists a unique x ∈ X such that Y = Sb (x).

If 〈X,K〉 is an N -space then 〈DK(X),∪, X〉 is a distributive nearlattice. So, the map HX

defined in the Theorem 1.3 is an homeomorphism such that x ≤ y if and only if HX(x) ⊆ HX(y).
Conversely, if A ∈ DN then the family KA = {ϕA(a)c : a ∈ A} ⊆ Pd (X (A)) is a basis for a
topology TKA

on X (A). The topological space 〈X (A) ,KA〉 is an N -space called the dual space
of A. For more details see [9].

2. ∧-semi-homomorphisms

In this section we define the notion of ∧-semi-homomorphism between distributive nearlattices
which we use in the following section to present a representation and duality for distributive
nearlattices with a necessity modal operator.

Definition 4. Let A,B ∈ DN . Let h : A → B be a map. We say that h is a ∧-semi-
homomorphism if it verifies the following conditions:

(1) h (1) = 1,

(2) h (a ∧ b) = h (a) ∧ h (b) for all a, b ∈ A such that a ∧ b exists.

Let us denote by SDN∧ [A,B] the set of all ∧-semi-homomorphisms from A into B.

Remark 1. Note that if h ∈ SDN∧ [A,B] then h preserves the natural order. On the other
hand, if a, b ∈ A such that a ∧ b exists then h (a) ∧ h (b) exists. Indeed, since a ∧ b ≤ a, b then
h (a) , h (b) ∈ [h (a ∧ b)) and as B is a nearlattice, h (a) ∧ h (b) exists.

We denote by SDN∧ the category whose objects are distributive nearlattices and morphisms
∧-semi-homomorphisms between them.

Lemma 2.1. Let A,B ∈ DN . Let h : A→ B be a map. The following conditions are equivalents:

(1) h ∈ SDN∧ [A,B].

(2) h−1 (P )
c ∈ Fi (A) for all P ∈ X (B).

P r o o f. (1) ⇒ (2) It is clear that 1 ∈ h−1 (P )
c
. Let a, b ∈ A such that a ≤ b and a ∈ h−1 (P )

c
.

Then h (a) /∈ P . As h preserves the natural order, h (a) ≤ h (b). Since P is an ideal, h (b) /∈ P .
So, b ∈ h−1 (P )

c
and h−1 (P )

c
is increasing. Let a, b ∈ h−1 (P )

c
such that a ∧ b exists. Then

h (a) , h (b) /∈ P . If h (a ∧ b) = h (a) ∧ h (b) ∈ P then for primality of P , h (a) ∈ P or h (b) ∈ P
which is impossible. Thus,

h (a) ∧ h (b) /∈ P and a ∧ b ∈ h−1 (P )
c
.

Therefore, h−1 (P )
c ∈ Fi (A).

(2)⇒ (1) We assume that h−1 (P )
c ∈ Fi (A) for all P ∈ X (B). If h (1) < 1 then by Theorem 1.1

there exists P ∈ X (B) such that h (1) ∈ P and 1 /∈ P . So, 1 /∈ h−1 (P )
c

which is a contradiction
because h−1 (P )

c
is a filter. Then h (1) = 1. Let a, b ∈ A such that a ∧ b exists. It is easy to see

that h preserves the order. Thus, h (a ∧ b) ≤ h (a) ∧ h (b). We prove that h (a) ∧ h (b) ≤ h (a ∧ b).
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If h (a) ∧ h (b) � h (a ∧ b) then (h (a ∧ b)] ∩ [h (a) ∧ h (b)) = ∅ and by Theorem 1.1 there exists
P ∈ X (B) such that h (a ∧ b) ∈ P and h (a)∧ h (b) /∈ P . So, a∧ b /∈ h−1 (P )

c
. On the other hand,

h (a) ∧ h (b) /∈ P and a, b ∈ h−1 (P )
c
. Since a ∧ b exists and h−1 (P )

c
is a filter, a ∧ b ∈ h−1 (P )

c

which is a contradiction. Thus,

h (a ∧ b) = h (a) ∧ h (b) and h ∈ SDN∧ [A,B] . �

Let X1 and X2 be two sets and let R ⊆ X1 ×X2 be a binary relation. We consider

R [C] = {y ∈ X2 : ∃x ∈ C ((x, y) ∈ R)} ,
where C is a subset of X1. We write R(x) instead of R [{x}]. Let hR : P(X2) → P(X1) be given
by hR (U) = {x ∈ X1 : R (x) ⊆ U}. It is easy to check that hR ∈ SDN∧ [P (X2) ,P (X1)].

Definition 5. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1×X2 be a binary relation.
We say that R is an N∧-relation if it verifies the following conditions:

(1) hR(U) ∈ DK1
(X1) for all U ∈ DK2

(X2),

(2) R(x) is a closed subset of X2 for all x ∈ X1.

Denote by NR∧ [X1, X2] the set of all N∧-relations between 〈X1,K1〉 and 〈X2,K2〉.

Remark 2. If R ∈ NR∧ [X1, X2] and x �1 y then R(y) ⊆ R(x) for all x, y ∈ X1.

The following result gives some equivalences of item (2) of the Definition 5.

Proposition 2.1. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1 ×X2 be a binary re-
lation such that hR (U) ∈ DK1 (X1) for all U ∈ DK2 (X2). The following conditions are equivalent:

(1) For every (x, y) /∈ R, there exists U ∈ DK2
(X2) such that R (x) ⊆ U and y /∈ U .

(2) R (x) =
⋂
{U ∈ DK2

(X2) : R (x) ⊆ U} for all x ∈ X1.

(3) For every (x, y) ∈ X1 ×X2,

(x, y) ∈ R iff HX2
(y) ⊆ h−1R (HX1

(x)) .

P r o o f. (1) ⇒ (2) It follows that R (x) ⊆
⋂
{U ∈ DK2

(X2) : R (x) ⊆ U}. We show the other
inclusion. Suppose there is y ∈

⋂
{U ∈ DK2

(X2) : R (x) ⊆ U} such that (x, y) /∈ R. So, by
hypothesis, there exists U0 ∈ DK2 (X2) such that R (x) ⊆ U0 and y /∈ U0 which is a contradiction.
Therefore,

R (x) =
⋂
{U ∈ DK2

(X2) : R (x) ⊆ U} .
(2) ⇒ (3) Let (x, y) /∈ R. Then y /∈ R (x) =

⋂
{U ∈ DK2 (X2) : R (x) ⊆ U}. So, there exists

U0 ∈ DK2
(X2) such that R (x) ⊆ U0 and y /∈ U0. Thus,

U0 /∈ h−1R (HX1
(x)) and U0 ∈ HX2

(y) ,

i.e.,

HX2
(y) * h−1R (HX1

(x)) .

The other direction is similar.

(3)⇒ (1) Let (x, y) /∈ R. Then HX2
(y) * h−1R (HX1

(x)). It follows that there is U ∈ DK2
(X2)

such that U ∈HX2
(y) and U /∈ h−1R (HX1

(x)). Since hR (U) /∈HX1
(x), x ∈ hR (U) and R (x) ⊆ U .

Thus, there exists U ∈ DK2 (X2) such that

R (x) ⊆ U and y /∈ U. �

Proposition 2.2. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ∈ NR∧ [X1, X2]. Then
R [C] is a closed subset of X2 for all closed subset C of X1.
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P r o o f. Let C be a closed subset ofX1. SinceK1 is a basis ofX1, there exists a family {Vi : i ∈ I} ⊆
K1 such that C =

⋂
{V ci : i ∈ I}. It is enough to show that for each y /∈ R [C] there exists U ∈ K2

such that R [C] ⊆ U c and y ∈ U . If y /∈ R [C] then for every x ∈ C, y /∈ R (x). As R (x) is a
closed subset of X2, there exists Ux ∈ K2 such that R [C] ⊆ U cx and y ∈ Ux. So, x ∈ hR(U cx). We
consider the families A = {V ci : i ∈ I} and B = {hR(U cx) : x ∈ C and Ux ∈ K2} of DK1(X1). Then
C ⊆

⋃
{hR(U cx) : x ∈ C and Ux ∈ K2}, i.e.,⋂

{V ci : i ∈ I} ⊆
⋃
{hR(U cx) : x ∈ C and Ux ∈ K2} .

As X1 is an N -space, by Theorem 1.3, there exist V c1 , . . . , V
c
n ∈ [A) and x1, . . . , xm ∈ C such that

V c1 ∩ · · · ∩ V cn ∈ DK1
(X1) and V c1 ∩ · · · ∩ V cn ⊆ hR(U cx1

)∪ · · · ∪ hR(U cxm). Then C ⊆ hR (U c) where
U c = U cx1

∪ · · · ∪ U cxm ∈ DK2
(X2). So, there exists U ∈ K2 such that R [C] ⊆ U c and y ∈ U .

Therefore, R [C] is a closed subset of X2. �

Lemma 2.2. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let f : X1 → X2 be a map such that
f−1(U) ∈ DK1 (X1) for all U ∈ DK2(X2). Then the relation f∗ ⊆ X1 ×X2 defined by

(x, y) ∈ f∗ iff f (x) �2 y

is an N∧-relation.

P r o o f. By definition, f∗(x) = Cl(f(x)) for all x ∈ X1. We show that hf∗(U) ∈ DK1
(X1) for all

U ∈ DK2
(X2). Hence,

hf∗(U) = {x ∈ X1 : f∗(x) ⊆ U} = {x ∈ X1 : Cl(f(x)) ∩ U c = ∅}
= {x ∈ X1 : {f (x)} ∩ U c = ∅} = {x ∈ X1 : f (x) ∈ U}
=
{
x ∈ X1 : x ∈ f−1 (U)

}
= f−1 (U) .

Since f−1 (U) ∈ DK1 (X1), hf∗ (U) ∈ DK1 (X1). Then f∗ is an N∧-relation. �

The next result affirm that the N -spaces with N∧-relations form a category.

Theorem 2.3. Let 〈X1,K1〉, 〈X2,K2〉 and 〈X3,K3〉 be three N -spaces. Let R ∈ NR∧ [X1, X2]
and S ∈ NR∧ [X2, X3]. Then:

(1) �1∈ NR∧ [X1, X1].

(2) �2 ◦R = R and S◦ �2= S.

(3) S ◦R ∈ NR∧ [X1, X3].

P r o o f. (1) It is clear that �1 (x) = Cl(x) for all x ∈ X1. We see that h�1
(U) = U for all

U ∈ DK1 (X1). If x ∈ h�1 (U) then �1 (x) ⊆ U , i.e., Cl (x) ⊆ U and x ∈ U . Conversely, let x ∈ U .
As U is a closed subset, Cl (x) ⊆ U and �1 (x) ⊆ U . So,

x ∈ h�1 (U) and �1 ∈ NR∧ [X1, X1] .

(2) It is easy to prove that R ⊆ �2 ◦R and S ⊆ S◦ �2. Let (x, z) ∈ S◦ �2. Then there is
y ∈ X2 such that (x, y) ∈ �2 and (y, z) ∈ S, i.e., x �2 y and z ∈ S (y). By Remark 2, S (y) ⊆ S (x)
and z ∈ S (x). So, (x, z) ∈ S and S◦ �2 = S. Similarly, if (x, z) ∈ �2 ◦ R then there is y ∈ X2

such that (x, y) ∈ R and (y, z) ∈ �2. Thus, y ∈ R (x) and z ∈ Cl (y). As R (x) is a closed subset
of X1, Cl (y) ⊆ R (x) and z ∈ R (x). We deduce that

(x, z) ∈ R and �2 ◦R = R.

(3) Let U ∈ DK3
(X3). Then h(S◦R) (U) ∈ DK1

(X1). Indeed,

h(S◦R) (U) = {x ∈ X1 : (S ◦R) (x) ⊆ U} = {x ∈ X1 : S (R (x)) ⊆ U}
= {x ∈ X1 : R (x) ⊆ hS (U)} = hR (hS (U)) .
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By Proposition 2.2, (S ◦R) (x) is a closed subset ofX3 for all x ∈ X1 and S◦R ∈ NR∧ [X1, X3]. �

We denote by NR∧ the category whose objects are N -spaces and morphisms N∧-relations
between them.

Let A,B ∈ DN and h ∈ SDN∧ [A,B]. Let Rh ⊆ X (B)×X (A) be the binary relation defined
by

(P,Q) ∈ Rh iff Q ⊆ h−1 (P ) .

Proposition 2.4. Let A,B ∈ DN and h ∈ SDN∧ [A,B]. Then:

(1) For every P ∈ X (A) and for every a ∈ A, h (a) ∈ P if and only if there exists Q ∈ X (A)
such that (P,Q) ∈ Rh and a ∈ Q.

(2) Rh ∈ NR∧ [X (B) , X (A)].

(3) If C ∈ DN and k ∈ SDN∧ [B,C] then Rk◦h = Rh ◦Rk.

(4) hRh (ϕA (a)) = ϕB (h (a)) for all a ∈ A.

P r o o f. (1) Let a ∈ A and P ∈ X (A). If h (a) ∈ P then a /∈ h−1 (P )
c
. By Lemma 2.1, we have

h−1 (P )
c ∈ Fi (A). Thus, (a]∩h−1 (P )

c
= ∅ and by Theorem 1.1 there exists Q ∈ X (A) such that

(a] ⊆ Q and Q ∩ h−1 (P )
c

= ∅. Therefore,

a ∈ Q and (P,Q) ∈ Rh.

The reciprocal is immediate.

(2) By item (1), hRh (ϕA (a)) ∈ DKB
(X (B)) for all ϕA (a) ∈ DKA

(X (A)). Let P ∈ X (B).
We show that Rh (P ) =

⋂
{ϕA (a) : h (a) /∈ P}. Then

Q ∈ Rh (P ) iff Q ⊆ h−1 (P )
iff for all a ∈ A

(
a /∈ h−1 (P )⇒ a /∈ Q

)
iff for all a ∈ A (h (a) /∈ P ⇒ Q ∈ ϕA (a))
iff Q ∈

⋂
{ϕA (a) : h (a) /∈ P} .

So, Rh (P ) is a closed subset of X (A) and Rh ∈ NR∧ [X (B) , X (A)].

(3) Let P ∈ X (B) and Q ∈ X (A). If (P,Q) ∈ Rk◦h then Q ⊆ h−1
(
k−1 (P )

)
. By Lemma 2.1,

k−1 (P )
c ∈ Fi (B). We consider the set h (Q) = {h (q) : q ∈ Q} ⊆ B. We note that

I (h (Q)) ∩ k−1 (P )
c

= ∅.

Otherwise, if there is a ∈ A such that a ∈ I (h (Q)) ∩ k−1 (P )
c

then there exists q ∈ Q such that
a ≤ h (q) and a ∈ k−1 (P )

c
. Since k−1 (P )

c ∈ Fi (B), h (q) ∈ k−1 (P )
c
. Thus, q /∈ h−1

(
k−1 (P )

)
and q /∈ Q which is a contradiction. So, I (h (Q)) ∩ k−1 (P )

c
= ∅ and by Theorem 1.1 there exists

D ∈ X (B) such that h (Q) ⊆ D and D ∩ k−1 (P )
c

= ∅. Then (P,D) ∈ Rk and (D,Q) ∈ Rh, i.e.,
(P,Q) ∈ Rh ◦Rk. It is easy to check that Rh ◦Rk ⊆ Rk◦h.

(4) It follows from (1). �

Proposition 2.5. Let 〈X1,K1〉, 〈X2,K2〉 and 〈X3,K3〉 be three N -spaces. Let R ∈ NR∧ [X1, X2]
and S ∈ NR∧ [X2, X3]. Then:

(1) hR ∈ SDN∧ [DK2
(X2) ,DK1

(X1)].

(2) hS◦R = hR ◦ hS.

(3) For every (x, y) ∈ X1 ×X2,

(x, y) ∈ R iff (HX1(x), HX2(y)) ∈ RhR .

(4) RhR ◦HX1
= HX2

◦R.
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P r o o f. (1) Since R is an N∧-relations, hR (U) ∈ DK1
(X1) for all U ∈ DK2

(X2) and hR is well
defined. Clearly hR (X2) = X1 and if there is U∩V ∈ DK2

(X2) then hR (U ∩ V ) = hR (U)∩hR (V ).
So, hR ∈ SDN∧ [DK2

(X2) ,DK1
(X1)].

(2)− (3) It follows from Theorem 2.3 and Proposition 2.1, respectively.

(4) Let (x, U) ∈ RhR ◦HX1
. Then there exists V ∈ X (DK1

(X1)) such that (x, V ) ∈ HX1
and

(V,U) ∈ RhR . As HX1
and HX2

are homeomorphisms, HX1
(x) = V and there exists y ∈ X2 such

that HX2 (y) = U . Thus, (HX1 (x) , HX2 (y)) ∈ RhR and by (3) we have (x, y) ∈ R. Therefore,
(x, U) ∈ HX2 ◦R. The reciprocal is similar. �

From the results developed in [9] and Proposition 2.5 we conclude that the functor

D : NR∧ → SDN∧
defined by

D (X) = DK (X) if 〈X,K〉 is an N -space,

D (R) = hR if R is an N∧-relation
(2.1)

is a contravariant functor. By [9] and Proposition 2.4 we have that the functor

X : SDN∧ → NR∧
given by

X (A) = 〈X (A) ,KA〉 if A is a distributive nearlattice,

X (h) = Rh if h is a ∧ -semi-homomorphism
(2.2)

is a contravariant functor.

Theorem 2.6. The contravariant functors X and D define a dual equivalence between the categories
SDN∧ and NR∧.

3. �-distributive nearlattices

A modal algebra is a pair B = 〈B,�〉 where B is a Boolean algebra and � is a ∧-semi-
homomorphism. Recall that the modal algebras are the algebraic semantics of the modal propo-
sitional logic in the same way that Boolean algebras are the algebraic counterpart of the classical
propositional logic [11]. Analogously, a modal lattice is a pair L = 〈L,�〉 where L is a bounded
distributive lattice and � is a ∧-semi-homomorphism [7]. We give an extension of this notion.

Definition 6. We say that a pair A� = 〈A,�〉 is a distributive nearlattice with a necessity modal
operator, or �-distributive nearlattice, if A ∈ DN and � is a ∧-semi-homomorphism defined on A.

Let us denote by DN� the class of �-distributive nearlattices. Since a �-distributive nearlattice
is a distributive nearlattice endowed with a ∧-semi-homomorphism, we have that all results on
representation and duality given in the previous section can be applied to these class of structures.

Definition 7. Let A�1
,B�2

∈DN�. Let h ∈ SDN∧ [A,B]. We say that h is a �-homomorphism
if h(�1a) = �2h(a) for all a ∈ A. If h is an isomorphism then we say that h is a �-isomorphism.

Denote by SDN�
[
A�1

,B�2

]
the set of all �-homomorphisms from A�1

into B�2
. The cate-

gory of �-distributive nearlattices and their �-homomorphisms is denoted by SDN�.

Example 2. In [7] the author studied the bounded distribuitive lattices with a necessity modal
operator �. It is immediate that every bounded distribuitive lattice with a necessity modal operator
is a �-distributive nearlattice.
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Example 3. In [6] the variety of modal Tarski algebras is introduced. A modal Tarski algebra
is an algebra A� = 〈A,�〉 where A = 〈A,→, 1〉 is a Tarski algebra and � is a unary operator
defined on A such that it verifies the following conditions:

(1) �1 = 1,

(2) �(a→ b) ≤ �a→ �b for all a, b ∈ A.

Then A� is a �-distributive nearlattice where the join of two elements a, b ∈ A is defined by
a ∨ b = (a→ b) → b. First, we see that � preserves the order. Let a, b ∈ A such that a ≤ b. Then
a → b = 1 and �(a → b) = �1 = 1. By (2), �a → �b = 1, i.e., �a ≤ �b. Suppose that a ∧ b
exists. As � preserves the order, �(a ∧ b) ≤�a ∧ �b. On the other hand, since a ∧ b ≤ a ∧ b we
have a ≤ b→ (a∧ b). Thus, �a ≤ �(b→ (a∧ b)) ≤ �b→ �(a∧ b) by (2) and �a∧�b ≤ �(a∧ b).
Therefore, � is a ∧-semi-homomorphism and A� is a �-distributive nearlattice.

In [9] a topological duality was developed for distributive nearlattices. Using the results of the
Section 2, we extend this representation and duality to the class of distributive nearlattices with a
necessity modal operator.

Definition 8. We say that the structure 〈X,K, Q〉 is an N�-space if 〈X,K〉 is an N -space and
Q ⊆ X ×X is an N∧-relation.

If 〈X,K, Q〉 is an N�-space then the map �Q : DK (X)→ DK (X) given by

�Q (U) = {x ∈ X : Q (x) ⊆ U}

is a ∧-semi-homomorphism. Then 〈DK (X) ,�Q〉 ∈ DN�.

Let A� ∈ DN�. By the results given in the Section 2, the binary relation Q� ⊆ X (A)×X (A)
given by

(P,R) ∈ Q� iff R ⊆ �−1(P ),

is a N∧-relation. We have the following result.

Theorem 3.1. Let A� ∈ DN�. Then 〈X (A) ,KA, Q�〉 is an N�-space.

Definition 9. Let 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉 be two N�-spaces. Let R ∈ NR∧ [X1, X2]. We
say that R is an N∧�-relation if R ◦Q1 = Q2 ◦R.

Denote by NR� [X1, X2] the set of all N∧�-relations between 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉.
The category whose objects are N�-spaces and morphisms N∧�-relations between them will be
denoted by NR�.

Theorem 3.2. Let A� ∈ DN�. Then there exists an N�-space 〈X,K, Q〉 such that A� is
�-isomorphic to 〈DK (X) ,�Q〉.

P r o o f. Since 〈X (A) ,KA〉 is an N -space and Q� an N∧-relation, the structure 〈X (A) ,KA, Q�〉
is an N�-space. So,

〈
DKA

(X (A)) ,�Q�

〉
is a �-distributive nearlattice. By Proposition 2.4,

ϕA (�a) = �Q�
(ϕA (a)) for all a ∈ A. Then ϕA ∈ SDN� [A�,DKA

(X (A))] and by Theorem 1.2

we have that A� is �-isomorphic to
〈
DKA

(X (A)) ,�Q�

〉
. �

Let 〈X,K〉 be an N -space. Note that P � Q if and only if Q ⊆ P for all P,Q ∈ X (DK (X)). By
the results developed in [9] and Lemma 2.2, the map HX : X → X (DK (X)) induces an N∧-relation
H∗X ⊆ X ×X (DK (X)) given by

(x, P ) ∈ H∗X iff P ⊆ HX (x) .

Theorem 3.3. Let 〈X,K, Q〉 be an N�-space. Then H∗X ∈ NR� [X,X (DK (X))].
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P r o o f. We know that HX : X → X (DK (X)) is an homeomorphism between the N�-spaces
〈X,K, Q〉 and

〈
X (DK (X)) ,KDK(X), Q�Q

〉
such that

(x, y) ∈ Q iff (HX (x) , HX (y)) ∈ Q�Q .

We only see that H∗X ◦ Q = Q�Q ◦ H∗X . Let (x, P ) ∈ H∗X ◦ Q. Then there is y ∈ X such that
(x, y) ∈ Q and (y, P ) ∈ H∗X . Thus, (HX (x) , HX (y)) ∈ Q�Q and P ⊆ HX (y). It follows that

P ⊆ �−1Q (HX (x)) and (HX (x) , P ) ∈ Q�Q . On the other hand, (x,HX (x)) ∈ H∗X . Hence,

(x, P ) ∈ Q�Q ◦ H∗X and H∗X ◦ Q ⊆ Q�Q ◦ H∗X . Reciprocally, let (x, P ) ∈ Q�Q ◦ H∗X . Then
there exists F ∈ X (DK (X)) such that (x, F ) ∈ H∗X and (F, P ) ∈ Q�Q , i.e., F ⊆ HX (x) and

P ⊆ �−1Q (F ). As HX is onto, there exist y, z ∈ X such that HX (y) = F and HX (z) = P . So,

HX (z) ⊆ �−1Q (HX (y)) ⊆ �−1Q (HX (x)) and (HX (x) , HX (z)) ∈ Q�Q . Then (x, z) ∈ Q. Since

(z, P ) ∈ H∗X , we have (x, P ) ∈ H∗X ◦Q. Therefore, H∗X ◦Q = Q�Q ◦H∗X . �

In Section 2 it was proved that if 〈X1,K1〉 and 〈X2,K2〉 are N -spaces and R ⊆ X1 ×X2 is an
N∧-relation then the map hR : DK2

(X2)→ DK1
(X1) is a ∧-semi-homomorphism.

Theorem 3.4. Let 〈X1,K1, Q1〉 and 〈X2,K2, Q2〉 be two N�-spaces. If R ∈ NR� [X1, X2] then
hR ∈ SDN� [DK2

(X2) ,DK1
(X1)].

P r o o f. Let x ∈ X1 and U ∈ DK2
(X2). Since R is an N∧�-relation,

x ∈ hR (�Q2 (U)) iff R (x) ⊆ �Q2 (U) iff for all y ∈ R (x) (Q2 (y) ⊆ U)

iff Q2 (R (x)) ⊆ U iff R (Q1 (x)) ⊆ U
iff for all z ∈ Q1 (x) (R (z) ⊆ U) iff Q1 (x) ⊆ hR (U)

iff x ∈ �Q1
(hR (U)) .

Thus, hR (�Q2
(U)) = �Q1

(hR (U)) and hR is a �-homomorphism. �

Let A,B ∈ DN and h : A → B be a ∧-semi-homomorphism. In Section 2 it was proved that
the relation Rh ⊆ X (B)×X (A) is an N∧-relation. We study Rh when h is a �-homomorphism.

Theorem 3.5. Let A�1
,B�2

∈DN�. If h∈SDN�
[
A�1

,B�2

]
then Rh∈NR� [X (B) , X (A)].

P r o o f. It is enough to show that Rh ◦ Q�2
= Q�1

◦ Rh. Let P ∈ X (B) and Q ∈ X (A) such
that (P,D) ∈ Q�1

◦ Rh. Then there is F ∈ X (A) such that (P, F ) ∈ Rh and (F,D) ∈ Q�1
,

i.e., F ⊆ h−1 (P ) and D ⊆ �−11 (F ). By Lemma 2.1 we have �−12 (P )
c ∈ Fi (B). We prove

that I (h (D)) ∩ �−12 (P )
c

= ∅. If b ∈ I (h (D)) ∩ �−12 (P )
c

then there exists a ∈ D such that
b ≤ h (a) and �2b /∈ P . Since h is a �-homomorphism, �2b ≤ �2 (h (a)) = h (�1a). It follows that
h (�1a) /∈ P . So, �1a /∈ h−1 (P ) and a /∈ �−11 (F ). Then a /∈ D which is a contradiction. Since
I (h (D)) ∩ �−12 (P )

c
= ∅, by Theorem 1.1, there exists H ∈ X (B) such that I (h (D)) ⊆ H and

H ∩ �−12 (P )
c

= ∅. Thus, D ⊆ h−1 (H) and H ⊆ �−12 (P ), i.e., (H,D) ∈ Rh and (P,H) ∈ Q�2
.

Therefore, (P,D) ∈ Rh ◦Q�2
and Q�1

◦Rh ⊆ Rh ◦Q�2
. The other inclusion is similar. �

From the functors D and X given by 2.1 and 2.2, respectively, and the Theorems 3.4 and 3.5,
we give the following result.

Theorem 3.6. The contravariant functors X|SDN�
and D|NR�

define a dual equivalence between

the categories SDN� and NR�.
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4. Some classes of �-distributive nearlattices

There exist many important classes of Boolean algebras endowed with a modal operator. For
example, interior algebras, also know as topological Boolean algebras or closure algebras, are
modal algebras B = 〈B,�〉 where the modal operator satisfies the additional conditions �a ≤ a
and �a ≤ �2a for all a ∈ B. Some classes of modal algebras can be characterized by means of first
order conditions defined in the associated modal space, for example, a modal algebra B = 〈B,�〉 is
an interior algebra if and only if the relation Q� associated with the modal operator � is reflexive
and transitive. In this section we give similar results for some classes of �-distributive nearlattices.

Let Q be a binary relation defined on a set X. For each n ≥ 0 we define inductively the relation
Qn as follows: (x, y) ∈ Q0 if and only if x = y and (x, y) ∈ Qn+1 = Q ◦ Qn where ◦ is the usual
composition of relations.

Lemma 4.1. Let A� ∈ DN�. Let P ∈ X (A) and a ∈ A. For each n ∈ N, �na ∈ P if and only
if there exists R ∈ X (A) such that (P,R) ∈ Qn� and a ∈ R.

P r o o f. The proof is by induction on n. By Proposition 2.4, it is immediately for n = 0. Assume
that �na ∈ P implies that there exists R ∈ X (A) such that (P,R) ∈ Qn� and a ∈ R. Suppose that
�n+1a ∈ P , i.e., � (�na) ∈ P . By Proposition 2.4, there is R ∈ X (A) such that R ⊆ �−1 (P )
and �na ∈ R. By assumption, there exists D ∈ X (A) such that (R,D) ∈ Qn� and a ∈ R.

Since (P,R) ∈ Q� and (R,D) ∈ Qn� we get that (P,D) ∈ Qn+1
� . Conversely, suppose that

(P,R) ∈ Qn+1
� and a ∈ R. So, there exists D ∈ X (A) such that (P,D) ∈ Qn� and (D,R) ∈ Q�.

Therefore, R ⊆ �−1 (D) and as a ∈ R, a ∈ �−1 (D). Thus, (P,D) ∈ Qn� and �a ∈ D. It follows
by assumption that �n+1a ∈ P . �

Theorem 4.1. Let A� ∈ DN�. Then:

(1) a ≤ �a iff for all P and R ((P,R) ∈ Q� ⇒ R ⊆ P ).

(2) a ≤ �na iff for all P and R
(
(P,R) ∈ Qn� ⇒ R ⊆ P

)
with n ∈ N.

(3) �a ≤ a iff Q� is reflexive.

(4) �a ≤ �2a iff Q� is transitive.

(5) �2a ≤ �a iff for all P and R ((P,R)∈Q� ⇒ there exists T ((P, T ) ∈ Q� and (T,R) ∈ Q�)).

P r o o f. We prove only the assertions (2), (3) and (5).

(2) Let n ∈ N. Suppose that there exist P,R ∈ X (A) such that (P,R) ∈ Qn� and R * P .
Hence, there is a ∈ R such that a /∈ P . Since (P,R) ∈ Qn� and a ∈ R, by Lemma 4.1, �na ∈ P . As
a ≤ �na we have a ∈ P , which is a contradiction. Conversely, suppose that there exists a ∈ A such
that a � �na. By Theorem 1.1 it follows that there is P ∈ X (A) such that �na ∈ P and a /∈ P .
So, by Lemma 4.1, there exists R ∈ X (A) such that (P,R) ∈ Qn� and a ∈ R. By assumption,
R ⊆ P and a ∈ P which is a contradiction.

(3) Let P ∈ X (A) and a ∈ A such that a ∈ P . Since �a ≤ a, �a ∈ P . So, a ∈ �−1 (P ) and
P ⊆ �−1 (P ). Then (P, P ) ∈ Q� and Q� is reflexive. Reciprocally, suppose that there is a ∈ A
such that �a � a. So, by Theorem 1.1 there exists P ∈ X (A) such that a ∈ P and �a /∈ P , i.e.,
a /∈ �−1 (P ). As Q� is reflexive, P ⊆ �−1 (P ) and a ∈ �−1 (P ) which is impossible.

(5) Assume that �2a ≤ �a for all a ∈ A and let (P,R) ∈ Q�. Consider the ideal I (� (R)) and
the filter �−1 (P )

c
. Suppose that there exists c ∈ A such that c ∈ I (� (R)) ∩ �−1 (P )

c
. Thus,

there exist r1, . . . , rn ∈ R such that c ≤ �r1 ∨ · · · ∨ �rn. Since r1, . . . , rn ∈ R and R is a ideal,
r1∨· · ·∨rn = r ∈ R. Then �ri ≤ �r for all 1 ≤ i ≤ n and c ≤ �r. It follows that r ∈ R ⊆ �−1 (P ),
i.e., �r ∈ P . As �2r ≤ �r, �2r ∈ P . On the other hand, c ≤ �r and �r ∈ �−1 (P )

c
. Then

�2r /∈ P , which is impossible. So, I (� (R)) ∩ �−1 (P )
c

= ∅ and by Theorem 1.1 there exists
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T ∈ X (A) such that � (R) ⊆ T and T ∩ �−1 (P )
c

= ∅. This is, (P, T ) ∈ Q� and (T,R) ∈ Q�.
Reciprocally, suppose that there is a ∈ A such that �2a � �a. Thus, there exists P ∈ X (A) such
that �a ∈ P and �2a /∈ P . By Proposition 2.4, there exists R ∈ X (A) such that (P,R) ∈ Q�

and a ∈ R. By assumption, there is T ∈ X (A) such that (P, T ) ∈ Q� and (T,R) ∈ Q�, i.e.,
(P,R) ∈ Q2

� and since a ∈ R, by Lemma 4.1, we have �2a ∈ P which is a contradiction. �

Each equation of the Theorem 4.1 defines a subclass of �-distributive nearlattices where its dual
space satisfies the correspondent condition.

4.1. S5-nearlattices

Recall that a monadic Boolean algebra, in the sense of Halmos [19], is a Boolean algebra B
with a modal operator ∀ satisfying the equations ∀1 = 1, ∀(a ∨ ∀b) = ∀a ∨ ∀b and ∀a ≤ a for
all a, b ∈ B. The name “monadic” comes from the connection with predicate logics for languages
having one-placed predicates and a single quantifier. There are different generalizations of the
monadic algebras such as the variety of Q-distributive lattices introduced in [16], the monadic
Heyting algebras studied in [4], the lattices with an antitone involution endowed with a quantifier
studied in [15] or the orthoposets with a quantifier studied in [17]. In this subsection we introduce
the class of S5-nearlattices.

Definition 10. Let A� ∈ DN�. We say that A� is an S4-nearlattice if it verifies the following
conditions:

(1) �a ≤ a,

(2) �a ≤ �2a for all a ∈ A.

We say that A� is an S5-nearlattice if A� is an S4-nearlattice and satisfies the additional condi-
tion:

� (�a ∨ b) ≤ �a ∨�b for all a, b ∈ A.

By Theorem 4.1, A� is an S4-nearlattice if and only if Q� is reflexive and transitive. Thus,
the dual space of an S4-nearlattice A� is an N�-space 〈X,K, Q〉 such that Q� is a quasi-order.
The next objective is to characterize the dual space of an S5-nearlattice.

Lemma 4.2. Let A� be an S4-nearlattice. Then:

(1) �a ∨�b ≤ � (�a ∨�b),

(2) �a ∨�b ≤ � (�a ∨ b) for all a, b ∈ A.

P r o o f. (1) Let a, b ∈ A. As �a ≤ �a∨�b and � preserves the order, we have �2a ≤ � (�a ∨�b).
Since �a ≤ �2a, �a ≤ � (�a ∨�b). Analogously, �b ≤ � (�a ∨�b) and �a∨�b ≤ � (�a ∨�b).

(2) Let a, b ∈ A. Since �a ≤ �a ∨ b, it follows that �a ≤ �2a ≤ � (�a ∨ b). Similarly,
�b ≤ � (�a ∨ b). Therefore �a ∨�b ≤ � (�a ∨ b). �

Let A� ∈ DN�. We consider the relation

E� = Q� ∩Q−1� .

Note that if Q� is reflexive and transitive then E� is an equivalence relation. For U ⊆ X (A), let

hE�
(U) = {P ∈ X (A) : E� (P ) ⊆ U} .

Lemma 4.3. Let A� be an S4-nearlattice. The following conditions are equivalents:

(1) (P,D) ∈ E�,

(2) �−1 (P ) = �−1 (D) for all P,D ∈ X (A).
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P r o o f. (1) ⇒ (2) Let P,D ∈ X (A) such that (P,D) ∈ E�. Then D ⊆ �−1 (P ) and P ⊆
�−1 (D). Since �a ≤ �2a, �−1 (D) ⊆ �−1

(
�−1 (P )

)
⊆ �−1 (P ) and �−1 (P ) ⊆ �−1

(
�−1 (D)

)
⊆

�−1 (D). Thus, �−1 (D) ⊆ �−1 (P ) and �−1 (P ) ⊆ �−1 (D), i.e., �−1 (P ) = �−1 (D).

(2)⇒ (1) Let P,D ∈ X(A) such that �−1 (P ) = �−1 (D). As Q� is reflexive, P ⊆ �−1 (P ) =
�−1 (D) and D ⊆ �−1 (D) = �−1 (P ), i.e., (D,P ) ∈ Q� and (P,D) ∈ Q�. So, (P,D) ∈ E�. �

Remark 3. Let A� ∈ DN� and P ∈ X(A). It is easy to see that (�(P )] ∈ Id (A).

Remark 4. Let X be a set and let R ⊆ X ×X be an equivalence relation. So, �R(U ∪�R(V )) =
�R(U) ∪ �R(V ) for all U, V ∈ P(X). Let x ∈ �R(U ∪ �R(V )). If x /∈ �R(U) ∪ �R(V ) then
there exist y, z ∈ X such that y ∈ R(x) − U and z ∈ R(x) − V . Since R(x) ⊆ U ∪ �R(V ), we
have y ∈ �R(V ). As R is an equivalence relation, (y, z) ∈ R and consequently z ∈ V which
is a contradiction. Thus, �R(U ∪ �R(V )) ⊆ �R(U) ∪ �R(V ). On the other hand, �R(U) ⊆
�R(U ∪�R(V )) and �R(V ) ⊆ �R(U ∪�R(V )). Therefore �R(U) ∪�R(V ) ⊆ �R(U ∪�R(V )).

Proposition 4.2. Let A� be an S4-nearlattice. The following conditions are equivalents:

(1) A� is an S5-nearlattice.

(2) For every P ∈ X (A) and for every a ∈ A, �a ∈ P if and only if there exists Q ∈ X (A)
such that (P,Q) ∈ E� and a ∈ Q.

(3) ϕA (�a) = hE�
(ϕA (a)) for all a ∈ A.

(4) Q� ⊆
(
E�◦ ⊆−1

)
.

P r o o f. (1) ⇒ (2) Let P ∈ X(A) and a ∈ A such that �a ∈ P . By Lemma 2.1, �−1(P )c ∈
Fi (A). We consider the ideal I = I((�(P )]∪{a}). Then I ∩�−1(P )c = ∅. Otherwise, there exists
b ∈ A such that b ∈ �−1(P )c and there exists c ∈ P such that b ≤ �c ∨ a. So, �b ≤ �(�c ∨ a) ≤
�c ∨ �a. Since �b /∈ P , �a ∨ �c /∈ P . Also, as �a ∈ P , we have �c /∈ P . On the other hand,
P ⊆ �−1(P ) and c ∈ P . Then �c ∈ P which is a contradiction. Therefore, I ∩�−1(P )c = ∅ and
by Theorem 1.1 there exists Q ∈ X(A) such that I ⊆ Q and Q ∩ �−1(P )c = ∅. Then a ∈ Q,
�(P ) ⊆ Q and Q ⊆ �−1(P ). Since �a ≤ �2a, we have �−1(Q) ⊆ �−1(P ) and �−1(P ) ⊆ �−1(Q),
i.e, �−1(P ) = �−1(Q). Thus, by Lemma 4.3, (P,Q) ∈ E� and a ∈ Q.

Conversely, if there is Q ∈ X(A) such that (P,Q) ∈ E� and a ∈ Q then, by Lemma 4.3,
�−1(P ) = �−1(Q). Since �a ≤ a, �a ∈ Q and a ∈ �−1(Q). So, �a ∈ P .

(2) ⇒ (3) It is immediate.

(3) ⇒ (4). Let P,D ∈ X(A) such that (P,D) ∈ Q�. We consider the filter �−1(P )c and the
ideal I = I(D ∪ (�(P )]). Then I ∩�−1(P )c = ∅. If there exists b ∈ A such that b ∈ �−1(P )c and
b ∈ I then there exists d ∈ D and c ∈ P such that b ≤ d∨�c. So, �b ≤ �(d∨�c). Since �b /∈ P ,
we have �(d ∨�c) /∈ P . By hypothesis and Remark 4 it follows that

P ∈ ϕA(�(d ∨�c)) = hE�
(ϕA(d ∨�c))

= hE�
(ϕA(d) ∪ ϕA(�c))

= hE�
(ϕA(d) ∪ hE�

(ϕA(c)))

= hE�
(ϕA(d)) ∪ hE�

(ϕA(c))

= ϕA(�d) ∪ ϕA(�c)

= ϕA(�d ∨�c).

Then P ∈ ϕA(�d ∨�c), i.e., �d ∨�c /∈ P . As d ∈ D ⊆ �−1(P ), �d ∈ P . Thus, �c /∈ P which is
a contradiction because c ∈ P ⊆ �−1(P ). Therefore I ∩ �−1(P )c = ∅ and by Theorem 1.1 there
exists S ∈ X(A) such that I ⊆ S and S ∩�−1(P )c = ∅. So, D ⊆ S, �(P ) ⊆ S and S ⊆ �−1(P ).
It is easy to see that (P, S) ∈ E� and (P,D) ∈ E�◦ ⊆−1. Then Q� ⊆

(
E�◦ ⊆−1

)
.
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(4) ⇒ (1). Let a, b ∈ A such that �(�a∨b) � �a∨�b. By Theorem 1.1, there exists P ∈ X(A)
such that �a ∨ �b ∈ P and �(�a ∨ b) /∈ P . Then �a ∈ P and �b ∈ P . So, by Proposition 2.4,
there exists R ∈ X(A) such that (P,R) ∈ Q� and b ∈ R. Since Q� ⊆

(
E�◦ ⊆−1

)
, there is

Z ∈ X(A) such that (Z,R) ∈ ⊆−1 and (P,Z) ∈ E�, i.e., R ⊆ Z and �−1(P ) = �−1(Z). So,
b ∈ Z. On the other hand, a ∈ �−1(P ) = �−1(Z) and �a ∈ Z. It follows that �a ∨ b ∈ Z.
As �a ∨ b ∈ Z ⊆ �−1(Z) = �−1(P ), we have �a ∨ b ∈ �−1(P ) and �(�a ∨ b) ∈ P which is a
contradiction. Therefore, A� is an S5-nearlattice. �

The previous result suggests the following definition.

Definition 11. We say that the structure 〈X,Q,K〉 is an S5-space if 〈X,Q,K〉 is an N�-space
and Q ⊆ (Q ∩Q−1)◦ ≤−1.

If 〈X,Q,K〉 is an S5-space then 〈DK(X),�Q〉 is an S5-nearlattice.

Remark 5. Let 〈X,Q,K〉 be an S5-space. We consider the equivalence relation EQ = Q ∩Q−1.
Then the structure 〈X,EQ,K〉 verifies the following conditions:

(1) hEQ(U) = {x ∈ X : EQ (x) ⊆ U} ∈ DK(X) for all U ∈ DK(X).

(2) EQ(x) is a closed subset of X for all x ∈ X.

Conversely, if 〈X,E,K〉 is a structure such that 〈X,K〉 is an N -space and E is an equivalence
relation on X satisfying the conditions (1) and (2) above then 〈X,QE ,K〉, where QE is a reflexive
and transitive relation defined by QE = E ◦ ≤−1, is an S5-space. Thus, we can identify the
S5-spaces with triples 〈X,E,K〉 where 〈X,K〉 is an N -space and E is an equivalence relation on
X satisfying the conditions (1) and (2).

5. Application of the duality

In this section we give an application of the topological duality developed in Section 3.

5.1. �-congruences

Let A ∈ DN . In [9] it was shown that the distributive lattice of the congruences Con(A) of
A is dually isomorphic to certain subsets, called N -subspaces, of the dual space 〈X (A) ,KA〉. We
extend this result to the congruences of a �-distributive nearlattice.

Recall that if 〈X,K〉 is a topological space with a base K and Y is a subset of X then the family
KY = {U ∩ Y : U ∈ K} is a basis for a topology on Y and the pair 〈Y,KY 〉 is a topological space.

Definition 12. Let 〈X,K〉 be an N -space and let Y be a subset of X. We say that Y is an
N -subspace if 〈Y,KY 〉 is an N -space.

Denote by S(X) the set of all N -subspaces of an N -space 〈X,K〉.
Let A ∈ DN and let 〈X (A) ,KA〉 be the dual space of A. By [9], there exists a dual corre-

spondence Y → θ (Y ) from the N -subspaces S(X (A)) of X (A) onto the congruences Con (A) of
A. If Y is a subset of X(A) then the binary relation θ (Y ) ⊆ A × A given by (a, b) ∈ θ (Y ) if
and only if ϕA(a)c ∩ Y = ϕA(b)c ∩ Y is a congruence on A. Conversely, if θ ∈ Con (A) then we
have the canonical map qθ : A → A/θ where each element a ∈ A is assigned the equivalence class
qθ (a) = a/θ. We consider the set

Yθ =
{
q−1θ (P ) : P ∈ X (A/θ)

}
.

Then Yθ ⊆ X(A) and the pair 〈Yθ,KYθ 〉 is an N -subspace. For more details see [9].
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Definition 13. Let 〈X,K, Q〉 be an N�-space and let Y be a subset of X. We say that Y is
Q-saturated if 〈Y,KY 〉 is an N -subspace and maxQ(x) ⊆ Y for all x ∈ Y .

We denote by SQ (X) the set of all Q-saturated subsets of an N�-space 〈X,K, Q〉.
Let A� ∈ DN�. The congruences of A� are congruences of A compatible with the operator

�, i.e., if (a, b) ∈ θ then (�a,�b) ∈ θ. Denote by Con� (A) the lattice of all congruences of A�.

Theorem 5.1. Let A� ∈ DN� and let 〈X (A) ,KA, Q�〉 be the dual space of A�. Then the map

F : SQ�
(X (A))→ Con� (A)

defined by F (Y ) = θ (Y ) is a dual isomorphism.

P r o o f. Let Y be a Q�-saturated subset of X (A). We prove that θ (Y ) is compatible with the
operator �. Let a, b ∈ A such that (a, b) ∈ θ (Y ) and suppose that ϕA (�a)

c ∩ Y 6= ϕA (�b)c ∩ Y ,
i.e., there is P ∈ ϕA (�a)

c
such that P /∈ ϕA (�b)c. Then P ∈ Y , �a ∈ P and �b /∈ P . Thus, by

Proposition 2.4, there exists R ∈ X (A) such that R ⊆ �−1 (P ) and a ∈ R. Consider the family

G =
{
H ∈ X (A) : R ⊆ H ⊆ �−1 (P )

}
.

Then G is non-empty and by Zorn’s Lemma there exists a maximal element D ∈ G. As a ∈ R ⊆ D,
D ∈ ϕA (a)

c
. On the other hand, D ∈ maxQ� (P ) ⊆ Y . So, D ∈ ϕA (a)

c ∩ Y = ϕA (b)
c ∩ Y and

D ∈ ϕA (b)
c
, i.e., b ∈ D ⊆ �−1 (P ). Then �b ∈ P which is a contradiction. Thus, (�a,�b) ∈ θ (Y ).

Reciprocally, let θ ∈ Con� (A). We know that the pair 〈Yθ,Kθ〉 is an N -space such that
F (Yθ) = θ. We see that Yθ is a Q�-saturated subset. Let P ∈ Yθ and R ∈ maxQ� (P ) such that
R /∈ Yθ. Then R ⊆ �−1 (P ) and we consider⋂{

ϕA (b) ∩ Yθ : ϕA (b) /∈ HX(A) (R)
}
∩
⋂{

ϕA (c)
c ∩ Yθ : ϕA (c) ∈ HX(A) (R)

}
.

If this intersection is non-empty then there exists D ∈ X (A) such that HX(A) (D) = HX(A) (R)
and since HX(A) is 1-1, D = R ∈ Yθ which is a contradiction. Then⋂{

ϕA (b) ∩ Yθ : ϕA (b) /∈ HX(A) (R)
}
⊆
⋃{

ϕA (c) ∩ Yθ : ϕA (c) ∈ HX(A) (R)
}
.

Let B =
{
b : ϕA (b) /∈ HX(A) (R)

}
and C =

{
c : ϕA (c) ∈ HX(A) (R)

}
. Since Yθ is an N -space, by

Theorem 1.3, there exist b1, . . . , bn ∈ [B) and c1, . . . , cm ∈ C such that b1 ∧ · · · ∧ bn exists and

[ϕA (b1) ∩ Yθ] ∩ · · · ∩ [ϕA (bn) ∩ Yθ] ⊆ [ϕA (c1) ∩ Yθ] ∪ · · · ∪ [ϕA (cm) ∩ Yθ] .

As b1, . . . , bn ∈ [B), there exist b1, . . . , bn ∈ B such that bi ≤ bi for all i = 1, . . . , n. Let b =
b1 ∧ · · · ∧ bn and c = c1 ∨ · · · ∨ cm. Then ϕA (b)∩ Yθ ⊆ ϕA (c)∩ Yθ, or equivalently, ϕA (c)

c ∩ Yθ ⊆
ϕA (b)

c ∩ Yθ. So, the pair (b ∨ c, c) ∈ θ (Yθ) and as θ (Yθ) is a congruence, (� (b ∨ c) ,�c) ∈ θ (Yθ),
i.e., ϕA (� (b ∨ c))c∩Yθ = ϕA (�c)c∩Yθ. It is clear that P ∈ ϕA (�c)c because if P ∈ ϕA (�c) then
c /∈ �−1 (P ) and c /∈ R. Also, since ϕA (c) ∈ HX(A) (R) we have R /∈ ϕA (c). So, c ∈ R which is a

contradiction. Then P ∈ ϕA (�c)c ∩ Yθ and P ∈ ϕA (� (b ∨ c))c ∩ Yθ. Thus, b ∨ c /∈ �−1 (P )
c

and
as �−1 (P )

c
is a filter it follows that �b ∈ P . Then �b = � (b1 ∧ · · · ∧ bn) = �b1 ∧ · · · ∧�bn ∈ P

and for primality of P there exists i ∈ {1, . . . , n} such that �bi ∈ P . So, �bi ≤ �bi and �bi ∈ P .
By Proposition 2.4, there is D ∈ X (A) such that D ⊆ �−1 (P ) and bi ∈ D. Since R is maximal,
we have D ⊆ R and bi ∈ R. On the other hand, as ϕA(bi) /∈ HX(A) (R), bi /∈ R which is a
contradiction. Therefore, Yθ is a Q�-saturated subset of X (A) and F is a dual isomorphism. �
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5.2. �-subalgebras

In this subsection we characterize the subalgebras of a �-distributive nearlattice A�. The set
of all subalgebras of A� is denoted by Sub� (A).

Definition 14. Let 〈X,K〉 be an N -space and let L be a non-empty subset of K. We say that L
is N -basic if (U ∩W ) ∪ (V ∩W ) ∈ L for all U, V,W ∈ L.

Let A ∈ DN . By the results developed in [9], there is a correspondence between subalgebras of
A and N -basic subsets of the dual space 〈X (A) ,KA〉. We have the following definition.

Definition 15. Let 〈X,K, Q〉 be an N�-space and let L be a non-empty subset of K. We say
that L is N�-basic if it is N -basic and �Q (U c)

c ∈ L for all U ∈ L.

We consider Nb� (X) = {L ⊆ K : L is N�-basic}.
Let A� ∈ DN�. We define T (B) = {ϕA (b)

c
: b ∈ B} for each B ∈ Sub (A).

Lemma 5.1. Let A� ∈ DN�. If B ∈ Sub� (A) then T (B) ∈ Nb� (X (A)).

P r o o f. Let U ∈ T (B). Then there is b ∈ B such that U = ϕA (b)
c
. Since B is a subalgebra of A,

�b ∈ B and ϕA (�b)c ∈ T (B). On the other hand, by Proposition 2.4, �Q�
(ϕA (b)) = ϕA (�b).

Then �Q�
(ϕA (b))

c
= �Q�

(U c)
c ∈ T (B) and T (B) ∈ Nb� (X (A)). �

Let L ∈ Nb� (X (A)). We consider S (L) = {a ∈ A : ϕA (a)
c ∈ L}.

Lemma 5.2. Let A� ∈ DN�. If L ∈ Nb� (X (A)) then S (L) ∈ Sub� (A).

P r o o f. We prove that S (L) is closed under the modal operator �. If a ∈ S (L) then ϕA (a)
c ∈ L.

As L is N�-basic and by Proposition 2.4, we have �Q�
(ϕA (a))

c
= ϕA (�a)

c ∈ L. So, �a ∈ S (L).
Therefore S (L) ∈ Sub� (A). �

Theorem 5.2. Let A� ∈ DN� and let 〈X (A) ,KA, Q�〉 be the dual space of A�. Then the
lattices Sub� (A) and Nb� (X (A)) are isomorphic.

P r o o f. By definition of T and S it follows that S (T (B)) = B for all B ∈ Sub� (A) and
T (S (L)) = L for all L ∈ Nb� (X (A)). The result is immediate. �

5.3. The free �-distributive lattice extension

Let A ∈ DN and let 〈X (A) ,KA〉 be the dual space of A. Let KO (X (A)) be the family of all
open and compact subsets of 〈X (A) ,KA〉. We consider DKO [X (A)] = {U : U c ∈ KO (X (A))}.
Thus, U ∈ DKO [X (A)] if and only if there exist a1, . . . , an ∈ A such that U = ϕA (a1) ∩ · · · ∩
ϕA (an). In [10] it was shown that the structure 〈DKO [X (A)] ,∪,∩, ∅, X (A)〉 is a bounded dis-
tributive lattice and the pair 〈DKO [X (A)] , ϕA〉 is the free distributive lattice extension where
the map ϕA : A→ DKO [X (A)] is given by ϕA (a) = {P ∈ X (A) : a /∈ P}. Now, we extend these
results to the class of �-distributive nearlattices.

Definition 16. Let A� ∈ DN�. A pair L� = 〈〈L,�〉 , e〉, where 〈L,�〉 is a bounded distribu-
tive lattice with a necessity modal operator and e : A → L a 1-1 �-homomorphism, is a �-free
distributive lattice extension of A� if the following universal property holds: for every bounded
distributive lattice with a necessity modal operator

〈
L,∆

〉
and every �-homomorphism h : A→ L,

there exists a unique �-homomorphism h : L→ L such that h = h ◦ e.

Let A� ∈ DN�. We consider the map � : DKO [X (A)]→ DKO [X (A)] given by

� (U) = ϕA (�a1) ∩ · · · ∩ ϕA (�an) ,

where U = ϕA (a1) ∩ · · · ∩ ϕA (an) for some a1, . . . , an ∈ A. Note that:
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(1) � (X (A)) = X (A),

(2) � (U ∩ V ) = � (U) ∩� (V ) for all U, V ∈ DKO [X (A)].

So, � is a modal operator on DKO [X (A)], i.e., the structure
〈
DKO [X (A)] ,∪,∩,�, ∅, X (A)

〉
is

a bounded distributive lattice with a necessity modal operator.

Theorem 5.3. Let A� ∈ DN� and let 〈X (A) ,KA, Q�〉 be the dual space of A�. Then the pair〈〈
DKO [X (A)] ,�

〉
, ϕA

〉
is the �-free distributive lattice extension of A�.

P r o o f. Let
〈
L,∆

〉
be a bounded distributive lattice with a necessity modal operator and let

h : A→ L be a �-homomorphism. We define h : DKO [X (A)]→ L by

h (ϕA (a1) ∩ · · · ∩ ϕA (an)) = h (a1) ∧ · · · ∧ h (an) .

By [10], we have that h is a unique homomorphism such that h = h ◦ ϕ. We only prove that
h
(
� (U)

)
= ∆

(
h (U)

)
for all U ∈ DKO [X (A)]. Thus, if U ∈ DKO [X (A)] then there exist

a1, . . . , an ∈ A such that U = ϕA (a1) ∩ · · · ∩ ϕA (an). Then

h
(
� (U)

)
= h

(
� (ϕA (a1) ∩ · · · ∩ ϕA (an))

)
= h (ϕA (�a1) ∩ · · · ∩ ϕA (�an))

= h (�a1) ∧ · · · ∧ h (�an) = ∆ (h (a1)) ∧ · · · ∧∆ (h (an))

= ∆ (h (a1) ∧ · · · ∧ h (an)) = ∆
(
h (ϕA (a1) ∩ · · · ∩ ϕA (an))

)
= ∆

(
h (U)

)
.

Therefore, h is a �-homomorphism. �
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