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In this paper, we study how to capture smooth oscillations arising from delay-differential
equations with distributed delays. For this purpose, we introduce a modified version of the
frequency-domain method based on the Graphical Hopf Bifurcation Theorem. Our approach
takes advantage of a simple interpretation of the distributed delay effect by means of some
Laplace-transformed properties. Our theoretical results are illustrated through an example of
two coupled neurons with distributed delay in their communication channel. For this system,
we compute several bifurcation diagrams and approximations of the amplitudes of periodic
solutions. In addition, we establish analytical conditions for the appearance of a double zero
bifurcation and investigate the unfolding by the proposed methodology.
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1. Introduction

Delay-differential equations (DDEs) often arise
when modeling systems in biology, control, physics,
and other research areas. Generally, in such models
the delay value is assumed to be fixed, so the evolu-
tion of the state variables at time t depends on the
states at moment t − τ , where τ > 0 is constant.
However, more sophisticated models have been
developed, in which all the past history of the sys-
tem governs its present evolution. This dependance
on a continuum of previous values of the state vari-
ables is known as distributed delay. This viewpoint
allows to describe effects like uncertainties in the

delay value, modification of the time lag due
to unmodeled factors, probabilistic distribution of
delay, etc. Consequently, in some cases the dis-
tributed delay formulation leads to more accurate
models than discrete (constant) delays, generally
in biological issues, as in the cellular spread of
virus [Culshaw et al., 2003], prey–predator systems
[Ruan, 2006], epidemic models [Arino & van der
Driessche, 2006], etc.

In the particular context of neural networks,
the models considering distributed delays take into
account the multiple connections between neu-
rons, each with a different transmission velocity. In
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addition, the utilization of distributed delays in arti-
ficial neural networks have led to very interesting
applications. For example, Tank and Hopfield [1987]
proposed a neural network with distributed delays
for pattern recognition in time-dependent signal.
Following these ideas, Unnikrishnan et al. [1991]
used a more complex network for speech recogni-
tion. Since then, several authors focused on theoret-
ical results about stability of neural networks with
both discrete and distributed delays. Some contri-
butions concern the global stability of an equilib-
rium point, generally studied by means of a Lya-
punov functional, and they are applicable to huge
networks (see, for example, [Gopalsamy & He, 1994;
Zhang & Jin, 2000; Liu et al., 2006]). However, from
the point of view of bifurcations, large networks lead
to untractable problems and most of the contribu-
tions in this field deal with systems consisting of a
few neurons, specially when distributed delays are
considered [Liao et al., 2001, 2004; Ruan & Filfil,
2004; Xiao et al., 2013]. Only very few authors
considered relatively huge networks with multiple
delays, performing bifurcation analysis using the
normal form theory [Cao & Xiao, 2007] or frequency
domain techniques [Yu et al., 2008], although these
results deal with concentrated delays.

DDEs with distributed delays are formulated
as integro-differential equations, in which the influ-
ence of the past history is determined by a func-
tion called kernel or distribution. Frequently, to
obtain a more tractable problem, a set of equa-
tions equivalent to the original model is attained,
through defining additional variables and perform-
ing algebraic manipulations (see, for example, [Ras-
mussen et al., 2003; Liao et al., 2004; Ruan, 2006;
Xiao et al., 2013]). That set may involve ordi-
nary differential equations (ODEs) as well as DDEs
with discrete delays. Unfortunately, this alterna-
tive depends strongly on the characteristics of the
delay distribution and sometimes it is impossible to
achieve an equivalent model. If such an equivalent
model is successfully attained, the analytical and
numerical tools for ODEs and DDEs with constant
delays are available. But, if one has to work directly
with the distributed delay model, the lack of tools
becomes evident.

At the best of our knowledge, the most sophis-
ticated theoretical results on stability of DDEs with
distributed delays are given in [Bernard et al., 2001;
Crauste, 2010; Yuan & Bélair, 2011]. Although
those only refer to scalar equations, they provide

the very key ideas to understand the effects of the
delay distribution over stability. For nonscalar equa-
tions, the numerical results in [Atay, 2003] give
important insights about the effect of the spread of
the delay distribution on the dynamics of coupled
oscillators.

In this article, we propose a modified version
of the method based on the Graphical Hopf Bifur-
cation Theorem (GHBT for short) [Mees & Chua,
1979; Moiola & Chen, 1996] for analyzing bifur-
cations in DDEs with distributed delays. This
approach is a generalization of the one presented
in [Gentile et al., 2012] for systems with discrete
delays. The development of this technique does not
depend on the particular shape of the distribution
function, and we only require less restrictive condi-
tions from it. Our setting shows that the effect of
the delay distribution can be described simply by
using properties of the Laplace transform. More-
over, the methodology can be applied to systems
with any number of state variables, not only to
scalar equations.

There are several contributions concerning the
bifurcation analysis of neural networks with dis-
tributed delays using the GHBT. Liao et al. [2003]
studied a two-neuron system with a weak gamma
kernel. Later, Liao et al. [2004] analyzed a similar
network but considering a strong gamma kernel.
Hajihosseini et al. [2010] considered a three-neuron
network with a strong gamma kernel too. More
recently, Xiao et al. [2013] carried out a bifurcation
analysis of a two-neuron system with a weak ker-
nel, but they considered not only delayed connec-
tions between the different neurons but also self-
connections in each neuron. In these articles, the
authors used the chain trick to derive equivalent
models expressed as ODEs. For example, in [Liao
et al., 2004] the two-neuron model with a strong
gamma kernel is rewritten as a system of six ODEs
before applying the GHBT. In [Hajihosseini et al.,
2010] the three-neuron network with a weak ker-
nel is also transformed into a system of six ODEs.
But, for instance, if a uniform distribution is used in
those examples, the equivalent models are no longer
given by systems of ODEs but by systems of DDEs,
and the bifurcation analysis changes drastically. As
will be shown in the following sections, our proposal
is distinguished from the previous works by the fact
that we will not need to transform the original sys-
tem into an equivalent one. That is to say, our goal is
to establish a procedure which could be carried out
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independently from the kernel used in the model.
Although the base of the method proposed here is
the same as that in the mentioned works, a subtle
difference in the representation of the distributed
delay makes the calculation procedure noticeably
different from the previous results.

The paper is organized as follows. In Sec. 2, we
propose a modified version of the technique based
on the GHBT to study distributed delay equations.
In Sec. 3, we illustrate our results with an example
of coupled neurons, for which several bifurcation
diagrams are found. In addition, for this example
we obtain approximations of the amplitude of the
periodic solutions emerging from Hopf bifurcations.
Analytical conditions for the appearance of a dou-
ble zero bifurcation are also found. The dynamics
generated by the double zero are studied in some
detail for a particular choice of the activation func-
tion of the neurons. Finally, the conclusions of the
paper are given in Sec. 4.

2. Alternative Formulation for
DDEs with Distributed Delays

The general form of a DDE with distributed delay
can be stated as follows

ẋ(t) = f
[
x(t),

∫ t

−∞
x(u)k(t − u)du;µ

]
, (1)

where x ∈ R
n, µ ∈ R is the bifurcation parameter,

f : R
n × R

n × R → R
n is a smooth nonlinear func-

tional and k(·) is the (scalar) distribution function,
which weighs the past values of x and verifies

k(u) ≥ 0, ∀u ∈ [0,∞);
∫ ∞

0
k(u)du = 1. (2)

Also, the mean delay τm is defined as

τm �
∫ ∞

0
uk(u)du. (3)

Notice that the integral in (1) is not necessarily
improper, because k(·) may have finite support.
Equation (1) has been studied by many authors,
mostly in biological applications (see, for example,
[Culshaw et al., 2003; Ruan & Filfil, 2004; Arino &
van der Driessche, 2006]). In order to deal with
integro-differential equations like (1), the most com-
mon approach is to find an equivalent system, for-
mulated as a set of ODEs and/or DDEs (generally

using the chain trick and avoiding the explicitness
of integral terms; see, for example, [Culshaw et al.,
2003; Rasmussen et al., 2003; Liao et al., 2004;
Xiao et al., 2013]). But this trick has an important
disadvantage: the number of additional equations
that must be introduced and their kind (ODEs or
DDEs) depend strongly on the particular shape of
the kernel. Moreover, that trick can be applied only
for particular cases of the distribution function, for
example, the gamma and uniform waveforms, but
not for general distributions.

In this work, we propose a modified version
of the method based on the GHBT developed in
[Mees & Chua, 1979; Moiola & Chen, 1996] for
studying Hopf bifurcations in equations like (1).
The most important advantage of our approach is
that the effect of the distributed delay is represented
easily through properties of the Laplace transform,
which is the mathematical framework in which the
GHBT was developed. Then, the goal is to study
not only models which can be reduced to an equiv-
alent set of ODEs or DDEs, but also every model
in which the kernel function has a Laplace trans-
form. Let us choose adequate matrices A ∈ R

n×n,
B ∈ R

n×p and C ∈ R
m×n, then Eq. (1) can be

recast in the feedback form{
ẋ(t) = Ax(t) + Bg[y(t),yk(t);µ],

y(t) = −Cx(t),
(4)

where

yk(t) �
∫ t

−∞
y(u)k(t − u)du. (5)

By applying the Laplace transform to (4) (with zero
initial conditions), we have

L{x(t)} = (sIn − A)−1BL{g[y(t),yk(t);µ]},
L{y(t)} = −CL{x(t)}

= −G(s;µ)L{g[y(t),yk(t);µ]},
(6)

where s ∈ C, In denotes the n × n identity matrix1

and

G(s;µ) � C(sIn − A)−1B (7)

is a transfer function representing a linear subsys-
tem of (4),2 as can be seen in Fig. 1(a). From the

1A similar notation for other identity matrices will be used hereinafter.
2By using the notation G(s; µ) we emphasize the usual dependence of matrices A,B and C on the parameter µ.
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(a)

(b)

Fig. 1. (a) Block representation of system (4) and (b) equiv-
alent system with the extended matrix G∗(s; µ).

convolution property, for the “retarded” quantities,
we have

L{xk(t)} = L{x(t)}K(s),

L{yk(t)} = −CL{xk(t)} = −CL{x(t)}K(s),
(8)

where K(s) � L{k(t)}. Notice that conditions (2)
imply that the Laplace transform K(s) exists at
least for �{s} > 0. System (4) is represented in
Fig. 1(a). Notice that both y(t) and yk(t) act as
inputs of the nonlinear block g[·]. In order to apply
the GHBT method described in [Mees & Chua,
1979; Moiola & Chen, 1996], we would like to find
an equivalent block representation consisting of a
single linear system with a nonlinear feedback func-
tion. This goal can be achieved by defining an
extended matrix

G∗(s;µ) �
(

G(s;µ)

G(s;µ)K(s)

)
∈ R

2m×p, (9)

thus absorbing the delay block into the forward
path as shown in Fig. 1(b), where y∗(t) denotes the
“extended” output

y∗(t) �
(

y(t)

yk(t)

)
∈ R

2m. (10)

Moreover, the methodology described in [Mees &
Chua, 1979; Moiola & Chen, 1996] can be
applied without further modifications. In order to
detect bifurcations, the nonlinear feedback block is

linearized by computing the Jacobian matrix

J∗(µ) =
(

∂g(y,yk ;µ)
∂y

∣∣∣∣ ∂g(y,yk ;µ)
∂yk

)∣∣∣∣
y∗=ŷ∗

.

(11)

Notice that both derivatives above are themselves
Jacobian matrices with respect to y and yk and
J∗(µ) ∈ R

p×2m. All the formulae of the clas-
sic GHBT method remain valid, with the obvious
dimensional augmentation of matrices and vectors.
In order to provide a more rigorous justification for
this assertion, let us consider the Fourier represen-
tation of the output proposed by Mees and Chua
[1979]

yk(t) ∼ ŷ + �
{

2∑
r=0

Yreirωt

}
,

then for the delayed output yk(t) we have

yk(t) ∼
∫ t

−∞

[
ŷ + �

{
2∑

r=0

Yreirωu

}]
k(t − u)du

= ŷ + �
{

2∑
r=0

Yr

∫ t

−∞
eirωuk(t − u)du

}

= ŷ + �
{

2∑
r=0

Yreirωt

∫ ∞

0
e−irωuk(u)du

}

= ŷ + �
{

2∑
r=0

YrK(iωr)eirωt

}
.

Thus, the rth Fourier coefficient of yk(t) is given
by the rth Fourier coefficient of yk(t) times K(iωr).
By defining e(t) � y(t) − ŷ and ek(t) � yk(t) − ŷ,
we can compute the Taylor series of the nonlinear
function g[·] as

g[·] � g[ŷ, ŷ;µ] + (D1
1g)e + (D1

2g)ek

+
1
2
(D2

11g)e ⊗ e + (D2
12g)e ⊗ ek

+
1
2
(D2

22g)ek ⊗ ek +
1
3!

(D3
111g)e ⊗ e ⊗ e

+ (D3
112g)e ⊗ e ⊗ ek + (D3

122g)e ⊗ ek ⊗ ek

+
1
3!

(D3
222g)ek ⊗ ek ⊗ ek + O(|e|4), (12)
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where we have suppressed the argument t for short
and the derivatives are defined as

(D2
ijg) � ∂g2(y1,y2;µ)

∂yi∂yj

∣∣∣∣
(y1,y2)=(ŷ,ŷ)

∈ R
p×(2m)2 ,

(D3
ijkg) � ∂g3(y1,y2;µ)

∂yi∂yj∂yk

∣∣∣∣
(y1,y2)=(ŷ,ŷ)

∈ R
p×(2m)3 ,

(13)

where i, j, k = 1 or 2. Let us introduce the compact
notation Kn � K(inω). Thus, for example, the term
e ⊗ ek in (12) is given by

e ⊗ ek =
1
4
Y1 ⊗Y1K1 +

1
4
Y1 ⊗ Y1K1

+
1
2
Y0 ⊗ Y1eiωt +

1
2
Y0 ⊗Y1e−iωt

+
1
2
Y0 ⊗ Y1K1e

iωt +
1
2
Y0 ⊗ Y1K1e

−iωt

+
1
4
Y1 ⊗ Y2K1e

iωt +
1
4
Y1 ⊗ Y2K1e

−iωt

+
1
4
Y1 ⊗ Y2K2e

iωt +
1
4
Y1 ⊗ Y2K2e

−iωt

+
1
4
Y1 ⊗ Y1K1e

i2ωt +
1
4
Y1 ⊗Y1K1e

−i2ωt

+
1
4
Y1 ⊗ Y2K1e

i3ωt +
1
4
Y1 ⊗Y2K1e

−i3ωt

+
1
4
Y1 ⊗ Y2K2e

i3ωt +
1
4
Y1 ⊗Y2K2e

−i3ωt

+O(|e|4). (14)

Replacing all terms like (14) into (12), we obtain
the expansion of g[·] in powers of the Fourier coef-
ficients Yr. As the fundamental frequency of y(t)
is ω, then the fundamental frequency of g[y(t),
yk(t);µ] is also ω. Then, for this nonlinear function
we have

g[y(t),yk(t);µ] � g[ŷ, ŷ;µ] + �
{

2∑
r=0

Greiωrt

}
.

Grouping together terms of the same frequency
in (12), after some calculations we find

G0 = (D1
1g)Y0 + (D1

2g)Y0 +
1
4
(D2

11g)Y1 ⊗ Y1

+
1
4
(D2

22g)Y1 ⊗ Y1K1K1 +
1
4
(D2

12g)

× [Y1 ⊗ Y1K1 + Y1 ⊗ Y1K1] + O(|Y1|4),
(15)

G1 = (D1
1g)Y1 + (D1

2g)Y1K1

+ (D2
11g)

[
Y0 ⊗ Y1 +

1
2
Y1 ⊗ Y2

]

+ (D2
12g)

[
Y0 ⊗ Y1 + Y0 ⊗ Y1K1

+
1
2
Y1 ⊗ Y2K1 +

1
2
Y1 ⊗ Y2K2

]

+ (D2
22g)

[
Y0 ⊗Y1K1 +

1
2
Y1 ⊗ Y2K1K2

]

+
1
8
(D3

111g)Y1 ⊗ Y1 ⊗ Y1

+
1
2
(D3

112g)
[
Y1 ⊗ Y1 ⊗ Y1K1

+
1
2
Y1 ⊗ Y1 ⊗Y1K1

]

+
1
2
(D3

122g)
[
Y1 ⊗ Y1 ⊗ Y1|K1|2

+
1
2
Y1 ⊗ Y1 ⊗Y1K2

1

]
+

1
8
(D3

222g)Y1

⊗Y1 ⊗ Y1K2
1K1 + O(|Y1|4), (16)

G2 = (D1
1g)Y2 + (D1

2g)Y2K2

+
1
4
(D2

11g)Y1 ⊗ Y1 +
1
2
(D2

12g)Y1 ⊗ Y1K1

+
1
4
(D2

22g)Y1 ⊗ Y1K2
1 + O(|Y1|4). (17)

Then, if we define the “augmented” Fourier coeffi-
cients

Yn∗ �
(

Yn

YnKn

)
, n = 0, 1, 2,

for example, Eq. (15) can be expressed as

G0 = J∗(µ)Y0∗ +
1
4
(D2g)Y1∗ ⊗ Y1∗, (18)

where J∗(µ) was defined in (11),

(D2g) � (D2
11g |D2

12g |D2
21g |D2

22g) ∈ R
p×(2m)2

(19)
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and

Y1∗ ⊗Y1∗ =




Y1 ⊗ Y1

Y1 ⊗ Y1K1

Y1 ⊗ Y1K1

Y1 ⊗ Y1|K1|2


 ∈ R

(2m)2×1.

Similarly, G2 in (17) becomes

G2 = J∗(µ)Y2∗ +
1
4
(D2g)Y1∗ ⊗ Y1∗, (20)

and finally, G1 in (16) can be expressed compactly
as

G1 = J∗(µ)Y1∗ + (D2g)[Y0∗ ⊗ Y1∗ + Y1∗ ⊗Y2∗]

+
1
8
(D3g)Y1∗ ⊗ Y1∗ ⊗ Y1∗, (21)

where

(D3g) � (D3
111g |D3

112g | · · · |D3
222g) ∈ R

p×8m3
.

Moreover, the input and the output of the linear
block in Fig. 1(b) verify the following second-order
harmonic balance equation

Yr∗ = −G∗(irω;µ)Gr r = 0, 1, 2. (22)

Thus, by using the equation above in (18) and (20),
we obtain

Y0∗ = −1
4
H(0;µ)(D2g)Y1∗ ⊗ Y1∗,

Y2∗ = −1
4
H(i2ω;µ)(D2g)Y1∗ ⊗ Y1∗,

(23)

where

H∗(s;µ) � [G∗(s;µ)J∗(µ) + I2m]−1G∗(s;µ). (24)

From (21) and using (22) again, the equation for
Y1∗ becomes

[I2m + G∗(iω;µ)J∗(µ)]Y1∗

= −G∗(iω;µ)p(ω;Y1∗), (25)

where

p(ω;Y1∗) � (D2g)[Y0∗ ⊗ Y1∗ + Y1∗ ⊗ Y2∗]

+
1
8
(D3g)Y1∗ ⊗ Y1∗ ⊗ Y1∗. (26)

Following the same procedure as by Mees and Chua
[1979], it is found that the existence of a periodic

solution in system (4) is subject to the existence of
a solution (ω, θ) of the equation

λ̂(iω;µ) + 1 = θ2ξ(ω;µ) + O(θ3), (27)

where θ ≥ 0 is a measure of the amplitude of the
oscillation,

ξ(ω;µ) � −uTG∗(iω;µ)p(ω,v)
uTv

, (28)

u, v are the left and right eigenvectors of G∗(iω;
µ)J∗(µ) and p(ω,v) = p(ω;Y1∗)/θ2 (see [Mees &
Chua, 1979; Moiola & Chen, 1996]). In conclusion,
we arrived at the formulae analogous to that pre-
sented in [Mees & Chua, 1979; Moiola & Chen,
1996], with the obvious augmentation in the dimen-
sion of matrices and vectors. The effect of the delay
distribution is taken into account into the linear
part by considering the extended transfer function
G∗(s;µ).

Remark. Notice that a constant (concentrated) delay
of τ units of time can be easily obtained by tak-
ing k(u) = δ(u − τ) in (1), where δ(·) is the Dirac
delta distribution. This particular case was studied
in [Gentile et al., 2012].

3. Example: Two Neurons with
Delayed Coupling

In this section, we will study an example presented
in [Liao et al., 2001], consisting of two coupled neu-
rons in which the connections between them are
affected by distributed delays. Even though models
based on distributed delays are thought for large
scale networks, it is important to understand first
the effect of the spread of delays in a relatively sim-
ple system. Let us consider the following model{

ẋ1(t) = −x1(t) + a1f [x2(t) − b2x2k(t)],

ẋ2(t) = −x2(t) + a2f [x1(t) − b1x1k(t)],

xik(t) �
∫ t

−∞
k(t − u)xi(u)du, i = 1, 2,

(29)

where ai, bi ≥ 0. Here, xi(t) represents the mean
sum potential of the neuron, ai denotes the range
of the variables xi, and bi are measures of the
inhibitory influence of the past history. We assume
that the nonlinear activation function f(·) is smooth
and verifies f(0) = 0, f ′ � f ′(0) > 0. We also
assume that the kernel function satisfies condi-
tions (2).

1550156-6
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In order to apply the formulation given in
Sec. 2, for the feedback system representation we
choose

A = −I2, B = C = I2,

g[y∗(t);µ] =

(
a1f(b2y2k − y2)

a2f(b1y1k − y1)

)
,

(30)

where yik(t) := −xik(t) and µ � (a1, a2, b1, b2) is
a vector of parameters. From (7) and (9), the lin-
ear part of the feedback system [see Fig. 1(a)] is
represented by the transfer matrix

G∗(s) =

(
G(s)

G(s)K(s)

)
, G(s) =

1
s + 1

I2. (31)

The equilibrium points of (29) are defined implicitly
by the equations{

x̂1 = a1f [(1 − b2)x̂2],

x̂2 = a2f [(1 − b1)x̂1].
(32)

As f(0) = 0, it follows that (x̂1, x̂2) = (0, 0) is a
trivial equilibrium point of (29). However, depend-
ing on the particular shape of function f(·) and the
values of parameters a1, a2, b1 and b2, other nontriv-
ial equilibrium points may also exist if b1 
= 1 and
b2 
= 1. We will deal mainly with the bifurcations
exhibited by the trivial equilibrium point. However,
at the end of this section we shall consider a partic-
ular function f(·) in (29), find other equilibria and
also study their dynamics. From (11), the lineariza-
tion of the nonlinear feedback function around the
trivial equilibrium point ŷ∗ = 0 is given by

J∗(µ) = f ′
(

0 −a1 0 a1b2

−a2 0 a2b1 0

)
. (33)

As explained in [Mees & Chua, 1979; Moiola &
Chen, 1996], the bifurcation condition can be found
seeking for solutions of the following equation,
which is called characteristic equation in the fre-
quency domain

h(λ, s;µ) = |λI4 − G∗(s)J∗(µ)|

=
λ2

(s + 1)2
{λ2(s + 1)2

− a1a2(f ′)2η1(s)η2(s)} = 0, (34)

where

ηj(s) � bjK(s) − 1, j = 1, 2. (35)

Basically, if an eigenvalue of the matrix of lineariza-
tion of system (1) around an equilibrium point x̂,

assumes a purely imaginary value iω0 at a particu-
lar value µ = µ0, then a solution λ = λ(s;µ) of (34)
must assume the value −1 + i0 at µ = µ0 with
s = iω0. If ω0 = 0 the bifurcation is called static
and if ω0 
= 0 the bifurcation is called dynamic or
Hopf.

3.1. Analysis of static bifurcations

As mentioned above, the static bifurcations (or
bifurcations of equilibria) are detected in the
parameter space seeking for solutions of

h(−1, 0;µ) = 0. (36)

By considering (34) and taking into account that
K(0) = 1 [from (2)], the equation above becomes

h(−1, 0;µ) = 1 − δ2(b1 − 1)(b2 − 1) = 0, (37)

where δ � √
a1a2f

′. So, the condition for a static
bifurcation can be stated as

δST =
1√

(b1 − 1)(b2 − 1)
, (b1 − 1)(b2 − 1) 
= 1.

(38)

In addition, we can look for multiple solutions of
Eq. (36) at s = 0. It is simple to show that

∂h

∂s
=

λ2δ2

(s + 1)3
{2η1(s)η2(s) − (s + 1)K ′(s)

× [b1η2(s) + b2η1(s)]},
where K ′(s) � dK(s)/ds. Then, in order to have
∂h/∂s|s=0 = 0, the following equation must be
satisfied

b1b2[1 − K ′(0)] − (b1 + b2)
[
1 − K ′(0)

2

]
+ 1 = 0.

In addition, taking into account (3), we have

K ′(0) = −
∫ ∞

0
uk(u)du = −τm

and the condition for a double root of h(−1, s;µ) at
s = 0 can be stated in terms of the mean delay as

τ (DZ)
m = −1 +

b1 + b2 − 2
2b1b2 − b1 − b2

, (39)

where the superscript DZ denotes a double zero
bifurcation. In general, if the right-hand expression
in Eq. (39) is positive, the system is likely to exhibit
a DZ bifurcation for an appropriate value of the
mean delay. In Fig. 2, the shaded region corresponds
to pairs (b1, b2) for which τ

(DZ)
m defined by (39) is

positive. Note that the potential occurrence of a DZ
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Fig. 2. The shaded area represents the feasible pairs (b1, b2)
for which a DZ bifurcation can exist.

bifurcation depends only on the weights of the past
histories and the mean delay, not on the particular
shape of the distribution neither on the parameters
a1 and a2. As can be seen in Fig. 2, the DZ bifurca-
tion cannot exist if b1, b2 < 0 (i.e. if the past history
has an excitatory effect on both neurons), but it can
occur for cases in which one past history is excita-
tory and the other inhibitory, and for cases in which
both histories have inhibitory effects.

3.2. Analysis of Hopf bifurcation

Equation (34) has a solution λ̂(s;µ) given by

λ̂(s;µ) =
δ
√

η1(s)
√

η2(s)
s + 1

, (40)

where η1(s) and η2(s) are defined in (35). Notice
that the equation above allows studying asymme-
tries in the two kernels. This is important because
the delays of the two communication paths between
neurons may have different distributions. Taking
into account Lemma 1 and (40), the Hopf bifur-
cation condition λ̂(iω0;µ0) = −1 can be expressed
as

(1 + iω0)2 − δ2η1(iω0)η2(iω0) = 0. (41)

In order to show a concrete example, let us choose
a particular kernel k(·). As in [Liao et al., 2001], we
consider a gamma distribution given by

kp
a(u) =

apup−1e−au

(p − 1)!
, u ≥ 0. (42)

In the cited text, the authors used the so-called
weak kernel, obtained from (42), taking p = 1.

They studied the Hopf bifurcations arising in sys-
tem (29) through the normal form theory. In [Liao
et al., 2004] the authors studied system (29) by con-
sidering the strong gamma kernel (p = 2). They
used the GHBT method but previously transform-
ing model (29) into an equivalent system of six
ODEs.

For the gamma kernel (42), we have

Kp
a(s) =

ap

(s + a)p
(43)

and the Hopf bifurcation condition (41) can be
expressed as

(1 + iω0)2(a + iω0)2p − δ2[b1a
p − (a + iω0)p]

× [b2a
p − (a + iω0)p] = 0. (44)

For example, for the weak kernel (p = 1), the equa-
tion above becomes

(1 + iω0)2(a + iω0)2 − δ2[ab∗1 − iω0][ab∗2 − iω0] = 0,

where b∗1 � b1 − 1 and b∗2 � b2 − 1. Splitting into
real and imaginary parts as before, we obtain


(a2 − ω2
0)(1 − ω2

0) − 4aω2
0 − δ2(a2b∗1b

∗
2 − ω2

0) = 0

2[a2 − ω2
0 + a(1 − ω2

0)] + aδ2(b∗1 + b∗2) = 0.

(45)

From the second equation we can solve for the crit-
ical frequency as ω2

0 = a[1 + δ2(b∗1 + b∗2)/[2(a + 1)]],
and replacing into the first one, we obtain the equa-
tion representing the Hopf points in the parameter
space as

bm[a(bm + 1) + 1]δ4 − (a + 1)4 − (a + 1)2

× [ab∗1b
∗
2 + (a + 1)bm − 1]δ2 = 0, (46)

where bm � (b∗1 + b∗2)/2. For example, taking fixed
values of b∗1 and b∗2, we can find the Hopf curve
in the (δ, a) space from (46). Figure 3 shows sev-
eral bifurcation diagrams obtained with b2 = 1/2
and different fixed values of b1. The curve repre-
senting a static bifurcation is obtained from (38)
and the Hopf bifurcation curve is given implicitly
by (46), which can be plotted using a standard soft-
ware such as Mathematica. In each Hopf curve, H
indicates that the Hopf bifurcation is supercriti-
cal along it. This means that a stable limit cycle
emerges when the equilibrium point at the origin
switches from stable to unstable. In addition, the
Hopf curve collides with the static one at the DZ
point, as is very well known [Kuznetsov, 2004]. For
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DZ

DZ

(a) (b)

DZ

DZ

(c) (d)

Fig. 3. Bifurcation diagrams for system (29) with weak gamma kernel for b2 = 1/2 and different values of b1. In each case,
the shaded region represents the stability region of the equilibrium point at zero.

the gamma kernel, it is simple to show that the
mean delay defined in (3) results in τm = p/a. Then,
if b1 and b2 are fixed, τ

(DZ)
m is given by (39) and the

value of parameter a for which the DZ bifurcation
occurs is a(DZ) = p/τ

(DZ)
m . For example, if b1 = 2/3,

b2 = 1/2 and p = 1 then from (39), τ
(DZ)
m = 2/3 and

a(DZ) = 3/2, as is shown in Fig. 3(b).
Notice that as a decreases (the mean delay

increases) the stability region shrinks (i.e. the range
of values of δ for which the origin is stable becomes
narrower). Thus, as can be expected, an increase
on the delay has a destabilizing effect on the sys-
tem. Increasing either a1 or a2 also destabilizes the
equilibrium point.

Remark. Notice that if b1 = 1 or b2 = 1 then
(x̂1, x̂2) = (0, 0) is the unique equilibrium point
of (29). In this case, the condition for a static

bifurcation (37) is never satisfied and obviously the
DZ point does not exist. Then, the trivial equilib-
rium point can lose its stability through a Hopf
bifurcation only. As a consequence, the stability
region increases conforming b1 or b2 tends to unity.

In order to determine the direction and stabil-
ity of the emerging periodic solutions, we refer to
the Graphical Hopf Bifurcation Theorem (GHBT)
[Mees & Chua, 1979; Moiola & Chen, 1996]. We
compute the auxiliary complex number ξ(ω;µ)
appearing in (27). The calculations are a bit exten-
sive and are given in the Appendix. Figure 4 shows
two geometrical loci of λ̂(iω;µ) and the correspond-
ing ξ vectors for a stable (up) and unstable (down)
trivial equilibrium. When the equilibrium point is
unstable, the intersection between λ̂ and ξ predicts
the existence of a stable limit cycle according to
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Fig. 4. Nyquist diagrams and numerical simulations for system (29) with weak gamma kernel, with a = 2, b1 = 9/10, b2 = 1/2
and a1 = a2 = 2.7 (up, stable equilibrium), a1 = a2 = 2.8 (down, unstable equilibrium).

the GHBT, which is also confirmed via numeri-
cal simulation. In this example, we choose f(u) =
tanh(u) in (29).

In the following subsection, we will analyze the
particular case in which b1 = b2, which we will call
symmetrical case. In this situation, the bifurcation
equations become more tractable and we can obtain
analytical results for several gamma kernels.

3.3. Symmetrical case (b1 = b2)

In this case, we suppose that the weights of the past
influence are identical for the two neurons (b1 =
b2 = b). From (34), we obtain the solution in the
variable λ as

λ̂(s;µ) = δ
[bK(s) − 1]

s + 1
.

The static bifurcation condition (38) reduces to
δST = 1/|b − 1| and the DZ condition becomes
τ

(DZ)
m = (1 − b)/b, 0 < b < 1. The Hopf bifurca-

tion condition λ̂(iω0;µ) = −1 leads to

apbδ = (δ − 1 − iω0)(a + iω0)p. (47)

Table 1 summarizes the Hopf bifurcation conditions
obtained by solving (47) for several values of p. In
each case, that condition represents a curve formed

Table 1. Hopf bifurcation condition in the parameter
space, for the symmetrical case and different values of p.

p Bifurcation Condition

1 a = δ − 1

2 abδ = 2(δ − a − 1)2

3 ω4
0 + 3a(δ − a − 1)ω2

0 + a3[δ(b − 1) − 1] = 0, where

ω2
0 = a2[3(δ − 1) − a]/[δ − 1 − 3a].

by Hopf points in the (δ, a) plane. The correspond-
ing bifurcation diagrams are depicted in Figs. 5(a)–
5(c), where we picked b = 1/2.

Additionally, Eq. (27) allows to compute the
approximate amplitude of a periodic solution
arising from a Hopf bifurcation, for parameter val-
ues beyond the critical one. The algorithm used for
this purpose is explained in the Appendix. Figure 6
compares the amplitude of the periodic solution
approximated with the GHBT and the one obtained
by numerical simulations carried out with Matlab.
The amplitude is presented as function of δ for the
case of the weak kernel, with a = 1/2 and b1 = b2 =
1/2. Notice that the amplitude of the limit cycle
grows fast as the parameter δ increases beyond the
critical value. Thus, we obtained approximations
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DZ

DZ
DZ

(a) (b) (c)

Fig. 5. Bifurcation diagrams for system (29) using gamma kernels with different values of p, with b1 = b2 = 1/2. Notice the
different “a” axis scale in each case.

of oscillations whose amplitudes are not necessarily
small.

3.4. Dynamics near the double zero
bifurcation

In the previous subsections, we have shown sev-
eral bifurcation diagrams representing the dynamics
exhibited by the trivial equilibrium point. However,
in each case, the DZ point not only unfolds curves
of static and Hopf bifurcations, in fact, the dynami-
cal scenario around it is by far more complicated. In
order to be more specific, let us consider the activa-
tion function f(u) = tanh(u) in (29), as usual in the
literature of neural networks. In this case, provided
by the odd-symmetry of this function, system (29)
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0
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1
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A
m
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it

ud
e
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Simulation

δ

Fig. 6. Amplitude of the limit cycle arising from a Hopf
bifurcation, with p = 1, a = 1/2, with b1 = b2 = 1/2. The
curve labeled with crosses corresponds to numerical simula-
tions and the one labeled with circles denotes the approxi-
mate amplitude obtained with the GHBT.

becomes invariant under the change of variables
given by (x1, x2) �→ (−x1,−x2), i.e. it exhibits the
so-called Z2 symmetry [Kuznetsov, 2004]. As a con-
sequence, the ST curves shown in Figs. 3 and 5 rep-
resent Pitchfork bifurcations. Let us rewrite (32) as
follows {

x̂1 = a1 tanh[(1 − b2)x̂2],

x̂2 = a2 tanh[(1 − b1)x̂1].
(48)

It is simple to see that one or three equilibria can
exist, depending on the values of the parameters a1,
a2, b1 and b2. If there is a nonzero solution x+ =
(x̂(1)

1 , x̂
(1)
2 ) of (48) with x̂

(1)
1 , x̂

(1)
2 > 0 then x− =

(−x̂
(1)
1 ,−x̂

(1)
2 ) is also a solution. When the equilib-

rium points x+,x− exist, their stability properties
can be studied taking the state-space representation
in (30) and the Jacobian matrix

J∗
±(µ) =

(
0 −a1f

′
2 0 a1b2f

′
2

−a2f
′
1 0 a2b1f

′
1 0

)
,

where

f ′
1 � f ′[(1 − b1)x̂

(1)
1 ] and

f ′
2 � f ′[(1 − b2)x̂

(1)
2 ].

The characteristic equation in the frequency domain
for x+ and x− becomes

h(λ, s;µ) = |λI4 − G∗(s)J∗
±(µ)|

=
λ2

(s + 1)2
{λ2(s + 1)2

− a1a2f
′
1f

′
2η1(s)η2(s)} = 0 (49)
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and the solution in the variable λ is obtained in
similar form as that in (40) as

λ̂(s;µ) =
δ1

√
η1(s)

√
η2(s)

s + 1
, (50)

where δ1 �
√

a1a2f
′
1f

′
2. For example, let us con-

sider b1 = 2/3, b2 = 1/2 and a weak gamma kernel,
as in Fig. 3(b). Figure 7 shows an enlarged view
near the double zero point, in which ST [obtained
from (38)] and H− [computed using (46)] have
the same meaning as that in Fig. 3. The curve
H+ represents Hopf bifurcations of the nontrivial
equilibria, and it is obtained from (49) in similar
fashion as H−. The gray shaded area represents
qualitatively the occurrence of two global phenom-
ena which cannot be computed through the GHBT,
but their existence is very well known. Actually, the
expected dynamics around the double zero point
for a Z2 symmetric system is described in detail
in [Kuznetsov, 2004] and is shown in Fig. 9.10 of
the cited book. In conclusion, we computed ana-
lytically the curves representing local bifurcation
through the GHBT and showed qualitatively the
global phenomena.

Let us consider Fig. 7 and suppose a counter-
clockwise movement around the double zero point.
Starting from region I, the unique equilibrium at
the origin is asymptotically stable. In region II, that
equilibrium has lost its stability via a supercritical
Hopf bifurcation, which has generated a stable limit
cycle. In region III, a pitchfork bifurcation has led to
two new equilibria, which are symmetrical from the
origin and unstable. When crossing H+ to region
IV, a subcritical Hopf bifurcation turns the non-
trivial equilibrium points stable, and both x+ and
x− are surrounded by “small” unstable limit cycles.
When these limit cycles grow large enough, they
collide with the origin forming a homoclinic “figure
eight” orbit, which later separates from the origin
and becomes a “big” unstable limit cycle having
the three equilibria inside it. These two global phe-
nomena occur inside region V which is indicated
only qualitatively because these global phenom-
ena cannot be computed through the GHBT or
be detected by numerical simulations. Finally, the
unstable limit cycle collides with the stable one
which surrounds the whole scenario, and via a
saddle-node of limit cycles they disappear. Then, in

2.0 2.2 2.4 2.6 2.8 3.0
1.0

1.2

1.4

1.6

1.8

2.0

a

H-
H+

ST

I

II
III IV

V

VI
I

II III IV

V

VI

V

Fig. 7. Detail of the dynamics of system (29) near the double zero point. H− denotes the Hopf bifurcation of the equilibrium
at zero and H+ denotes Hopf bifurcations of the nontrivial equilibria. The gray shaded area (V) represents qualitatively the
transition between the scenarios IV and VI. In the qualitative phase portraits, black points represent stable equilibria and
white points unstable ones. The stable limit cycles are shown in black solid line and the unstable ones in dashed line.
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Fig. 8. Some numerical simulations corresponding to representative behaviors of regions in Fig. 7. For each region, we plotted
a phase portrait and the time evolution of the variable x1. Region II: a = 1.2, δ = 2.4; initial values: x1(u) = 0, x2(u) = 0.01,
−∞ < u ≤ 0. Region III: a = 1.1, δ = 2.6; initial values: x1(u) = 1.2, x2(u) = 0.9, −∞ < u ≤ 0. Region IV: a = 1.1, δ = 2.7;
initial values: x1(u) = 1.1, x2(u) = 0.7, −∞ < u ≤ 0 for the trajectory tending to x+ (blue); x1(u) = −1.1, x2(u) = −0.7,
−∞ < u ≤ 0 for the trajectory tending to x− (red) and x1(u) = 2, x2(u) = 0.7, −∞ < u ≤ 0 for the trajectory tending to the
“big” limit cycle. Region VI: a = 1.2, δ = 2.7; initial values: x1(u) = 2, x2(u) = 0.7, −∞ < u ≤ 0 for the trajectory tending
to x− (red) and x1(u) = −2, x2(u) = −0.7, −∞ < u ≤ 0 for the trajectory tending to x+ (blue). The small arrows indicate
the direction of the flow.

region VI, only the three equilibria remain. When
crossing the ST curve again, the stable equilibria
x+ and x− collide at the origin through a pitch-
fork bifurcation, and we return to the situation of
region I.

It is worth mentioning that a similar dynam-
ical behavior has been found in [Fan et al., 2013]
also in a system of two coupled neurons, but each
with a delayed self feedback and a delayed connec-
tion from the other neuron. The authors considered
concentrated (point) delays instead of distributed
ones.

Figure 8 shows numerical simulations illustrat-
ing the behaviors corresponding to regions II, III,
IV and VI of Fig. 7. For each region, we plotted a
phase portrait together with the time evolution of
the variable x1. In regions II and III, we considered

different initial functions in order to show trajecto-
ries converging to each of the existing attractors.

4. Conclusions

In this work, we presented a modified version of
the GHBT which allows the bifurcation analysis of
DDEs with distributed delays. This approach takes
advantage of a simple interpretation of the effect of
the distributed delay based on the Laplace trans-
form properties. Thus the main advantage of our
approach is the reutilization of a very well known
technique (originally meant to study ODEs) to ana-
lyze systems with distributed delays, without the
need for formulating an equivalent system, which
is not always possible. The proposed methodol-
ogy does not depend on the particular shape of

1550156-13



October 15, 2015 10:0 WSPC/S0218-1274 1550156

F. S. Gentile & J. L. Moiola

the distribution function (notice that in the exam-
ple, we derived the characteristic equation without
choosing a particular kernel) and at this point our
approach distinguishes from the existing works (see,
for example [Liao et al., 2004; Xiao et al., 2013]).
Finally, it is worth to mention that the proposed
approach can be easily extended to the case of mul-
tiple delays.

The theoretical results were illustrated through
an example consisting of two coupled neurons, for
which we have obtained bifurcation diagrams of the
trivial equilibrium point for several gamma kernels
in the symmetrical (simpler) case and the weak
gamma kernel in the asymmetric (general) case.
In addition, we stated analytical conditions for the
appearance of a double zero bifurcation, which in
turn unfolds a pitchfork bifurcation of equilibria
and Hopf bifurcations of both the trivial and non-
trivial equilibria. For completeness, we analyzed the
behavior of the system near the double zero point,
and we found a similar scenario as the one described
in Fig. 9.10 of [Kuznetsov, 2004] and in [Fan et al.,
2013].
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Appendix A

Procedure for Computing ξ

Here we provide some details on the procedure for
obtaining the complex number ξ appearing in (27),
which is needed to know the direction and stability
of the limit cycle generated by the Hopf bifurcation,
according to the GHBT given in [Mees & Chua,
1979]. The first step consists of computing the right
and left eigenvectors of matrix G∗(s)J∗(µ). Consid-
ering matrices G∗(s) from (31) and J∗(µ) from (33),
we obtain those eigenvectors as

v = (v1(s), 1, v1(s)K(s),K(s))T

u = (u1(s),−1,−u1(s)b1, b2)T ,

where

v1(s) � a1f
′

δ

√
η2(s)
η1(s)

, u1(s) � −a2

a1
v1(s). (A.1)

The second step consists of computing H∗(s;µ)
from (24) and

v0 = −1
4
H(0;µ)(D2g)v ⊗ v,

v2 = −1
4
H(i2ω;µ)(D2g)v ⊗ v,

(A.2)

which are equivalent to the quantities in (23) but
scaled by 1/θ2. We compute (A.2) instead of (23)
because the quantity θ is unknown yet, and it can
be obtained at the end of the procedure. The true

amplitudes of the Fourier coefficients are recovered
easily from the following relationships

Y0∗ = θ2v0, Y1∗ = θv, Y2∗ = θ2v2.

Then, vector p(ω;v) in (27) is given by

p(ω,v) � (D2g)[v0 ⊗ v + v ⊗ v2]

+
1
8
(D3g)v ⊗ v ⊗ v. (A.3)

For the case presented in Sec. 4.2, the matrix
of second-order derivatives given by (13)–(19) is
null, then the zero and second harmonic compo-
nents (A.2) are zero. Then, p(ω;v) in (A.3) results
in

p(ω;v) =
1
4

(
a1η2(iω)|η2(iω)|2

a2η1(iω)|η1(iω)|2|v1(iω)|2

)

(A.4)

and from (28), the auxiliary vector ξ is given by

ξ(ω;µ) =
η1η2(a2v1|v1|2|η1|2 + a1u1|η2|2)

4(1 + iω)(η1 + η2)
,

where we have omitted the argument iω in η1, η2,
v1 and u1 for short. After replacing (A.1) into (A.4)
and making several simplifications we finally arrive
at

ξ(ω;µ) =
a1|η1|√η1η2(a1|η1| − a2|η2|)

8|K(iω)|2√a1a2(1 + iω)
. (A.5)

In order to obtain an approximation of the ampli-
tude of the limit cycles, we must find the pair (ω, θ)
that solves (27). This task can be performed by an
iterative process, starting from ω0, the frequency
at which λ̂(iω;µ0) crosses the −1 + i0 point. If µ
is close enough to µ0, the true frequency ω remains
close to ω0 [Mees & Chua, 1979]. Then, we first
compute ξ(ω0;µ) and use the following algorithm

(Step 1) λ̂(iω1;µ) = −1 + ξ(ω0;µ)θ2
1,

(Step 2) λ̂(iω2;µ) = −1 + ξ(ω1;µ)θ2
2,

...
...

(Step N) λ̂(iωN ;µ) = −1 + ξ(ωN−1;µ)θ2
N ,

taking N large enough so that |ωN − ωN−1| < ε,
with ε very small. Finally, we assign ω := ωN and
θ := θN . This procedure is performed for every fixed
value of µ for which we want to approximate the
amplitude of the limit cycle. In this way, we have
obtained the results shown in Fig. 6.
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