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Abstract In this paper we investigate those subvarieties of the variety SH of semi-
Heyting algebras which are term-equivalent to the variety LH of Gödel algebras
(linear Heyting algebras). We prove that the only other subvarieties with this
property are the variety LCom of commutative semi-Heyting algebras and the variety
L∨ generated by the chains in which a < b implies a → b = b . We also study the
variety C generated within SH by LH, L∨ and LCom. In particular we prove that C is
locally finite and we obtain a construction of the finitely generated free algebra in C.

Keywords Semi-Heyting algebra · Heyting algebra · Linear Heyting algebra ·
Term-equivalent varieties

1 Introduction and Preliminaries

In [7], Sankappanavar considered the following conjecture: there exists a variety
V of algebras (of the same type as that of Heyting algebras) that possesses the
following well known properties and includes Heyting algebras: (1) the algebras in
V are pseudocomplemented, (2) they are distributive, and congruences on them are
determined by filters. He settled this conjecture with the discovery of semi-Heyting
algebras.
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Definition 1.1 An algebra A = 〈A, ∨,∧,→, 0, 1〉 is a semi-Heyting algebra if the
following conditions hold:

(SH1) 〈A, ∨,∧, 0, 1〉 is a lattice with 0 and 1.
(SH2) x ∧ (x → y) ≈ x ∧ y.
(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)].
(SH4) x → x ≈ 1.

We will denote by SH the variety of semi-Heyting algebras. The variety H of
Heyting algebras is the subvariety of SH characterized by the equation (x ∧ y) →
x ≈ 1 [7].

Any semi-Heyting algebra A is a pseudocomplemented distributive lattice, con-
gruences on A are determined by filters and the variety of semi-Heyting algebras
is arithmetic, thus extending the corresponding results of Heyting algebras. Besides,
semi-Heyting algebras share with Heyting algebras some other strong properties.

In the next lemma we include some useful elementary properties of semi-Heyting
algebras.

Lemma 1.2 [7] Let A ∈ SH and a, b ∈ A.

(a) If a → b = 1 then a ≤ b.
(b) If a ≤ b then a ≤ a → b.
(c) a = b if and only if a → b = b → a = 1.
(d) 1 → a = a.

Proof From a → b = 1 and (SH3), we get a ∧ 1 = a ∧ b , that is a = a ∧ b , and
we have (a). For (b), by (SH3) and since a ≤ b it follows that a = a ∧ (a → b) ≤
a → b . Property (c) is clear. To prove (d), observe that a = 1 ∧ a = 1 ∧ (1 → a) =
1 → a. 
�

The algebras 2 and 2̄, which have the two-element chain as their lattice reduct
and whose → operation is defined in the following figure, are the most elementary
examples of semi-Heyting algebras. One easily verifies that 2 is a Heyting algebra
while 2̄ is not.

�

�

0

1

2 :

→ 0 1

0 1 1

1 0 1
�

�

0

1

2̄ :

→ 0 1

0 1 0

1 0 1

Observe that, in SH, the (Heyting) property “if a ≤ b then a → b = 1” does not
hold.

We have the following characterization of subdirectly irreducible algebras in SH
(see [7, Theorem 7.5]).
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Theorem 1.3 Let A ∈ SH with |A| ≥ 2. The following are equivalent:

(a) A is subdirectly irreducible.
(b) A has a unique coatom.

Observe that as a consequence of this theorem, if A is subdirectly irreducible, then
1 ∈ A is ∨-irreducible.

We say that A ∈ SH is a semi-Heyting chain if the lattice reduct of A is totally
ordered. We say that A is a linear semi-Heyting algebra if A belongs to the subvariety
of SH generated by semi-Heyting chains. This subvariety will be denoted by L.

Theorem 1.4 [1] An equational basis for L relative to SH is given by

((x ∨ (x → y)) → (x → y)) ∨ (y → (x ∧ y)) ≈ 1 (Ch)

Proof Let us prove that if A is a semi-Heyting chain, then A satisfies the identity
(Ch). Let a, b ∈ A. If a ≤ b , by Lemma 1.2, a ≤ a → b . Hence a ∨ (a → b) = a →
b , so (a ∨ (a → b)) → (a → b) = (a → b) → (a → b) = 1. If b < a, b = b ∧ a and
then b → (a ∧ b) = b → b = 1.

Conversely, let us prove that if V is the subvariety of SH defined by (Ch)
then every subdirectly irreducible algebra in V is a chain. Let A ∈ V subdirectly
irreducible and let a, b ∈ A. Since A satisfies (Ch), ((a ∨ (a → b)) → (a → b)) ∨
(b → (a ∧ b)) = 1. As A is subdirectly irreducible, 1 is ∨-irreducible. Thus (a ∨ (a →
b)) → (a → b) = 1 or b → (a ∧ b) = 1.

Suppose that (a ∨ (a → b)) → (a → b) = 1. Then a ∨ (a → b) ≤ a → b , and
thus, a ≤ a ∨ (a → b) ≤ a → b . Hence a ∧ b = a ∧ (a → b) = a, so a ≤ b .

If b → (a ∧ b) = 1, then b ≤ a ∧ b , and thus b ≤ a.
Hence A is a chain. 
�

Recall that the lower half, including the main diagonal, of the operation table of
→ in a semi-Heyting chain is uniquely determined [7, Theorem 4.3], that is, if A is a
semi-Heyting chain, a, b ∈ A, and a < b then b → a = a, and consequently we have
just to consider the cases a → b whenever a < b in order to complete the operation
table of →. In this paper we are going to consider those semi-Heyting chains in which
a → b ∈ {1, a, b} for a < b , and this will led us to consider three subvarieties of L.

1. The first one is the subvariety generated be the semi-Heyting chains that satisfy
that a < b implies a → b = 1, and this is the variety LH of Gödel algebras (also
known as the variety of linear Heyting algebras).

2. In the second place, we will consider the subvariety generated by the semi-
Heyting chains that satisfy that a < b implies a → b = a, and this is the sub-
variety LCom of commutative linear semi-Heyting algebras.

3. Finally, we have the subvariety of L generated by the semi-Heyting chains in
which a < b implies a → b = b . This subvariety will be denoted by L∨ since it
satisfies that for a < b , a → b = a ∨ b .

The main objective of this paper is to prove that the subvarieties LCom and L∨ are
both term-equivalent to the variety LH of Gödel algebras, and that they are the only
other subvarieties of L term-equivalent to LH.
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As the second objective of the paper, we investigate the variety C generated within
SH by LH, L∨ and LCom. In particular we prove that C is locally finite and we obtain
a construction of the finitely generated free algebra in C.

2 The Subvariety LCom

In this section we consider the subvariety generated by the semi-Heyting chains that
satisfy that a < b implies a → b = a. This is the subvariety LCom of commutative
linear semi-Heyting algebras characterized within L by the equation x → y ≈ y → x.
We prove that LCom is locally finite, we determine its lattice of subvarieties and we
find an equational basis for each subvariety.

The following lemma is clear.

Lemma 2.1 Given a totally ordered lattice A with least element 0 and last element 1, if
for every a, b ∈ A we def ine

a → b =
{

1 f or a = b
a ∧ b f or a = b

then A = 〈A, ∧,∨,→, 0, 1〉 is a commutative linear semi-Heyting algebra.

It is easy to see that the only structure of a commutative semi-Heyting algebra that
can be defined on a chain is the one defined above.

For each integer n ≥ 0, let Ln and Lω respectively denote the chains 0 = a0 < a1 <

. . . < an < an+1 = 1 and 0 = b 0 < b 1 < . . . < b n−1 < b n < . . . < 1, and let LCom
n and

LCom
ω denote the corresponding algebras in LCom with universes Ln and Lω. We have

that LCom
0 is the algebra 2̄ and LCom

1 is the chain

�

�

�

0

a1

1

Lc
1

→ 0 a1 1
0 1 0 0
a 0 1 a1

1 0 a1 1

Since the class of linear commutative semi-Heyting algebras is a subvariety of L,
every linear commutative semi-Heyting algebra can be represented as a subdirect
product of commutative semi-Heyting chains.

We are going to prove that LCom is generated by the chains LCom
n , n ≥ 0.

Theorem 2.2 A subvariety V of LCom is proper if and only if LCom
n ∈ V for some n ≥ 0.

Proof Suppose that V is a proper subvariety of LCom, that is, V = LCom. Then
there exists an identity ε ≈ λ such that V |= ε ≈ λ and LCom |= ε ≈ λ. Then there
exists a chain A ∈ LCom such that A |= ε ≈ λ. Let a1, a2, . . . , am ∈ A such that
ε(a1, a2, . . . , am) = λ(a1, a2, . . . , am), and consider the subalgebra B of A generated
by the elements a1, a2, . . . , am. Then B is a finite chain in LCom, and consequently
B ∼= LCom

n for some n ≥ 0. So LCom
n ∈ V . 
�
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Corollary 2.3 Every subvariety of LCom is generated by its f inite chains.

The following lemma is immediate.

Lemma 2.4

(a) LCom
n is isomorphic to a subalgebra of LCom

ω , for every n ≥ 0.
(b) The variety of linear commutative semi-Heyting algebras is generated by LCom

ω .
(c) If n ≤ n′, LCom

n is isomorphic to a subalgebra of LCom
n′ .

Now we will determine the lattice of subvarieties of the A variety LCom. We also
give an equational base for each one of these subvarieties.

Theorem 2.5 The only subvarieties of LCom are V(LCom
ω ) and V(LCom

n ), n ≥ 0.

Proof Let V be a subvariety of LCom. If V is the whole variety LCom, then, by Lemma
2.4, V = V(LCom

ω ). Suppose that V is a proper subvariety of LCom. From Theorem 2.2,
there exists an integer n ≥ 0 such that LCom

n ∈ V . Let t = max {n ∈ N ∪ {0} : LCom
n ∈

V}. Then, by Lemma 2.4, every finite chain in V is isomorphic to a subalgebra of
LCom

t . Thus V = V(LCom
t ). 
�

Hence we have that the lattice of subvarieties of LCom is an (ω + 1)-chain:

T ⊆ V
(
LCom

0

) ⊆ V
(
LCom

1

) ⊆ . . . ⊆ V
(
LCom

n

) ⊆ . . . ⊆ LCom = V
(
LCom

ω

)
,

T the trivial variety, and, consequently, is isomorphic to the lattice of subvarieties of
the variety of Gödel algebras (see [4]).

Lemma 2.6 [1] Let L be a chain in L. If L satisf ies the identity (Hn), then |L| ≤ n.

n−1∨
i=1

(
xi ∨ x∗

i

) ∨
n−1∨

j=1; j<i

(
xi → x j

) ≈ 1 (Hn)

Corollary 2.7 (Hn) is, within LCom, a basis for V(LCom
n−2 ), for each integer n ≥ 2.

3 The Subvariety L∨

In this section we consider the subvariety L∨ of L generated by the semi-Heyting
chains in which a < b implies a → b = b .

In the following theorem we abbreviate x ↔ y to denote the term (x → y) ∧ (y →
x). It is clear that x ↔ y ≈ 1 if and only if x ≈ y.

Theorem 3.1 L∨ is characterized within L by the equation

((x ∧ y) ↔ y) ∨ ((x → y) ↔ y) ≈ 1.

Proof Let A be a chain in L∨ and a, b ∈ A. If a = b , then ((a ∧ a) ↔ a) ∨ ((a →
a) ↔ a) = 1. If a < b , ((a ∧ b) ↔ b) ∨ ((a → b) ↔ b) = (a ↔ b) ∨ (b ↔ b) = 1. If
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a > b , ((a ∧ b) ↔ b) ∨ ((a → b) ↔ b) = (b ↔ b) ∨ (b ↔ b) = 1. So A satisfies the
desired equation.

Suppose now that A is a semi-Heyting chain that satisfies ((x ∧ y) ↔ y) ∨ ((x →
y) ↔ y) ≈ 1 and let a, b ∈ A, a < b . Then ((a ∧ b) ↔ b) ∨ ((a → b) ↔ b) = 1, that
is, (a ↔ b) ∨ ((a → b) ↔ b) = 1. So a ↔ b = 1 or (a → b) ↔ b = 1. If a ↔ b = 1
then a = b , which contradicts the assumption. So ((a → b) ↔ b) = 1, that is, a →
b = b . So A belongs to the variety L∨. 
�

The following result follows immediately.

Lemma 3.2 Given a totally ordered lattice A with least element 0 and last element 1, if
for every a, b ∈ A we def ine

a → b =
{

1 if a = b
b if a = b

then A = 〈A, ∧,∨,→, 0, 1〉 is an algebra in L∨.

It is easy to see that the only structure of an algebra in L∨ that can be defined on
a chain is the one defined above.

Let L∨
n and L∨

ω respectively denote the (uniquely determined) algebras in L∨ with
underlying lattice 〈Ln,∨,∧, 0, 1〉 and 〈Lω, ∨,∧, 0, 1〉 respectively, that is, where the
operation → is defined by a → b = 1 if a = b and a → b = b if a = b . We have that
L∨

0 is the Heyting algebra 2 and L∨
1 is the algebra

�

�

�

0

a1

1

L∨
1

→ 0 a1 1
0 1 a1 1
a1 0 1 1
1 0 a1 1

and every finite chain in L∨ is isomorphic to L∨
n for some n ≥ 0.

The proof of the following theorem is similar to that of Theorem 2.2.

Theorem 3.3 A subvariety V of L∨ is proper if and only if L∨
n ∈ V for some n ≥ 0.

Remark 3.4 Arguing as in the proof of Theorem 2.2, we can prove that every
subvariety of L∨ is generated by its finite chains, that is is generated by the algebras
{L∨

n , n ∈ I} for some I ⊆ ω.

Lemma 3.5

(a) L∨
n is isomorphic to a subalgebra of L∨

ω , for every n ≥ 0.
(b) L∨ is generated by L∨

ω .
(c) If n ≤ n′, L∨

n is isomorphic to a subalgebra of L∨
n′ .

The following theorem characterizes the lattice of subvarieties of L∨.
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Theorem 3.6 The only subvarieties of L∨ are V(L∨
ω) and V(L∨

n ), n ≥ 0.

Proof Let V be a subvariety of L∨. If V = L∨, by Lemma 3.5, V = V(L∨
ω). Suppose

that V is a proper subvariety. From Theorem 3.3 there exists an integer n ≥ 0 such
that L∨

n ∈ V . Let t = max {n ∈ N ∪ {0} : L∨
n ∈ V}. Then every finite chain in L∨ is

isomorphic to a subalgebra of L∨
t , by Lemma 3.5. Hence V = V(L∨

t ). 
�

So, the lattice of subvarieties of L∨ is an (ω + 1)-chain:

T ⊆ V
(
L∨

0

) ⊆ V
(
L∨

1

) ⊆ . . . ⊆ V
(
L∨

n

) ⊆ . . . ⊆ L∨ = V
(
L∨

ω

)
.

As a corollary, we get, as in Section 2, an equational characterization for each
subvariety of L∨.

Corollary 3.7 (Hn) is, modulo L∨, a base for V(L∨
n−2).

4 Subvarieties Term-equivalent to the Variety of Gödel Algebras

In this section we prove that the varieties LCom and L∨ are term-equivalent to the
variety LH of Gödel algebras (linear Heyting algebras), and that they are the only
other subvarieties in L with this property.

The following lemma states that we can always define a Heyting implication in any
semi-Heyting algebra. Moreover, among all the semi-Heyting implication operations
that can be defined in a given distributive lattice, the Heyting implication is the
greatest one.

Lemma 4.1 Let 〈A, ∨, ∧,→, 0, 1〉 be a semi-Heyting algebra. If we def ine a →H b =
a → (a ∧ b) for every a, b ∈ A, then

(a) 〈A, ∨,∧,→H, 0, 1〉 is a Heyting algebra.
(b) a → b ≤ a →H b for every a, b ∈ A.

Proof Let us prove that →H is a Heyting implication. Let a, b , c ∈ A. Then
a →H a = a → (a ∧ a) = 1, so we have (SH4). Now, a ∧ (a →H b) = a ∧ (a →
(a ∧ b)) = a ∧ a ∧ b = a ∧ b , and we get (SH2). For (SH3), a ∧ (b →H c) = a ∧
(b → (b ∧ c)) = a ∧ [(a ∧ b) → (a ∧ b ∧ c)] = a ∧ [(a ∧ b) → (a ∧ b ∧ a ∧ c)] = a∧
[(a ∧ b) →H (a ∧ c)]. Finally, (a ∧ b) →H a = (a ∧ b) → (a ∧ b ∧ a) = 1. So →H is
a Heyting implication, and we have proved (a).

For (b), (a → b) ∧ (a →H b) = (a → b) ∧ [a → (a ∧ b)] = (a → b) ∧ [(a ∧ (a →
b)) → (a ∧ b ∧ (a → b))] = (a → b) ∧ ((a ∧ b) → (a ∧ b)) = (a → b) ∧ 1 = a→b .
Thus a → b ≤ a →H b . 
�

Similarly, we have the following.

Lemma 4.2 Let 〈A, ∨,∧,→, 0, 1〉 be a semi-Heyting chain. If we def ine

a →J b = b ∨ [(a →H b) ∧ (b →H a)], for a, b ∈ A,

then 〈A, ∨,∧,→J, 0, 1〉 ∈ L∨.
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Proof Let a, b ∈ A. If a ≤ b , a →J b = b ∨ (a ↔H b) = b . So 〈A, ∨,∧,→J,

0, 1〉 ∈ L∨. 
�

Since every linear Heyting algebra is a subdirect product of Heyting chains, every
linear Heyting algebra can be transformed into an algebra in L∨.

The following lemma states that we can define an operation →c on a semi-Heyting
algebra to obtain an algebra in LCom. Its proof is easy.

Lemma 4.3 Let 〈A, ∨,∧,→, 0, 1〉 be a semi-Heyting chain. If we def ine

a →c b = (a →H b) ∧ (b →H a) , for a, b ∈ A,

then 〈A, ∨,∧,→c, 0, 1〉 ∈ LCom.

Thus, from Lemmas 4.1, 4.2 and 4.3, the varieties LCom, L∨ are both term-
equivalent to the variety LH of Gödel algebras.

If FK(X) denotes the free algebra over a set X of free generators in a given class
K, we have the following result.

Corollary 4.4 The lattice reduct of the algebras FLH (X),FLCom(X) and FL∨(X) are
pairwise isomorphic.

Let us see now that LCom and L∨ are the only subvarieties of L term equivalent
to LH.

The proof of the following lemma can be done by induction on the length of the
Heyting term t(x, y), where by a Heyting term we understand a term in the language
{∧,∨,→H, 0, 1}.

Lemma 4.5 Let 〈L,∧, ∨,→, 0, 1〉 be a semi-Heyting chain such that x → y = t(x, y),
where t(x, y) is a Heyting term. Then for every a, b ∈ L such that a < b, a → b =
t(a, b) ∈ {a, b , 1}.

As a consequence of the previous lemma we obtain the following.

Corollary 4.6 Let t(x, y) be a Heyting term, with t(x, y) = 0, 1, and let L1 and L2 be
semi-Heyting chains. Let a, b ∈ L1 and c, d ∈ L2 such that a < b and c < d. Then the
following conditions hold:

(a) If tL1(a, b) = a then tL2(c, d) = c.
(b) If tL1(a, b) = b then tL2(c, d) = d.
(c) If tL1(a, b) = 1 then tL2(c, d) = 1.

Theorem 4.7 The varieties LCom and L∨ are the only subvarieties of L term equivalent
to the variety of linear Heyting algebras.

Proof Let V be a subvariety of L term equivalent to the variety of linear Heyting
algebras. Then there exists a Heyting term t(x, y) such that for every algebra
A ∈ V , x → y = t(x, y). Let L be a chain in V . Suppose that a → b = a for every
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a, b ∈ L such that a < b . Then L ∈ LCom. In addition, by Corollary 4.6, every chain
in V belongs to LCom. So V ⊆ LCom. The other cases are similar. 
�

5 The Variety Generated by LCom, L∨ and LH

The aim of this section is to investigate the variety generated by the varieties LCom,
L∨ and the variety of linear Heyting algebras. We will find an equational basis for this
variety, we will determine its lattice of subvarieties and we will study free algebras of
this variety.

Recall that the lattice of subvarieties of LH is an (ω + 1)-chain

T ⊆ V
(
LH

0

) ⊆ V
(
LH

1

) ⊆ . . . ⊆ V
(
LH

n

) ⊆ . . . ⊆ LH = V
(
LH

ω

)
,

where LH
n is the unique Heyting algebra having as a lattice reduct the (n + 2)-element

chain Ln, n ∈ {0} ∪ N ∪ {ω}.
Also observe that LH

0 = L∨
0 .

Consider the following terms.

γH(x, y) = (x ∧ y) → x
γCom(x, y) = (x → y) ↔ (y → x)

γ∨(x, y) = ((x ∧ y) ↔ y) ∨ ((x → y) ↔ y)

.

Observe that γH(x, y) ≈ 1, γCom(x, y) ≈ 1 and γ∨(x, y) ≈ 1 respectively represent
an equational basis, modulo L, for the subvarieties LH, LCom and L∨.

Definition 5.1 Let C be the subvariety of L characterized by the equation:

γH(x1, x2) ∨ γCom(y1, y2) ∨ γ∨(z1, z2) ≈ 1

We are going to prove that C is the variety generated by the varieties LCom, L∨
and LH.

Theorem 5.2 V(LH,LCom,L∨) = C.

Proof It is clear that V(LH,LCom,L∨) ⊆ C. For the other inclusion, consider
a semi-Heyting chain L ∈ C. If we suppose that L ∈ LH ∪ LCom ∪ L∨ then
there exist a1, a2, b 1, b 2, c1, c2 ∈ L such that γH(a1, a2) = 1, γCom(b 1, b 2) = 1 and
γ∨(c1, c2) = 1. Thus, by Theorem 1.3, γH(a1, a2) ∨ γCom(b 1, b 2) ∨ γ∨(c1, c2) = 1, a
contradiction. 
�

Let V be a subvariety of C. As in the proof of Theorem 5.2, Si(V) = Si(LH) ∪
Si(L∨) ∪ Si(LCom), where with Si(K) we denote the collection of subdirectly irre-
ducible algebras in a class K. Then it is easy to see the following theorem.

Theorem 5.3 Every subvariety of C is of the form V(LH
i , LCom

j , L∨
k ), for i, j, k ∈ {0} ∪

N ∪ {ω}.
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Recall (see Lemma 2.6) that if

ψn (x1, . . . , xn−1) =
n−1∨
i=1

(
xi ∨ x∗

i

) ∨
n−1∨

i, j=1; j<i

(
xi → x j

)
,

then ψn(x1, . . . , xn−1) ≈ 1 characterizes the height of a chain L. So the following
corollary follows immediately.

Corollary 5.4 An equational basis for the subvariety V(LH
i , LCom

j , L∨
k ), i, j, k ∈ {0} ∪

N ∪ {ω}, within L, is the following:

δi
H(x1, . . . , xn−1, xn, xn+1) ∨ δ

j
C(y1, . . . , yn−1, yn, yn+1)

∨ δk
∨(z1, . . . , zn−1, zn, zn+1) ≈ 1, where

δi
H(x1, . . . , xn−1, xn, xn+1) = ψi(x1, . . . , xn−1) ∧ γH(xn, xn+1)

δ
j
C(y1, . . . , yn−1, yn, yn+1) = ψ j(y1, . . . , yn−1) ∧ γCom(yn, yn+1)

δk
∨(z1, . . . , zn−1, zn, zn+1) = ψk(z1, . . . , zn−1) ∧ γ∨(zn, zn+1).

6 Free Algebras in the Variety C

Our next objective is to obtain a construction of the finitely generated free algebra of
the variety C. Free algebras in LH have been studied in [2, 3] and [5]. We shall follow
a technique similar to that of Abad and Monteiro in [2].

For each n ≥ 0, let LH
i (n), LCom

i (n) and L∨
i (n) respectively denote the subalgebra

of LH
n , LCom

n and L∨
n with universe Li(n) = {0, a1, . . . , ai, 1}, 0 ≤ i ≤ n.

For a given semi-Heyting algebra A and X ⊆ A, let S(X) denote the subalgebra
of A generated by X. The following lemma is clear.

Lemma 6.1 Let L be a chain in C and X ⊆ L. Then S(X) = X ∪ {0, 1}.

The proof of the following theorem can be found in [6, Theorem V.1.4].

Theorem 6.2 Let A be an algebra in C and P a prime f ilter of A. Then A/P is a chain
if and only if the family of all proper f ilters of A containing P is a chain.

Theorem 6.3 Let A ∈ L and P a prime f ilter of A. Then the family of all proper f ilters
of A containing P is a chain.

Proof Let F = {F ⊆ A : F = A, F is a filter of A and P ⊆ F}. Let F0, F1 ∈ F and
suppose that F0 ⊆ F1 and F1 ⊆ F0. Then there exist a, b ∈ A such that a ∈ F0 \ F1

and b ∈ F1 \ F0. Since A ∈ L, A satisfies the identity (Ch). Since 1 ∈ P and P is a
prime filter, (a ∨ (a → b)) → (a → b) ∈ P or b → (a ∧ b) ∈ P.

If (a ∨ (a → b)) → (a → b) ∈ P, then a ∧ [(a ∨ (a → b)) → (a → b)] = a ∧ b .
Since (a ∨ (a → b)) → (a → b) ∈ F0 and a ∈ F0 (being that P ⊆ F0), we have that
a ∧ b ∈ F0. Consequently b ∈ F0.
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If b → (a ∧ b) ∈ P, then b ∧ [b → (a ∧ b)] = a ∧ b , and as in the previous case,
we obtain that a ∈ F1.

As a consequence, F0 ⊆ F1 or F1 ⊆ F0, that is, F is a chain. 
�

From Theorems 6.2 and 6.3 the following corollary follows.

Corollary 6.4 If A ∈ L and P is a prime f ilter of A, then A/P is a chain.

For a given semi-Heyting algebra A, let P(A) denote the collection of prime filters
of A, and for finite A, let �(A) be the set of its prime elements.

Remark 6.5 It is known that a non-trivial semi-Heyting algebra A belongs to L if
and only if A is isomorphic to a subdirect product of semi-Heyting chains. This result
can be rephrased by saying that A belongs to L if and only if A is isomorphic to a
subdirect product �P∈P(A)A/P.

The following lemma is a consequence of Theorem 6.3.

Lemma 6.6 If A ∈ L is f inite and p ∈ �(A), then the set I(p) = {q ∈ �(A) : q ≤ p}
is a chain.

Let A ∈ L, A finite. We say that p ∈ �(A) is of level i in �(A), i a positive integer,
if |I(p)| = i. It is clear that if p ∈ �(A) is of level i and Fg(p) is the filter generated
by p, then A/Fg(p) ∼= Li−1(n).

Let FC(n) be the free algebra in the variety C over n free generators, n > 0. In
what follows we denote P(n) the collection of prime filters of FC(n) and �(n) the set
of prime elements of FC(n). We have that FC(n) is isomorphic to a subalgebra of the
direct product �P∈P(n)FC(n)/P.

We are going to prove that FC(n) is finite, and in that sense, we shall prove that
P(n) is finite and that FC(n)/P is finite for every P ∈ P(n).

Lemma 6.7 Let A be an algebra in C, G a f inite set of generators of A with |G| = n
and P ∈ P(A). Then |A/P| ≤ n + 2.

Proof Let h : A → A/P be the natural epimorphism. Since S(G) = A, S(h(G)) =
A/P. By Corollary 6.4, A/P is a chain. So A/P = h(A) = S(h(G)) = h(G) ∪ {0, 1}
by Lemma 6.1. Thus |A/P| ≤ |h(G)| + 2 ≤ n + 2. 
�

Corollary 6.8 If P ∈ P(n), then FC(n)/P is a f inite chain.

By Lemma 6.7, if P ∈ P(n), the family of filters of FC(n) containing P has at most
n + 2 elements, and the family of prime filters of FC(n) containing P has at most
n + 1 elements. Then FC(n)/P is isomorphic to either LH

i (n) or LCom
i (n) or L∨

i (n),
with 0 ≤ i ≤ n,

and h : FC(n) → FC(n)/P is defined by h(x) =
{

1 i f x ∈ P
ai i f x ∈ Pi \ Pi+1, 0 ≤ i ≤ t

.
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Consider the following sets:

PH
i (n) = {

P ∈ P(n) : FC(n)/P � LH
i (n)

}
,

FH
i (n) = {

f : G → Li(n) : S( f (G)) � LH
i (n)

}
.

Similarly, we define the sets P∨
i (n), PCom

i (n), F∨
i (n) and FCom

i (n).
Finally, consider

Pi(n) = PH
i (n) ∪ P∨

i (n) ∪ PCom
i (n),

Fi(n) = FH
i (n) ∪ F∨

i (n) ∪ FCom
i (n), F(n) =

n⋃
i=1

Fi(n).

Clearly Pi(n) ∩ Pj(n) = ∅ for i = j, and Fi(n) = ∅ with 0 ≤ i, j ≤ n.
Let f ∈ FH

i (n) and f : FC(n) → LH
i (n) the extension of f. LH

i (n) = S( f (G)) =
S( f (G)) = f (FC(n)). Thus f : FC(n) → LH

i (n) is an epimorphism, and Ker f is a
prime filter of FC(n). Similarly, for F∨

i (n) and FH
i (n).

Lemma 6.9 If f ∈ FH
i (n), then FC(n)/Ker f � LH

i (n). If f ∈ F∨
i (n), then FC(n)/

Ker f � L∨
i (n). If f ∈ FCom

i (n), then FC(n)/Ker f � LCom
i (n).

Proof Suppose that f ∈ FH
i (n). Consider the natural homomorphism γ : FC(n) →

FC(n)/Ker f . Let g : FC(n)/Ker f → LH
i (n) be defined by g(a/Ker f ) = f (a) for a ∈

FC(n).
Let us see that g is well defined. If b ∈ a/Ker f , there exists c ∈ Ker f such that

ax ∧ c = b ∧ c. So f (a) = f (a ∧ c) = f (b ∧ c) = f (b).
Let a/Ker f , b/Ker f ∈ FC(n)/Ker f be such that g(a/Ker f ) = g(b/Ker f ). Then

f (a) = f (b). So f ((a → b) ∧ (b → a)) = 1 and consequently, (a → b) ∧ (b → a) ∈
Ker f . In addition, a ∧ (a → b) ∧ (b → a) = a ∧ b ∧ (b → a) = a ∧ b ∧ a = a ∧ b =
b ∧ a ∧ b = b ∧ a ∧ (a → b) = b ∧ (b → a) ∧ (a → b). Then a/Ker f = b/Ker f .
So g is injective.

Now, for every a ∈ FC(n), (g ◦ γ )(a) = g(γ (a)) = g(a/Ker f ) = f (a), so g ◦ γ = f .
Let a ∈ LH

i (n). Then there exists c ∈ FC(n) such that f (c) = a, that is g(γ (c)) = a.
So g is onto.

The same proof applies to the cases in which f ∈ F∨
i (n) or f ∈ FCom

i (n). 
�

In order to avoid unnecessary repetitions, we shall use in what follows the symbol
∗ to replace the superscripts H, ∨ or Com. For instance, F∗

i (n) will stand for any of
the sets FH

i (n), F∨
i (n) and FCom

i (n), L∗
i will denote any of the chains LH

i , L∨
i or LCom

i ,
and so on.

Lemma 6.10 The function ψ∗
i : F∗

i (n) → P∗
i (n) def ined by ψ∗

i ( f ) = Ker f is onto.

Proof For P ∈ P∗
i (n) (that is, FC(n)/P � L∗

i (n)), consider the natural homomor-
phism λ : FC(n) → FC(n)/P, and let f = λ|G the restriction of λ to G. Then
S( f (G)) = S(λ(G)) = λ(S(G)) = λ(FC(n)) � L∗

i (n), so f ∈ F∗
i (n). Now let f be the
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extension of f . Clearly f |G = f = λ|G and consequently, f = λ and ψ∗
i ( f ) =

Ker f = Kerλ = P. 
�

Lemma 6.11 P(n) is a f inite set.

Proof Since G and L∗
i (n) are finite, F∗

i (n) is finite for every 0 ≤ i ≤ n. By Lemma
6.10, ψ∗

i is onto and consequently, P∗
i (n) is finite for every 0 ≤ i ≤ n. Since P(n) =⋃n

i=1 Pi(n) = ⋃n
i=1(PH

i (n) ∪ P∨
i (n) ∪ PCom

i (n)), P(n) is finite. 
�

Theorem 6.12 FC(n) is f inite.

Proof From Remark 6.5, FC(n) ∈ IS
(
�P∈P(n)FC(n)/P

)
. By Lemma 6.11, P(n) is finite

and, by Corollary 6.8, FC(n)/P is finite for every P ∈ P(n). Then FC(n) is finite. 
�

Since every finite distributive lattice is determined, up to isomorphism, by the
ordered set of its prime elements, our next objective is to obtain a description of
�(n). For this, we are going to represent each element of �(n) by an element of
F(n), that is, a function f from G to L∗

i (n), 0 ≤ i ≤ n, such that S( f (G)) � L∗
i (n), for

∗ ∈ {H,∨, Com}.
For each ∗ ∈ {H,∨, Com}, consider the sets

F
∗(n) =

n⋃
i=0

F∗
i (n) and P

∗(n) =
n⋃

i=0

P∗
i (n),

and define ψ∗ : F∗(n) → P∗(n) by ψ∗( f ) = ψ∗
i ( f ) = Ker( f ) with f ∈ F∗(n).

By Lemma 6.9, ψ∗ is well defined and is injective.
If f ∈ F(n), f ∈ Fi(n) for some 0 ≤ i ≤ n, then f ∈ F∗

i (n) for some ∗ ∈
{H,∨, Com}. Thus Ker f ∈ P(n) and FC(n)/Ker f � L∗

i . Since FC(n) is finite, then
there exists p f ∈ �(n) such that Ker f = Fg(p f ), where Fg(p f ) is the filter generated
by p f .

Lemma 6.13 The function 	 : F(n) → �(n) def ined by φ( f ) = p f is a bijection.

Proof Let P ∈ �(n) and consider Fg(p) ∈ P(n). By Corollary 6.4, FC(n)/Fg(p) is a
chain and so, FC(n)/Fg(p) � L∗

j(n) for some 0 ≤ j ≤ n and ∗ ∈ {H,∨, Com}. Let λ :
FC(n) → FC(n)/Fg(p) the natural epimorphism and λ′ = λ|G. Then λ′ : G → L∗

j(n)

and λ′ ∈ F∗
j (n) ⊆ F(n). Thus Ker(λ′) = Ker(λ) = Fg(p) and 	(λ′) = p.

Let f1, f2 ∈ F(n) such that 	( f1) = 	( f2). Then p f1 = p f2 with Ker( f1) =
Fg(p f1) and Ker( f2) = Fg(p f2). Since p f1 = p f2 , Ker( f1) = Fg(p f1) = Fg(p f2) =
Ker( f2). Consequently FC(n)/Ker( f1) � FC(n)/Ker( f2). From Theorem 5.2 and
Corollary 6.4, FC(n)/Ker( f1) � L∗

j(n) for some 0 ≤ j ≤ n and ∗ ∈ {H,∨, Com}. Then

Ker( f1), Ker( f2) ∈ P∗
i (n) and ψ∗( f1) = Ker( f1) = Ker( f2) = ψ∗( f2). Since ψ∗ is

injective, then f1 = f2. 
�
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Remark 6.14 If p f ∈ �(n) is of level i, 1 ≤ i ≤ n + 1, then FC(n)/Fg(p f ) � L∗
i−1(n),

with ∗ ∗ ∈ {H,∨, Com}.

Lemma 6.15 p f ∈ �(n) is of level 1 if and only if f (g) ∈ {0, 1} for every g ∈ G.

Proof If p f ∈ �(n) is of level 1, FC(n)/Fg(p f ) � L∗
0(n), with ∗ ∈ {H,∨, Com}, and

this is equinalent to say that Fg(p f ) ∈ P∗
0(n). Consider ψ∗

0 : F∗
0 (n) → P∗

0(n). By
Lemma 6.10, ψ∗

0 is bijective, and then, there exists f ∈ F∗
0 (n) : ψ∗

0 ( f ) = Fg(p f ) =
Ker( f ). Thus f ∈ (

ψ∗
0

)−1 (
Fg(p f )

)
. Since f ∈ F∗

0 (n), then S( f (G)) = L∗
0(n). So

f (G) ∪ {0, 1} = L∗
0(n). Then f (G) ⊆ {0, 1}. 
�

From Lemma 6.13, there is a one-to-one correspondence between the set of prime
elements of FC(n) and the set F(n). By means of this relation, an element p ∈ �(n)

of level i corresponds to a function f ∈ Fi−1(n), that is, a function f ∈ FH
i−1(n) ∪

F∨
i−1(n) ∪ FCom

i−1 (n). In particular, p ∈ �(n) is of level 1 if and only if the correspond-
ing function f ∈ FH

0 (n) ∪ F∨
0 (n) ∪ FCom

0 (n) = FH
0 (n) ∪ FCom

0 (n) being that FH
0 (n) =

F∨
0 (n). Besides, |FH

0 (n) ∪ FCom
0 (n)| = |FH

0 (n)| + |FCom
0 (n)| since FH

0 (n) ∩ FCom
0 (n) =

∅. Thus �(n) has 2n + 2n = 2n+1 minimal elements, that is, �(n) has 2n+1 elements of
level 1.

The following lemma can be proved in a similar way to Lemma 6.15.

Lemma 6.16 p f ∈ �(n) is of level i, 2 ≤ i ≤ n + 1, if and only if f (G) ⊆ Li−1(n) and
a1, a2, . . . , an−1 ∈ f (G).

Lemma 6.17 Let p, q ∈ �(n). Then q covers p in �(n) if and only if the following
conditions hold:

(1) Fg(q) ⊂ Fg(p),
(2) Fg(p) ∈ P∗

t (n),
(3) Fg(q) ∈ P∗

t+1(n) for some 0 ≤ t ≤ n − 1 and ∗ ∈ {H,∨, Com}.

Proof Since q covers p, Fg(q) ⊂ Fg(p) and there is no P ∈ P(n) such that
Fg(q) ⊂ P ⊂ Fg(p). Since Fg(p) ∈ P(n), Fg(p) ∈ P∗

t (n) for some 0 ≤ t ≤ n and ∗ ∈
{H,∨, Com}. besides, t = n being that the family of prime filters containing Fg(q)

has at most n+1 elements. Since there is no P ∈ P(n) such that Fg(q) ⊂ P ⊂ Fg(p),
then Fg(q) ∈ P∗

t+1(n).
For the converse, consider p, q ∈ �(n) satisfying conditions (1), (2) and (3).

From (1), p < q. Suppose that there exists p′ ∈ �(n) such that p < p′ < q. Then
Fg(q) ⊂ Fg(p′) ⊂ Fg(p). By (2), Fg(p) ∈ P∗

t (n) and consequently, Fg(q) ∈ P∗
t+2(n)

which contradicts the hypothesis (3). 
�

Theorem 6.18 Let f, h ∈ F(n). then 	(h) = ph = q covers 	( f ) = p f = p if and
only if f ∈ F∗

t (n), h ∈ F∗
t+1(n) for some 0 ≤ t ≤ n − 1 and ∗ ∈ {H,∨, Com}, and the

following conditions hold:

(I) f (g) = a j if and only if h(g) = a j for every 0 ≤ j ≤ t.
(II) f (g) = 1 if and only if h(g) = 1 ó h(g) = at+1.

(III) There exists g ∈ G : f (g) = h(g).
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Proof Suppose that 	(h) = ph = q covers 	( f ) = p f = p. By Lemma 6.17,
Fg(q) ⊂ Fg(p), Fg(p) ∈ P∗

t (n) and Fg(q) ∈ P∗
t+1(n) for some 0 ≤ t ≤ n − 1 and ∗ ∈

{H,∨, Com}. From Ker( f ) = Fg(p) ∈ P∗
t (n) we have that FC(n)/Ker( f ) � L∗

t (n).
Consider the natural homomorphism λ : FC(n) → FC(n)/Ker( f ). So λ = f and thus
f ∈ F∗

t (n). Similarly h ∈ F∗
t+1(n).

Since f ∈ F∗
t (n), S( f (G)) = f (G) ∪ {0, 1} = Lt(n). If t = 0, f (G) ⊆ {0, 1} and

if t = 0, a1, . . . , at ∈ f (G). In a similar way a1, . . . , at, at+1 ∈ h(G). Since Pt+2 =
Fg(ph) ⊆ Pt+1 = Fg(p f ) ⊂ Pt ⊂ . . . ⊂ P1 ⊂ P0 = FC(n) it follows that

f (x) =
{

1 i f x ∈ Fg(p f )

a j i f x ∈ Pj \ Pj+1, 0 ≤ j ≤ t

and

h(x) =
{

1 i f x ∈ Fg(ph)

a j i f x ∈ Pj \ Pj+1, 0 ≤ j ≤ t + 1

We have that f (g) = a j ⇔ f (g) = a j ⇔ g ∈ Pj \ Pj+1 ⇔ h(g) = a j ⇔ h(g) = a j.
In addition, f (g) = 1 ⇔ f (g) = 1 ⇔ g ∈ Fg(p f ) ⇔ g ∈ (

Fg(p f ) \ Fg(ph)
) ∪

Fg(ph) ⇔ g ∈ Fg(p f ) \ Fg(ph) or g ∈ Fg(ph) ⇔ g ∈ Pt+1 \ Pt+2 or g ∈ Fg(ph) ⇔
h(g) = at+1 or h(g) = 1 ⇔ h(g) = at+1 or h(g) = 1.

Clearly there exists g ∈ G such that f (g) = h(g).
For the converse, let f ∈ F∗

t (n), h ∈ F∗
t+1(n) for some 0 ≤ t ≤ n − 1 and ∗ ∈

{H,∨, Com}, satisfying conditions (I), (II) and (III). Since f ∈ F∗
t (n), S( f (G)) =

L∗
t (n). Thus FC(n)/Fg(p f ) = FC(n)/Ker( f ) = L∗

t (n), and so Fg(p f ) ∈ P∗
t (n). Simi-

larly Fg(ph) ∈ P∗
t+1(n).

By Lemma 6.17, it is enough to prove that Fg(ph) ⊂ Fg(p f ).
Consider

Fg(p f ) = Pt+1 ⊂ Pt ⊂ . . . ⊂ P1 ⊂ P0 = FC(n)

and

Fg(ph) = Qt+2 ⊂ Qt+1 ⊂ . . . ⊂ Q1 ⊂ Q0 = FC(n)

the chains of prime filters containing Fg(p f ) and Fg(ph) respectively. Let

Ct+2 = Qt+2 ∩ Pt+1, Ct+1 = (Qt+1 \ Qt+2) ∩ Pt+1 and

C j = (Q j \ Q j+1) ∩ (Pj \ Pj+1), 0 ≤ j ≤ t.

We have that

z ∈ Ct+2 ⇔ h(z) = 1 and f (z) = 1;

z ∈ Ct+1 ⇔ h(z) = at+1 and f (z) = 1;

z ∈ C j ⇔ h(z) = a j and f (z) = a j, 0 ≤ j ≤ t.

Observe that the sets C j are pairwise disjoint, 0 ≤ j ≤ t + 2, and it is long but
computational to verify that S = ⋃t+2

j=0 C j is a subalgebra of FC(n).
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Let g ∈ G. Then h(g) ∈ {0 = a0, a1, . . . , at, at+1, 1}. If h(g) = 1 then g ∈ Qt+2. By
(II), f (g) = 1 and consequently g ∈ Pt+1 and g ∈ Ct+2 ⊆ S. If h(g) = at+1 then g ∈
Qt+1 \ Qt+2 and g ∈ Pt+1 by (II). Thus g ∈ Ct+1 ⊆ S. If h(g) = a j, 0 ≤ j ≤ t, then g ∈
Q j \ Q j+1 and f (g) = a j by (I). So g ∈ C j ⊆ S. Therefore G ⊆ S and consequently
FC(n) = S.

Then Fg(ph) = Qt+2 = Qt+2 ∩ FC(n) = Qt+2 ∩
(⋃t+2

j=0 C j

)
= ⋃t+2

j=0

(
Qt+2 ∩ C j

) =
Qt+2 ∩ Ct+2 = Qt+2 ∩ Pt+1 = Fg(ph) ∩ Fg(p f ). Then Fg(ph) ⊆ Fg(p f ). If Fg(ph) =
Fg(p f ), Kerh = Ker f . So h = f and then h = f . 
�

As an example, suppose that G = {g1, g2} and let us determine the ordered set
�(2). By Lemma 6.15, the minimal elements of �(2) are determined by the set F0(2).

Recall that LH
0 = L∨

0 , and consequently, FH
0 (2) = F∨

0 (2). So F0(2) = FH
0 (2) ∪

F
Com
0 (2).

Let (x, y)∗i denote the function f : G → L∗
i (2) such that f (g1) = x, f (g2) = y and

S( f (g1), f (g2)) ∼= L∗
i (2) with ∗ ∈ {H, Com,∨}, 0 ≤ i ≤ 2. Then the minimal elements

of �(2) are represented by the functions

F
H
0 (2) = {

(0, 0)H0 , (0, 1)H0 , (1, 0)H0 , (1, 1)H0
}

and

F
Com
0 (2) = {

(0, 0)Com
0 , (0, 1)Com

0 , (1, 0)Com
0 , (1, 1)Com

0

}
.

By using the conditions of Theorem 6.18 we construct the corresponding con-
nected components of �(2).

�

(0, 0)Com
0

�

�

(0, 1)Com
0

(0, a1)
Com
1

�

�

(1, 0)Com
0

(a1, 0)Com
1

�

� � �

� �

������

������

(1, 1)Com
0

(a1, 1)Com
1 (a1, a1)

Com
1 (1, a1)

Com
1

(a1, a2)
Com
2 (a2, a1)

Com
2

�

(0, 0)H0 = (0, 0)∨0

�

�

�

�
�

�

�
�

�

(0, 1)H0 = (0, 1)∨0

(0, a1)
H
1 (0, a1)

∨
1
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�

�

�

�
�

�

�
�

�

(1, 0)H0 = (1, 0)∨0

(a1, 0)H1 (a1, 0)∨1

�

� � � � � �

� � � �

���������������

���������

�
�
�
�
�

�
�

�
�

�

���������

															 (1, 1)H0 = (1, 1)∨0

(a1, 1)H1 (a1, a1)
H
1 (1, a1)

H
1 (a1, 1)∨1 (a1, a1)

∨
1 (1, a1)

∨
1

(a1, a2)
H
2 (a2, a1)

H
2 (a1, a2)

∨
2 (a2, a1)

∨
2

The free algebra FC(n) can be constructed from the ordered set �(n).
Let [ f ) = {g ∈ F(n) : f ≤ g}, and for 0 ≤ j ≤ n consider the sets

KCom
j (n) = {[ f ) : ∣∣ f −1(1)

∣∣ = j and f ∈ F
Com
0 (n)

}
,

KH,∨
j (n) = {[ f ) : ∣∣ f −1(1)

∣∣ = j and f ∈ F
H
0 (n)

}
.

Let RCom
j (n) and RH,∨

j (n) respectively denote the distributive lattice such that

�(RCom
j (n)) ∈ KCom

j (n) and �(RH,∨
j (n)) ∈ KH,∨

j (n). Then

FC(n) =
n∏

j=0

(
RH,∨

j (n)
)(n

j) ×
n∏

j=0

(
RCom

j (n)
)(n

j)
.

In the above example, �(2) is

� �

�

�

� �

�

�

�

�

�

� �

� �

�

� �

�
�

�
�

�
�

�
�

�
�

�
�

KCom
0 (2) KCom

1 (2) KCom
2 (2) KH,∨

0 (2) KH,∨
1 (2)
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�

�

�

� �

�

�

�

� �

�







�

��
�

�

�

��
�
�

KH,∨
2 (2)

and consequently,

FC(2) = RCom
0 (2) × RCom

1 (2) × RCom
2 (2) × RH,∨

0 (2) × RH,∨
1 (2) × RH,∨

2 (2).

In the case n = 1, the ordered set �(1) is:
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KCom
0 (1) KCom

1 (1) KH,∨
0 (1) KH,∨

1 (1)

and thus, FC(1) = RCom
0 (1) × RCom

1 (1) × RH,∨
0 (1) × RH,∨

1 (1), where
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RCom
0 (1) RCom

1 (1) RH,∨
0 (1) RH,∨

1 (1)
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