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Abstract In this paper we investigate those subvarieties of the variety SH of semi-
Heyting algebras which are term-equivalent to the variety £, of Godel algebras
(linear Heyting algebras). We prove that the only other subvarieties with this
property are the variety £°™ of commutative semi-Heyting algebras and the variety
LY generated by the chains in which a < b implies a — b = b. We also study the
variety C generated within SH by L4, £, and Lcom. In particular we prove that C is
locally finite and we obtain a construction of the finitely generated free algebra in C.
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1 Introduction and Preliminaries

In [7], Sankappanavar considered the following conjecture: there exists a variety
V of algebras (of the same type as that of Heyting algebras) that possesses the
following well known properties and includes Heyting algebras: (1) the algebras in
Y are pseudocomplemented, (2) they are distributive, and congruences on them are
determined by filters. He settled this conjecture with the discovery of semi-Heyting
algebras.
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Definition 1.1 An algebra A = (A, Vv, A, —,0, 1) is a semi-Heyting algebra if the
following conditions hold:

(SH1) (A,Vv,A,0,1)is alattice with 0 and 1.
(SH2) xA(x—>y)=XAY.

(SH3) xA(y—=>2=xA[(xAY) = (xA 2]
(SH4) x— x~1.

We will denote by SH the variety of semi-Heyting algebras. The variety H of
Heyting algebras is the subvariety of SH characterized by the equation (x A y) —
x~1[7].

Any semi-Heyting algebra A is a pseudocomplemented distributive lattice, con-
gruences on A are determined by filters and the variety of semi-Heyting algebras
is arithmetic, thus extending the corresponding results of Heyting algebras. Besides,
semi-Heyting algebras share with Heyting algebras some other strong properties.

In the next lemma we include some useful elementary properties of semi-Heyting
algebras.

Lemma 1.2 [7] LetA € SHanda,b € A.

(a) Ifa— b =1thena<b.

(b) Ifa<bthena<a—b.

(¢) a=bifandonlyifa—b =b —»a=1.
d 1—-a=ua

Proof From a — b =1 and (SH3), we get anl=aAb, that is a=aAb, and
we have (a). For (b), by (SH3) and since a < b it follows that a =a A (a - b) <
a — b. Property (c) is clear. To prove (d), observe thata=1Aa=1A( - a) =
1 —a. O

The algebras 2 and 2, which have the two-element chain as their lattice reduct
and whose — operation is defined in the following figure, are the most elementary
examples of semi-Heyting algebras. One easily verifies that 2 is a Heyting algebra
while 2 is not.

[\°]]

Observe that, in SH, the (Heyting) property “if a < b thena — b = 1” does not
hold.

We have the following characterization of subdirectly irreducible algebras in SH
(see [7, Theorem 7.5]).
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Theorem 1.3 Let A € SH with |A| > 2. The following are equivalent:

(a) A issubdirectly irreducible.
(b) A has a unique coatom.

Observe that as a consequence of this theorem, if A is subdirectly irreducible, then
1 € Ais v-irreducible.

We say that A € SH is a semi-Heyting chain if the lattice reduct of A is totally
ordered. We say that A is a linear semi-Heyting algebra if A belongs to the subvariety
of SH generated by semi-Heyting chains. This subvariety will be denoted by L.

Theorem 1.4 [1] An equational basis for L relative to SH is given by
(xVEx—=>y) > x—=>y)Vy—>xAy) =1 (Ch)

Proof Let us prove that if A is a semi-Heyting chain, then A satisfies the identity
(Ch). Leta,b € A. Ifa<b,by Lemma 1.2,a <a— b.HenceaVv (a— b)=a—
b,so@v@—>>b)) >(a@a—>b)y=@—>b)—>(@—>b)=1.1Iftb <a,b =b Aaand
thenb - (aAb)=b - b =1.

Conversely, let us prove that if V is the subvariety of SH defined by (Ch)
then every subdirectly irreducible algebra in V is a chain. Let A € V subdirectly
irreducible and let a,b € A. Since A satisfies (Ch), ((aV (@ — b)) — (a — b)) v
(b — (an b)) =1.As Aissubdirectly irreducible, 1 is v-irreducible. Thus (a Vv (@ —
b)) >(a—>b)y=1orb - (anb)=1.

Suppose that (@v (@ — b)) - (a— b)=1. Then av (a— b) <a— b, and
thus,a <av(a—>b)<a—>b.Henceanb =an(a—>b)=a,soa<bh.

Ifb - (anb)=1,thenb <aAb,andthusb <a.

Hence A is a chain. O

Recall that the lower half, including the main diagonal, of the operation table of
— in a semi-Heyting chain is uniquely determined [7, Theorem 4.3], that is, if A is a
semi-Heyting chain,a, b € A,and a < b then b — a = a, and consequently we have
just to consider the cases @ — b whenever a < b in order to complete the operation
table of —. In this paper we are going to consider those semi-Heyting chains in which
a— b €{l,a, b} fora < b, and this will led us to consider three subvarieties of L.

1. The first one is the subvariety generated be the semi-Heyting chains that satisfy
that @ < b implies a — b = 1, and this is the variety Ly, of Gddel algebras (also
known as the variety of linear Heyting algebras).

2. In the second place, we will consider the subvariety generated by the semi-
Heyting chains that satisfy that a < b implies a — b = a, and this is the sub-
variety Lcom of commutative linear semi-Heyting algebras.

3. Finally, we have the subvariety of £ generated by the semi-Heyting chains in
which a < b implies @ — b = b. This subvariety will be denoted by L, since it
satisfies that fora < b,a —- b =a Vv b.

The main objective of this paper is to prove that the subvarieties Lcom and L., are
both term-equivalent to the variety £, of Godel algebras, and that they are the only
other subvarieties of £ term-equivalent to L.
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As the second objective of the paper, we investigate the variety C generated within
SH by L4, L, and Lcom. In particular we prove that C is locally finite and we obtain
a construction of the finitely generated free algebra in C.

2 The Subvariety Lcom

In this section we consider the subvariety generated by the semi-Heyting chains that
satisfy that a < b implies a — b = a. This is the subvariety Lcom of commutative
linear semi-Heyting algebras characterized within £ by the equationx — y ~ y — x.
We prove that Lcon, is locally finite, we determine its lattice of subvarieties and we
find an equational basis for each subvariety.

The following lemma is clear.

Lemma 2.1 Given a totally ordered lattice A with least element 0 and last element 1, if
forevery a,b € A we define

1 fora=5»b

a_)b:{a/\b fora#b

then A = (A, A, Vv, —, 0, 1) is a commutative linear semi-Heyting algebra.

It is easy to see that the only structure of a commutative semi-Heyting algebra that
can be defined on a chain is the one defined above.

For each integer n > 0, let L, and L,, respectively denote the chains 0 = ayp < a; <

.<ay<ap=land0=by<b; <...<b, | <b,<...<1,andlet LS°" and
LS"“‘ denote the corresponding algebras in Lcom With universes L, and L,,. We have
that L§°™ is the algebra 2 and LE™ is the chain

— 0 aj 1
L g 0 10
a 0] 1 |a
1 0 aj 1
0

Since the class of linear commutative semi-Heyting algebras is a subvariety of £,
every linear commutative semi-Heyting algebra can be represented as a subdirect
product of commutative semi-Heyting chains.

We are going to prove that Lcom is generated by the chains L™, n > 0.

Theorem 2.2 A subvariety V of Lcom is proper if and only if LS°™ ¢ V for some n > 0.

Proof Suppose that V is a proper subvariety of Lcom, that is, V # Lcom. Then
there exists an identity € ~ A such that V =€ ~ A and Lcom [~ € & A. Then there
exists a chain A € Lcom such that A f=e ~ M. Let ay,a;,...,a, € A such that
e(ay,ay,...,an) #May,as, ...,a,), and consider the subalgebra B of A generated
by the elements ay, ay, ..., a,. Then B is a finite chain in Lcon, and consequently
B = L™ for some n > 0. So L™ ¢ V. O
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Corollary 2.3 Every subvariety of Lcom is generated by its finite chains.
The following lemma is immediate.

Lemma 2.4

(a) LS°™ is isomorphic to a subalgebra of LS™, for every n > 0.
(b)  The variety of linear commutative semi-Heyting algebras is generated by LS°™.
(c) Ifn <n', LE°™ is isomorphic to a subalgebra of LS°™.

Now we will determine the lattice of subvarieties of the A variety Lcom. We also
give an equational base for each one of these subvarieties.

Theorem 2.5 The only subvarieties of Lcom are V(LSOH‘) and V(LE‘”“), n>0.

Proof LetV be a subvariety of Lcom. If V is the whole variety Lcom, then, by Lemma

2.4,V = V(LE°™). Suppose that ) is a proper subvariety of L£com. From Theorem 2.2,

there exists an integer n > 0 such that L$°™ ¢ V. Let t = max {n € NU {0} : L™ ¢

V}. Then, by Lemma 2.4, every finite chain in V is isomorphic to a subalgebra of

L™, Thus V = V(LEO™). O
Hence we have that the lattice of subvarieties of Lcom is an (w + 1)-chain:

TCVILFEM) V(L) c...c V(L") S ... € Leom =V (LS™™).,

T the trivial variety, and, consequently, is isomorphic to the lattice of subvarieties of
the variety of Godel algebras (see [4]).

Lemma 2.6 [1] Let L be a chain in L. If L satisfies the identity (H,), then |L| < n.

V(xifo)v \7 (xi—>xj)%1 (Hyp)

i=1 j=1j<i

Corollary 2.7 (H,) is, within Lcom, a basis for V(L,(ES'Z“), for each integer n > 2.

3 The Subvariety L,
In this section we consider the subvariety £, of £ generated by the semi-Heyting
chains in which @ < b impliesa — b = b.

In the following theorem we abbreviate x <> y to denote the term (x — y) A (y —
x). Itis clear that x <> y ~ l if and only if x &~ y.
Theorem 3.1 L, is characterized within L by the equation

(xAY) <o pVx—>y) <y ~1

Proof Let A be a chain in £, and a,b € A. If a=b, then ((ara) < a)V ((a—
a)<a)=1.Ifa<b,((anb)<b)v(a—b)<b)=@<>b)vb «<b)=1.1f
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a>b,((anb)y<b)v((a—>b)<b)=({b < b)Vv (b <« b)=1.So0 A satisfies the
desired equation.

Suppose now that A is a semi-Heyting chain that satisfies ((x A y) < y) vV (x —
y) < y)~landleta,b € A,a<b.Then ((aAb) < b)V ((a— b) < b)=1,that
is,(a<>b)yv(a—>b)y<b)=1.Soa<b=1lor(a—>b)<b=1Ifaxb=1
then a = b, which contradicts the assumption. So ((@ — b) < b) =1, that is, a —
b = b. So A belongs to the variety L. O

The following result follows immediately.

Lemma 3.2 Given a totally ordered lattice A with least element 0 and last element 1, if
foreverya,b € A we define

lifa=>b
bifa#b

then A = (A, A, V,—,0, 1) is an algebra in L.,.

a—>b={

It is easy to see that the only structure of an algebra in £, that can be defined on
a chain is the one defined above.

Let L) and L} respectively denote the (uniquely determined) algebras in £, with
underlying lattice (L,, V, A, 0, 1) and (L,,, V, A, 0, 1) respectively, that is, where the
operation — is definedbya — b =lifa=b anda — b = b ifa # b. We have that
L is the Heyting algebra 2 and Ly is the algebra

v — 0 aj 1
0 |1 ]a |1
ap |0 1 |1

0 1 0 aj 1

and every finite chain in £, is isomorphic to L) for some n > 0.
The proof of the following theorem is similar to that of Theorem 2.2.

Theorem 3.3 A subvariety V of L is proper if and only if L, ¢ V for some n > 0.
Remark 3.4 Arguing as in the proof of Theorem 2.2, we can prove that every
subvariety of L, is generated by its finite chains, that is is generated by the algebras

{L)/,n € I} for some I C w.

Lemma 3.5

(a) L) is isomorphic to a subalgebra of Ly, for every n > 0.
(b) L, is generated by L.
(c) Ifn <n/, L) isisomorphic to a subalgebra of L;,.

The following theorem characterizes the lattice of subvarieties of L, .
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Theorem 3.6 The only subvarieties of L., are V(L)) and V(L,)), n > 0.

Proof Let V be a subvariety of £,. If V = L, by Lemma 3.5, V = V(L). Suppose
that V is a proper subvariety. From Theorem 3.3 there exists an integer n > 0 such
that L/ ¢ V. Let t =max {n e NU{0} : L € V}. Then every finite chain in £, is
isomorphic to a subalgebra of L)/, by Lemma 3.5. Hence V = V(L'). O

So, the lattice of subvarieties of L, is an (w + 1)-chain:
T<V(y)cV(L)c...cV(L)c...cL,=V(L).

As a corollary, we get, as in Section 2, an equational characterization for each
subvariety of L.,.

Corollary 3.7 (H,) is, modulo L., a base for V(L) _,).

4 Subvarieties Term-equivalent to the Variety of Godel Algebras

In this section we prove that the varieties Lcom and L., are term-equivalent to the
variety L of Godel algebras (linear Heyting algebras), and that they are the only
other subvarieties in £ with this property.

The following lemma states that we can always define a Heyting implication in any
semi-Heyting algebra. Moreover, among all the semi-Heyting implication operations
that can be defined in a given distributive lattice, the Heyting implication is the
greatest one.

Lemmad4.1 Let (A, V, A, —,0, 1) be a semi-Heyting algebra. If we definea —p b =
a— (anb) foreverya,b € A, then

(a) (A,V,A,—p,0,1)isa Heyting algebra.
(b) a— b <a—pyb foreverya,b € A.

Proof Let us prove that —py is a Heyting implication. Let a,b,c € A. Then
a—>pga=a— (ana) =1, so we have (SH4). Now, an(@a—>pyb)=an (a—
(anb))=anrnanb =anb, and we get (SH2). For (SH3), an(b —>gc)=an
b —>bArc)=ananb) > @rbrc)l=anflanb)—> (arnbranc]=an
[@aAnb) = (@anc)]. Finally, @Ab) >ga=(@Ab)—> (arnb Ara)=1.50 —pis
a Heyting implication, and we have proved (a).

For (b),(a—>b)A(a—>pgb)=(@a—b)rla— (arnb)]=(@a—> b)A[@anA(a—
b)) > (@anbA@—>Db)]=@—b)A((anb) —> (anb)=(@—>b)Al=a—b.
Thusa - b <a—pyb. O

Similarly, we have the following.

Lemmad4.2 Let (A, V, A, —,0, 1) be a semi-Heyting chain. If we define
a—>;b=bVv[a—>gb)An®b —ga)l, forabeA,

then (A, Vv, A, —;,0,1) € L,,.
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Proof Let a,b e A. If a<b, a—;b=bv(a<ygb)=>b. So (A,V,A, —,
0,1) e L. O

Since every linear Heyting algebra is a subdirect product of Heyting chains, every
linear Heyting algebra can be transformed into an algebra in L,,.

The following lemma states that we can define an operation — . on a semi-Heyting
algebra to obtain an algebra in Lcom. Its proof is easy.

Lemma 4.3 Let (A, V, A, —,0, 1) be a semi-Heyting chain. If we define
a—>.b=@—>ygb)Ab —>pya), for a,be A,

then (A, V, A, —,0,1) € Lcom.

Thus, from Lemmas 4.1, 4.2 and 4.3, the varieties Lcom, £ are both term-
equivalent to the variety £y, of Godel algebras.

If §x(X) denotes the free algebra over a set X of free generators in a given class
KC, we have the following result.

Corollary 4.4 The lattice reduct of the algebras §., (X)), Sce,(X) and S, (X) are
pairwise isomorphic.

Let us see now that Lcom and L., are the only subvarieties of £ term equivalent
to L.

The proof of the following lemma can be done by induction on the length of the
Heyting term #(x, y), where by a Heyting term we understand a term in the language
{n,V,—>py,0,1}.

Lemma 4.5 Let (L, A, V,—,0, 1) be a semi-Heyting chain such that x — y = t(x, y),
where t(x,y) is a Heyting term. Then for every a,b € L such that a <b, a - b =
ta,b) €e{a,b,1}.

As a consequence of the previous lemma we obtain the following.

Corollary 4.6 Let t(x, y) be a Heyting term, with t(x,y) # 0, 1, and let L, and L, be
semi-Heyting chains. Leta,b € Ly and c,d € L, such thata < b and ¢ < d. Then the
following conditions hold:

(a) Ift“(a,b) =athent™(c,d) =c
(b) Ift“(a,b) =b then ™ (c,d) = d.
(¢) Ift“(a,b) =1thent“(c,d) = 1.

Theorem 4.7 The varieties Lcom and L., are the only subvarieties of L term equivalent
to the variety of linear Heyting algebras.

Proof Let V be a subvariety of £ term equivalent to the variety of linear Heyting
algebras. Then there exists a Heyting term f(x, y) such that for every algebra
AeV,x— y=t(x,y). Let L be a chain in V. Suppose that a — b = a for every
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a,b € Lsuch thata < b. Then L € Lcom. In addition, by Corollary 4.6, every chain
in V belongs to Lcom- S0 V € Lcom- The other cases are similar. O

5 The Variety Generated by Lcom, £v and Ly

The aim of this section is to investigate the variety generated by the varieties Lcom,
L., and the variety of linear Heyting algebras. We will find an equational basis for this
variety, we will determine its lattice of subvarieties and we will study free algebras of
this variety.

Recall that the lattice of subvarieties of L, is an (w + 1)-chain

TV cvL)c...cv(L)c...cLy=V (L)),

where L is the unique Heyting algebra having as a lattice reduct the (n + 2)-element
chain L, n € {0} UN U {w}.

Also observe that L}t = Ly.

Consider the following terms.

ya(Xx,y) = (XAYy) > x
Ycom(X,y) = (x > y) < (y = x)
wuw—wAwewwuewew

Observe that yy(x, y) & 1, ycom(x, y) & 1 and ., (x, y) ~ 1 respectively represent
an equational basis, modulo L, for the subvarieties L, Lcom and L., .

Definition 5.1 Let C be the subvariety of £ characterized by the equation:

YH(X1, X2) V Ycom (Y1, Y2) V W (21, 22) & 1

We are going to prove that C is the variety generated by the varieties Lcom, £y
and L.

Theorem 5.2 V (L, Lcom, L) =C

Proof 1t is clear that V(Ly, Lcom, £v) € C. For the other inclusion, consider
a semi-Heyting chain LeC. If we suppose that L ¢ Ly U Lcom ULy, then
there exist aj, a», by, b2, ¢y, ¢ € L such that yg(ai, az) # 1, ycom(b1,b2) # 1 and
w(ci, ¢2) # 1. Thus, by Theorem 1.3, yg(ai, az) vV ycom(D1,b2) V (e, ) #1, a
contradiction. O

Let V be a subvariety of C. As in the proof of Theorem 5.2, Si(V) = Si(Ly) U
Si(Ly) U Si(Lcom), Where with Si(K) we denote the collection of subdirectly irre-
ducible algebras in a class K. Then it is easy to see the following theorem.

'II\‘Iheorem 5.3 Every subvariety of C is of the form V(L}, L?"m, L)), fori, j k € {0} U
U {w}.
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Recall (see Lemma 2.6) that if

n—1 n—1

1//,,(x1,...,xn_1):\/(x,'Vx:-‘)\/ \/ (xi_>x/):

i=1 ij=1;j<i
then v, (xy, ..., x,—1) =~ | characterizes the height of a chain L. So the following

corollary follows immediately.

Corollary 5.4 An equational basis for the subvariety V(L, L]C‘)m, L)), i, jke{0}u
N U {w}, within L, is the following:

S (X, ooy Xty Xy X ) VL (V1s <oy Yoy Yo Y1)
V85 (z1s . 2oty 2oy Zns) A 1, where
Xty ooy X1y Xy X)) = Yi(X1, o, Xum) A YEXn, Xpg)
SEW s e Ynets Yy Y1) = VjW1s - ooy Y1) A Yom (Vs Yns1)
k
8,21y oy Zn15 Zns> Znt1) = Yr(Z1s - oo Zn—1) A W(Zns Zut1)-

6 Free Algebras in the Variety C

Our next objective is to obtain a construction of the finitely generated free algebra of
the variety C. Free algebras in £ have been studied in [2, 3] and [5]. We shall follow
a technique similar to that of Abad and Monteiro in [2].

For eachn > 0, let L;H (n), Ll-Com (n) and L} (n) respectively denote the subalgebra
of L, L™ and LY with universe L;(n) = {0, ay,...,a;,1},0 <i < n.

For a given semi-Heyting algebra A and X C A, let S(X) denote the subalgebra
of A generated by X. The following lemma is clear.

Lemma 6.1 Let L be a chaininC and X C L. Then S(X) = X U{0, 1}.
The proof of the following theorem can be found in [6, Theorem V.1.4].

Theorem 6.2 Let A be an algebra in C and P a prime filter of A. Then A/ P is a chain
if and only if the family of all proper filters of A containing P is a chain.

Theorem 6.3 Let A € L and P aprime filter of A. Then the family of all proper filters
of A containing P is a chain.

Proof Let §={FC A: F # A, Fisafilterof Aand P C F}. Let Fy, F; € § and
suppose that Fy £ F; and F; € Fy. Then there exist a,b € A such thata € Fy \ F,
and b € Fy \ Fy. Since A € L, A satisfies the identity (Ch). Since 1 € P and P is a
prime filter, @V (a - b)) - (a— b) e Porb — (anb) € P.

If @av(a— b))— (a— b)e P, then an[(aVv(a— b))~ (a—>b)l=aAnb.
Since (a Vv (a — b)) — (a — b) € Fy and a € F; (being that P C F;), we have that
aANb € Fy. Consequently b € Fy.
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Ifb - (a@anb)e P,thenb A[b — (anb)] =a Db, and as in the previous case,
we obtain thata € Fj.
As a consequence, Fy C F; or F; C Fy, that is, § is a chain. O

From Theorems 6.2 and 6.3 the following corollary follows.

Corollary 6.4 If A € L and P is a prime filter of A, then A/ P is a chain.

For a given semi-Heyting algebra A, let P(A) denote the collection of prime filters
of A, and for finite A, let I[1(A) be the set of its prime elements.

Remark 6.5 1t is known that a non-trivial semi-Heyting algebra A belongs to L if
and only if A is isomorphic to a subdirect product of semi-Heyting chains. This result
can be rephrased by saying that A belongs to £ if and only if A is isomorphic to a
subdirect product ITpcpa) A/ P.

The following lemma is a consequence of Theorem 6.3.

Lemma 6.6 If A € L is finite and p € T1(A), then the set I1(p) = {q € [1(A) : ¢ < p}
is a chain.

Let A € L, A finite. We say that p € T1(A) is of level i in [1(A), i a positive integer,
if [I(p)| =i. Itis clear that if p € T1(A) is of level i and Fg(p) is the filter generated
by p, then A/Fg(p) = L;_1(n).

Let §c(n) be the free algebra in the variety C over n free generators, n > 0. In
what follows we denote P(n) the collection of prime filters of §¢(n) and I1(n) the set
of prime elements of §¢(n). We have that §¢(n) is isomorphic to a subalgebra of the
direct product I pepySc(n)/ P.

We are going to prove that §¢(n) is finite, and in that sense, we shall prove that
P(n) is finite and that §¢(n)/ P is finite for every P € P(n).

Lemma 6.7 Let A be an algebra in C, G a finite set of generators of A with |G| =n
and P € P(A). Then |A/P| <n+2.

Proof Let h: A — A/P be the natural epimorphism. Since S(G) = A, S(h(G)) =
A/P. By Corollary 6.4, A/P is a chain. So A/P = h(A) = S(h(G)) = h(G) U {0, 1}
by Lemma 6.1. Thus |A/P| < |h(G)|+2 <n+2. O

Corollary 6.8 If P € P(n), then §c(n)/ P is a finite chain.

By Lemma 6.7, if P € P(n), the family of filters of §¢(n) containing P has at most
n + 2 elements, and the family of prime filters of §¢(n) containing P has at most
n+ 1 elements. Then Fc(n)/ P is isomorphic to either L (n) or L™ (n) or LY (n),
with 0 <i <n,
. . ) _JlifxeP
and 4 : §c(n) — Sc(n)/ P is defined by A(x) = {ai ifxe P\ Poy, O<i<t
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Consider the following sets:

Pl(n)={PePm): Fcn)/P=LItmn)},

Fltm)=1{f:G — Lin): S(f(G)) =~LFn))}.

Similarly, we define the sets P} (n), P*°™(n), F (n) and F°™ (n).
Finally, consider

P;(n) = PM(n) U PY(n) U PE™(n),
Fi(n) = F\(n) U FY (n) U F{™(n), F(n) =] Fin).
i=1

Clearly P;(n) N Pj(n) =¥ fori # j,and Fi(n) # ¥ with0 < i, j < n.

Let fe FiH(n) and ? :Sc(n) — LiH(n) the extension of f. Llﬂ(n) =S(f(G)) =
S(?(G)) = ?(SC (n)). Thus ? :Se(n) — LiH(n) is an epimorphism, and Ker? is a
prime filter of §¢(n). Similarly, for F(n) and FlH (n).

Lemma 6.9 If f e F/'(n), then Fc(n)/Ker f ~L(n). If f e F'(n), then Fc(n)/
Ker f ~ L/(n).If f e Fl-com(n), then Fc(n)/Ker f ~ LI-COm(n).

Proof Suppose that f € FiH(n). Consider the natural homomorphism y : §c(n) —
Sc (n)/Ker?. Letg: 3S¢ (n)/Ker? — LiH (n) be defined by g(a/Ker?) = ?(a) fora e
Sc(n).

Let us see that g is well defined. If b € a/Ker f, there exists ¢ € Ker f such that
axANc=D>b /\C.SO?(a) =?(a/\c) =?(b AC) =?(b).

Let a/Ker?, b/Ker? e §ec (n)/Ker? be such that g(a/Ker?) = g(b/Ker?). Then
?(a) = ?(b). So 7((a — b) A (b — a)) =1 and consequently, (@ — b) A (b — a) €
Ker?.Inaddition,a/\(ae YA -a)=arbArb —>a)=arbra=anb =
branb=branr(a—b)=bAb —a)A(a—b). Then a/Ker?:b/Ker?.
So g is injective. - -

Now, for every a € Fc(n), (goy)(a) = gy(a)) = gla/Ker f) = f(a),sogoy = f.

Letae LiH (n). Then there exists ¢ € §¢(n) such that f(c) = a, thatis g(y(¢)) = a.
So g is onto.

The same proof applies to the cases in which f € FY(n) or f € F-°"(n). O

In order to avoid unnecessary repetitions, we shall use in what follows the symbol
* to replace the superscripts H, v or Com. For instance, F;(n) will stand for any of
the sets FlH (n), FY(n) and FiCom (n), L will denote any of the chains LiH, L/ or Llcom,
and so on.

Lemma 6.10 The function ¥} : Fj(n) — P} (n) defined by ¥*(f) = Ker f is onto.
Proof For P e P;(n) (that is, §c(n)/P ~ L} (n)), consider the natural homomor-

phism A :§c(n) — Fc(n)/ P, and let f = A|g the restriction of A to G. Then
S(f(G)) = SA(G)) = M(S(G)) = A(Fc(n)) = L;(n),so f e Fj(n). Now let f be the
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extension of f. Clearly f|lg = f =il and consequently, f =1 and ¥ (f) =
Ker f = Kerk = P. O

Lemma 6.11 P(n) is a finite set.

Proof Since G and L} (n) are finite, F}(n) is finite for every 0 <i < n. By Lemma
6.10, v/ is onto and consequently, P} (n) is finite for every 0 <i < n. Since P(n) =
UL, Pi(n) = UL, (P (n) U P} (n) U P (n)), P(n) is finite. o

Theorem 6.12 T (n) is finite.

Proof From Remark 6.5, F¢(n) € IS (M pepny§c (n)/ P). By Lemma 6.11, P(n) is finite
and, by Corollary 6.8, §c(n)/ P is finite for every P € P(n). Then §c(n) is finite. O

Since every finite distributive lattice is determined, up to isomorphism, by the
ordered set of its prime elements, our next objective is to obtain a description of
[1(n). For this, we are going to represent each element of I1(n) by an element of
F(n), that is, a function f from G to L}(n), 0 < i < n, such that S(f(G)) ~ L}(n), for
* € {H, Vv, Com}.

For each % € {H, v, Com}, consider the sets

F*(n) = J F;(n) and P*(n) = ) P} (n).
i=0

i=0

and define ¥* : F*(n) — P*(n) by ¥*(f) = ¥ (f) = Ker(f) with f € F*(n).

By Lemma 6.9, ¢* is well defined and is injective.

If feFm), feFm) for some 0<i<n, then fe F/(n) for some *e
{H, v, Com}. Thus Ker? € P(n) and Sc(n)/Ker? ~ L}. Since §c¢(n) is finite, then
there exists p y € I1(n) such that Ker? = Fg(py), where Fg(p ) is the filter generated
by py.

Lemma 6.13 The function ® : F(n) — Tl(n) defined by ¢ (f) = py is a bijection.

Proof Let P € Il(n) and consider Fg(p) € P(n). By Corollary 6.4, §c(n)/Fe(p) is a
chain and so, §¢(n)/ Fe(p) =~ L’;(n) for some 0 < j<mnand x € {H, v, Com}. Let A :
Sc(n) = §c(n)/ Fy(p) the natural epimorphism and A’ = A|g. Then 1" : G — L’]f(n)
and )’ € F}‘-‘(n) C F(n). Thus Ker(\') = Ker(x) = Fg(p) and (1) = p.

Let fi, f» € F(n) such that ®(f;) = ®(f). Then p; = p, with Ker(f)) =
Fg(py) and Ker(f) = Fg(pyp). Since py = pp, Ker(fi) = Fg(pp) = Fg(pp) =
Ker(f). Consequently ¢ (n)/Ker(fi) > Fc(n)/Ker(f,). From Theorem 5.2 and
Corollary 6.4, §c(n)/Ker( fi) ~ L’;(n) forsome 0 < j < nandx* € {H, v, Com}. Then

Ker(f1), Ker(f>) € Pf(n) and ¥*(fi) = Ker(fi) = Ker(f2) = ¥*(f»). Since y* is
injective, then f| = f. O
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Remark 6.14 1f p; € Tl(n) is of level i, | <i <n+ 1, then Fe(n)/Fy(py) = Lf | (n),
with % x € {H, v, Com]}.

Lemma 6.15 p; e [1(n) is of level 1 if and only if f(g) € {0, 1} for every g € G.

Proof If py e TI(n) is of level 1, §c(n)/ Fo(py) =~ L§(n), with * € {H, v, Com}, and
this is equinalent to say that Fg(py) € Pj(n). Consider v : Fj(n) — Pj(n). By
Lemma 6.10, v is bijective, and then, there exists f e Fj(n) : ¥i(f) = Fg(ps) =
Ker(f). Thus f e (wg)’l (Fg(pyp). Since f e Fi(n), then S(f(G)) =L(n). So
F(G)U{0, 1} = Li(n). Then f(G) C {0, 1}. o

From Lemma 6.13, there is a one-to-one correspondence between the set of prime
elements of §¢(n) and the set [F(n). By means of this relation, an element p € I1(n)
of level i corresponds to a function f € F;_;(n), that is, a function f € Fffl (n) U
F (n)u Fgﬁm(n). In particular, p € I1(n) is of level 1 if and only if the correspond-
ing function f € Fg{ (n) U Fy(n) U F(,Com (n) = Fg{ (n) U Fgom(n) being that ng (n) =
Fy (n). Besides, | Fyt(n) U F§°™(n)| = | Fgt(n)| + | F§™(n)| since FJt(n) N F§O™(n) =
@. Thus I1(n) has 2" + 2" = 2"*! minimal elements, that is, IT1(n) has 2"*! elements of
level 1.

The following lemma can be proved in a similar way to Lemma 6.15.

Lemma 6.16 p; € I1(n) is of level i, 2 <i < n+ 1, if and only if f(G) € L;_(n) and
a,a, ..., ap—1 € f(G).

Lemma 6.17 Let p, q € I1(n). Then q covers p in I1(n) if and only if the following
conditions hold:

(1) Fg(g) C Fg(p),
(2) Fg(p) e Pi(n),
(3) Fg(q) € P (n) forsome0 <t <n—1andx e {H,Vv, Com).

Proof Since q covers p, Fg(q) C Fg(p) and there is no P € P(n) such that
Fg(q) C P C Fg(p). Since Fg(p) € P(n), Fg(p) € P}(n) forsome 0 <t <nand x €
{H, v, Com}. besides, t # n being that the family of prime filters containing Fg(q)
has at most n+1 elements. Since there is no P € P(n) such that Fg(q) C P C Fg(p),
then Fg(q) € Py, (n).

For the converse, consider p,q € I1(n) satisfying conditions (1), (2) and (3).
From (1), p < q. Suppose that there exists p’ € I1(n) such that p < p’ < g. Then
Fg(q) C Fg(p') C Fg(p). By (2), Fg(p) € P{(n) and consequently, Fg(q) € P} ,(n)
which contradicts the hypothesis (3). u]

Theorem 6.18 Let f, h € F(n). then ®(h) = p, =q covers ®(f) =ps=p if and
only if f e Ff(n), h € F}_ (n) for some 0 <t <n—1and e {H,Vv, Com}, and the
following conditions hold:

I f(g) =ajifand only if h(g) = a; for every 0 < j<1t.

(I) f(g) = lifandonlyifh(g) =106 h(g) = a;1.
(II1) Thereexistsge G: f(g) # h(g).
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Proof Suppose that ®(h) = p, =q covers ®(f) =py=p. By Lemma 6.17,
Fg(q) C Fg(p), Fg(p) € P;(n) and Fg(q) € Py (n) forsome 0 <t <n—1and* e
{H, v, Com}. From Ker(?) = Fg(p) € Pf(n) we have that Sc(n)/Ker(?) ~ L (n).
Consider the natural homomorphism A : §¢(n) — §c(n)/ Ker(?). Sor = ? and thus
f € Fj(n). Similarly h € F}_(n).

Since f e Ff(n), S(f(G)) = f(G)U{0,1} =L,(n). If r=0, f(G)<{0,1} and
if t#0, aj,...,a, € f(G). In a similar way ay,...,a;, a;1; € h(G). Since P, =
Fg(pp) € Py = Fg(py) C PrC ... C Py C Py =gc(n) it follows that

— o _|lifxeFypp
f(x)—{ajifxePg;\Pﬂ.l,OS]’St

and

o — |1 i € Fe(pn)
- ajifXEP/\Pj+1,0§j§t+1

We have that f(g) =a; & f(g9 =a; & g€ Pi\ Piy1 & h(g) =a; & h(g) =a;.

In addition, f(@)=1¢ f(® =14 ge Fgpp) © ge (Fg(py)\ Fgpn) U
Fg(pn) < g€ Fg(pyp) \ Fg(pn) or g € Fg(pn) < g € Pyt \ Piyp or g € Fg(pn) <
h(g) =a;orh(g) =1< h(g) =a or h(g) = 1.

Clearly there exists g € G such that f(g) # h(g).

For the converse, let f e Ff(n), h e F/ (n) for some 0 <t<n-1 and * ¢
{H, v, Com}, satistying conditions (I), (II) and (III). Since f € Ff(n), S(f(G)) =
L;(n). Thus §c(n)/Fg(py) = Sc(n)/Ker(f) = L;(n), and so Fg(py) € P;(n). Simi-
larly Fg(pn) € Py (n).

By Lemma 6.17, it is enough to prove that Fg(p,) C Fg(py).

Consider

Fg(pp) =Py C PrC...C PLC Py=35cn)
and
Fg(pp) = Q2 C Q1 C ... C Q1 C Qo =Fe(n)
the chains of prime filters containing Fg(p¢) and Fg(py) respectively. Let

Cip2= 012N Py, Cpy = (Qig1 \ Ory2) N Pryy and
Ci=@Q;\QpupN(Pj\Pir), 0<j=<t
We have that

z€Cur & h(z)=1land f(z) = I;
Z€ Ct+l < E(Z) = Aty and ?(Z) =1;
z€Cjeh(z) =ajand f(z) =a,0<j<t

Observe that the sets C; are pairwise disjoint, 0 < j<t+2, and it is long but

computational to verify that § = U’]ﬁ) C; is a subalgebra of §¢(n).
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Let g€ G. Then h(g) € {0 =ay, ay, ...,a,, a4y, 1}. If h(g) =1 then g € Q4. By
(IT), f(g) =1 and consequently g € P,y and g € Cyyp € S. If h(g) = a,41 then g €
Q11 \ Qo and g € Py by (II). Thus g € Gy © S. 1T h(g) = a;,0 < j <t theng e
Q;\ Qj+1 and f(g) = a; by (I). So g € C; € S. Therefore G C § and consequently
Se(n) = S.

Then Fy(pn) = Qi = Qui2 N e = 02 N (U €) = U (Qu2n €) =
Q2N Crz = Q2 N Py = Fg(pn) N Fg(py). Then Fg(py) < Fg(py). If Fg(pp) =
Fg(py), Kerh = Ker f.Soh = f and then h = f. O

As an example, suppose that G = {g;, g»} and let us determine the ordered set
I1(2). By Lemma 6.15, the minimal elements of I1(2) are determined by the set Fy(2).

Recall that L} =Ly, and consequently, FJ*(2) = Fy(2). So Fo(2) = F(2)uU
F§om(2).

Let (x, y)} denote the function f: G — L} (2) such that f(g;) = x, f(g2) = y and
S(f(g), f(g2) =L (2) with x € {H, Com, v},0 <i < 2. Then the minimal elements
of T1(2) are represented by the functions

F3t2) = {(0.0)J. (0. )E. (1. 0)t. (1. D{F}
and
FGo™(2) = {(0,0)§°™, (0, DF™, (1,006°™, (1, 1)} .
By using the conditions of Theorem 6.18 we construct the corresponding con-

nected components of I1(2).

I 0, apfem I (a1, 0)F™

(0, 0)5°m (0, Hom (1,0)5°om
(ar, a)§om (a2, ap)§om
(a1, D™ (1, anfom

(1, H§om

(Oa a])?‘l (07 al)Y
[ ]
0, 0)]¢ = (0, 0)y \/

0, DX = (0, 1)y
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(a;,0)Tt \/ (ar, 0)Y
(1,000t = (1,0)y
(a1, )} (az, ap}t (a1, @)y (az, a1)y
(ar, Dt (ar, an’t (1, an’t (a1, 1)y (a1, ap)y (1,a1)y

(1L, DY =1, 1y

The free algebra §¢(n) can be constructed from the ordered set I1(n).
Let[f) ={geFn): f <g},andfor 0 < j < n consider the sets

K§me = {Lh: [f7' (D] = jand f e g},

K™ my ={H: |f' ()] = jand f e Fim)}.
Let R/C"m(n) and R;"’v(n) respectively denote the distributive lattice such that
TI(R§™(m)) € K™ (n) and TI(R}" (m)) € K[ (n). Then
u H,v (’JX) . Com (’]’)
Seon =TT(R“ )" < TT(RS™m) ™.

j=0 =0

In the above example, I1(2) is

B ERN N

L | I |

K§om@2)  KEom(2) KSom@2) KRV @) K@)
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K}tV (2)

and consequently,
Fc(2) = RSO™(2) x REO™(2) x R$O™(2) x RIY(2) x RV (2) x RV (2).

In the case n = 1, the ordered set IT(1) is:

K§om(y KMy KIEY(D KTtV (1)

and thus, Fe(1) = R$O™(1) x REO™(1) x RJEY(1) x RI:Y (1), where

RS$o™(1) REom (1) RJEY(1) RJMY(1)
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