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Abstract

Following Chakrabarti,Chandrasekhar, and Naina [Physica A 389 (2010)
1571], we attempt a classical relativistic treatment of Verlinde’s emer-
gent entropic force conjecture by appealing to a relativistic Hamilto-
nian in the context of Tsalli’s statistics. The ensuing partition function
becomes the classical one for small velocities. We show that Tsallis’
relativistic (classical) free particle distribution at temperature T can
generate Newton’s gravitational force’s r−2 distance’s dependence. If
we want to repeat the concomitant argument by appealing to Renyi’s
distribution, the attempt fails and one needs to modify the conjecture.
Keywords: Tsallis’ and Renyi’s relativistic distributions, classical par-
tition function, entropic force.
PACS: 05.20.-y, 05.70.Ce, 05.90.+m
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1 Introduction

In 2011, Verlinde [1] put forward a conjecture that connects gravity to an
entropic force. Gravity would then arise out of information regarding the
positions of material bodies (it from bit). This idea links a thermal gravity-
treatment to ’t Hooft’s holographic principle. As a consequence, gravitation
ought to be be regarded as an emergent phenomenon. Verlinde’s conjecture
attained considerable reception (just as an example, see [2]). For a superb
overview on the statistical mechanics of gravitation, we recommend Padman-
abhan’s work [3], and references therein.

Verlinde’s initiative originated works on cosmology, the dark energy hypoth-
esis, cosmological acceleration, cosmological inflation, and loop quantum
gravity. The literature is immense [4]. A relevant contribution to information
theory is that of Guseo [5], who proved that the local entropy function, re-
lated to a logistic distribution, is a catenary and vice versa. Such invariance
may be explained, at a deeper level, through the Verlindes conjecture on the
origin of gravity, as an effect of the entropic force. Guseo puts forward a new
interpretation of the local entropy in a system, as quantifying a hypothetical
attraction force that the system would exert [5].

The present effort does not deal with any of these issues. What we will do
is to show that a simple classical reasoning centered on Tsallis’ relativistic
probability distributions proves Varlinde’s conjecture. For Renyi’s relativistic
instance, one needs to modify the conjecture to achieve a similar result.
Our point of departure is Ref. [6], in which their authors studied a canonical
ensemble of N particles for a classical relativistic ideal gas, and found its
specific heat in the Tsallis-Mendes-Plastino (TMP) scenario [7]. We will
not use here the TMP scenario. Inspired by [6], we appeal as well to our
previous effort [8] for non-relativistic results and deal with Tsallis’ statistics
with linear constraints as a priori information [7]. In addition to finding, for
the first time ever, relativistic Verlinde-results in a Tsallis’context, we will,
for the sake of completeness, register some advances regarding the relativistic
Tsallis scenario with linear constraints for the ideal gas.
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2 Tsallis’ relativistic partition function for the

free particle

The celebrated and well-known Tsalis entropy is a generalization of Shanon’s
one, that depends on a free real parameter q [7].

The q < 1 instance

We consider first the case q < 1. This case is not relevant to our Verlinde’s
endeavor [8], but is a logical addition to the results of [6].

Tsallis’ relativistic q-partition function for N−free particles of mass m reads
[6]

Z =
V

N !h3N

∫ [
1 + (1− q)β(

√
m2c4 + p2c2 −mc2)

] 1
q−1

+
d4p. (2.1)

Using spherical coordinates and integrating over the angles the precedent
integral we have

Z =
4πV

N !h3N

∞∫
0

[
1 + (1− q)β(

√
m2c4 + p2c2 −mc2)

] 1
q−1

p2dp. (2.2)

With the change of variables y2 = p2 +m2c2 one now has

Z =
4πV

N !h3N

∞∫
mc

y
√
y2 −m2c2 [1 + (1− q)βc(y −mc)]

1
q−1 dy. (2.3)

Let x be given by y = mcx. We have then

Z =
4πV m3c3

N !h3N

∞∫
1

x
√
x2 − 1

[
1 + (1− q)βmc2(x− 1)

] 1
q−1 dx. (2.4)

With s defined as x = s+ 1 we obtain:

Z =
4πV m3c3

N !h3N

∞∫
0

(
s

3
2 + s

1
2

)
(s+ 2)

1
2
[
1 + (1− q)βmc2s

] 1
q−1 ds, (2.5)
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or

Z =
4πV m3c3

N !h3N
[(1− q)βmc2]

1
q−1

∞∫
0

s
3
2 (s+ 2)

1
2

[
s+

1

(1− q)βmc2

] 1
q−1

ds+

4πV m3c3

N !h3N
[(1− q)βmc2]

1
q−1

∞∫
0

s
1
2 (s+ 2)

1
2

[
s+

1

(1− q)βmc2

] 1
q−1

ds. (2.6)

Appealing to reference [9] we have now a result in terms of Hyper-geometric
functions F and Beta functions B, namely,

Z =
4πV m3c3

N !h3N
[(1− q)βmc2]−

3
2

B
(

5
2
, 1
1−q − 3

)
βmc2(1− q)

×

F

(
−1

2
,
5

2
,

1

1− q
− 1

2
; 1− 1

2βmc2(1− q)

)
+

B

(
3

2
,

1

1− q
− 2

)
F

(
−1

2
,
3

2
,

1

1− q
− 1

2
; 1− 1

2βmc2(1− q)

)]
. (2.7)

For βmc2 >> 1, mc2 >> kBT , we are in the non-relativistic case and have

Z =
2πV

N !h3N

[
2m

β(1− q)

] 3
2 Γ
(
3
2

)
Γ
(

1
1−q −

3
2

)
Γ
(

1
1−q

) . (2.8)

The case q > 1

Let is now consider gravitationally relevant [8] case q > 1 . We have for the
partition function

Z =
4πV m3c3

N !h3N

∞∫
0

(
s

3
2 + s

1
2

)
(s+ 2)

1
2
[
1− (q − 1)βmc2s

] 1
q−1

+
ds. (2.9)

Integrating on the angles we have again

Z =
4πV m3c3

N !h3N

1
βmc2(q−1)∫

0

(
s

3
2 + s

1
2

)
(s+ 2)

1
2
[
1− (q − 1)βmc2s

] 1
q−1 ds,

(2.10)
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or

Z =
4πV m3c3

N !h3N
[(q−1)βmc2]

1
q−1

1
βmc2(q−1)∫

0

s
3
2 (s+ 2)

1
2

[
1

(q − 1)βmc2
− s
] 1
q−1

ds+

4πV m3c3

N !h3N
[(q − 1)βmc2]

1
q−1

1
βmc2(q−1)∫

0

s
1
2 (s+ 2)

1
2

[
1

(q − 1)βmc2
− s
] 1
q−1

ds.

(2.11)
By recourse to [9] we now obtain

Z =
2πV

N !h3N

[
2m

βm(q − 1)

] 3
2

B
(

5
2
, 1
q−1 + 1

)
βmc2(q − 1)

×

F

(
−1

2
,
5

2
,
7

2
+

1

q − 1
;− 1

2βmc2(q − 1)

)
+

B

(
3

2
,

1

q − 1
+ 1

)
F

(
−1

2
,
3

2
,
5

2
+

1

q − 1
;− 1

2βmc2(q − 1)

)]
. (2.12)

For βmc2 >> 1, the classic case, the partition function reads

Z =
2πV

N !h3N

[
2m

β(q − 1)

] 3
2 Γ
(
3
2

)
Γ
(

1
q−1 + 1

)
Γ
(

1
1−q + 5

2

) , (2.13)

which is the usual non relativistic Tsalli’s partition function for q > 1 already
obtained in [8]. Figure 1 displays the graph of the function H(T ) given by

Z =
2πV

N !h3N

[
2m

β(q − 1)

] 3
2

H(T ), (2.14)

for q = 4
3
, the specific q−value needed for gravitaional considerations [8]. It

tells us that Z is always positive, as it should be.
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3 Tsallis’ relativistic mean energy of the free

particle

Case q < 1

Let us now calculate the average energy corresponding, firstly in the case
q < 1. For it we have

Z < U >=
V

N !h3N

∫
[
√
m2c4 + p2c2 −mc2]×

[
1 + (1− q)β(

√
m2c4 + p2c2 −mc2)

] 1
q−1

+
d4p, (3.15)

or

Z < U >=
V

N !h3N

∫
[
√
m2c4 + p2c2]×[

1 + (1− q)β(
√
m2c4 + p2c2 −mc2)

] 1
q−1

+
d4p−mc2Z. (3.16)

With changes in the variables similar to those made for the partition function,
we obtain here

Z < U >=
4πV m4C5

N !h3N

∞∫
0

x
3
2 (x+ 1)(

√
x+ 2×

[
1 + (1− q)βmc2x

] 1
q−1 dx. (3.17)

This last equation can be rewritten as

Z < U >=
4πV m4C5

N !h3N
[βmc2(1− q)]

1
q−1

∞∫
0

x
3
2 (x+ 1)(

√
x+ 2×

[
x+

1

(1− q)βmc2

] 1
q−1

dx. (3.18)

Returning again to reference [9], we obtain for < U >

< U >=

√
2 4πV m4c5

N !h3NZ

[
1

βmc2(1− q)

] 5
2
+ 1
q−1

B
(

7
2
, 1
1−q − 4

)
βmc2(1− q)

×

7



F

(
−1

2
,
7

2
,

1

1− q
− 1

2
; 1− 1

2βmc2(1− q)

)
+

B

(
5

2
,

1

1− q
− 3

)
F

(
−1

2
,
5

2
,

1

1− q
− 1

2
; 1− 1

2βmc2(1− q)

)]
. (3.19)

From this last equation we obtain the mean energy expression for the non-
relativistic case

< U >=
3

β[2− 5(1− q)]
. (3.20)

Case q larger than one

When q > 1 we have

Z < U >=
4πV m4C5

N !h3N

∞∫
0

x
3
2 (x+ 1)(

√
x+ 2×

[
1− (q − 1)βmc2x

] 1
q−1

+
dx−mc2Z. (3.21)

Making a similar reasoning as for the case q < 1 we obtain

< U >=

√
2 4πV m4c5

N !h3NZ

[
1

βmc2(q − 1)

] 1
q−1

B
(

7
2
, 1
q−1 + 1

)
βmc2(q − 1)

×

F

(
−1

2
,
7

2
,

1

q − 1
+

9

2
;

1

2βmc2(q − 1)

)
+

B

(
5

2
,

1

q − 1
+ 1

)
F

(
−1

2
,
5

2
,

1

q − 1
+

7

2
− 1

2βmc2(q − 1)

)]
. (3.22)

For βmc2 >> 1 (the non-relativistic case) we obtain the result of [8], i.e.,

< U >=
3

β[2 + 5(q − 1)]
. (3.23)
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4 Specific heat in the linear constraints Tsal-

lis’ scenario

Let is now calculate the specific heat for the case q = 4
3
, relevant for Verlinde-

endeavors [8]. This was not done in [6]. We should first note, with respect
to Hyper-geometric functions, that

d

dz
F (α, β, γ; z) = −αβF (α + 1, β + 1, γ + 1; z). (4.24)

We now use the notation

F1 = F

(
−1

2
,
7

2
,
9

2
+ 3;−3kBT

2mc2

)
, (4.25)

F2 = F

(
−1

2
,
5

2
,
7

2
+ 3;−3kBT

2mc2

)
, (4.26)

F3 = F

(
−1

2
,
3

2
,
5

2
+ 3;−3kBT

2mc2

)
, (4.27)

F4 = F

(
1

2
,
9

2
,
9

2
+ 4;−3kBT

2mc2

)
, (4.28)

F5 = F

(
1

2
,
7

2
,
7

2
+ 4;−3kBT

2mc2

)
, (4.29)

F6 = F

(
1

2
,
5

2
,
5

2
+ 4;−3kBT

2mc2

)
. (4.30)

Thus, we can write

< U >= 3kBT
3kBT
mc2

B
(
7
2
, 4
)
F1 +B

(
5
2
, 4
)
F2

3kBT
mc2

B
(
5
2
, 4
)
F2 +B

(
3
2
, 4
)
F3

, (4.31)

and, for the specific heat we have then

C =
∂ < U >
∂T

=
< U >
T

+
9k2BT

mc2
B
(
7
2
, 4
)
F1 − 21kBT

3mc2
B
(
7
2
, 4
)
F4 − 5

8
B
(
5
2
, 4
)
F5

3kBT
mc2

B
(
5
2
, 4
)
F2 +B

(
3
2
, 4
)
F3

−

3kB < U >
mc2

B
(
5
2
, 4
)
F2 − 15kBT

8mc2
B
(
5
2
, 4
)
F5 − 3

8
B
(
3
2
, 4
)
F6

3kBT
mc2

B
(
5
2
, 4
)
F2 +B

(
3
2
, 4
)
F3

. (4.32)

This expression is plotted in Figure 2. We see that the specific heat is always
positive, as it happens in the non-relativistic case [8].

9



5 The relativistic, Tsallis entropic force

We arrive now at our main present goal. We specialize things now to q = 4
3
.

Why do we select this special value q = 4
3
? There is a solid reason. This is

because
S = lnq Z + Z1−qβ < U > .

Since the entropic force is to be defined as proportional to the gradient of S,
there is a unique q-value for which the dependence on r of the entropic force
is ∼ r−2 when ν = 3. Thus we obtain, for q = 4/3,

S = 3− (3− β < U >)Z−
1
3 . (5.1)

From (2.12) we can write
< Z >= ar3, (5.2)

from which it is obtained that

S = 3− 3− β < U >
a

1
3 r

. (5.3)

Following Verlinde [1] we define the entropic force as

~Fe = −λ
β
~∇S, (5.4)

where ~∇ indicates the four-gradient in Minkowskian space.

~Fe = −λ
β

3− β < U >
a

1
3 r2

~er, (5.5)

where ~er is the radial unit vector. We see that Fe acquires an appearance
quite similar to that of Newton’s gravitational one, as conjectured by Verlinde
en [1]. In Figures 3 and 4 the function L = 3− β < U > is plotted. We see
that L is always positive. This entails that the relativistic entropic force is
purely gravitational.
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6 The relativistic, Renyi’s entropic force

In Renyi’s approach to our problem [8] the entropy is

S = lnZ + ln[1 + (1− α)β < U >]
1

1−α
+ . (6.1)

For α = 4
3
, the expression for the entropy is

S = lnZ + ln

[
1− β < U >

3

]−3
+

. (6.2)

The second term on the right hand of (6.2) is independent of r. Additionally,
from (5.2) we obtain

lnZ = 3 ln r + ln a. (6.3)

Here we need to derive the entropy with respect to the area, thus changing
Verlindes conjecture. As in the non-relativistic case [8], we have then

~Fe = −λ
β

∂S
∂A

~eR = −λ
β

3

8πr2
~er. (6.4)

This is again a gravitational expression for the entropic force.

7 Conclusions

We obtained here the relativistic partition function Z of Tsalli’s theory with
linear constraints, that adequately reduces itself to its non-relativistic coun-
terpart for small velocities.
We do the same for the mean value of the energy< U > for the relativistic
Hamiltonian of the ideal gas.
We obtain the associated specific heat that turns out to be positive, as befits
an ideal gas.
From Z and < U > we obtained the relativistic entropy S
We have presented two very simple relativistic classical realizations of Ver-
linde’s conjecture. The Tsallis treatment, for q = 4/3, seems to be neater,
as the entropic force is directly associated to the gradient of Tsallis’ entropy
Sq, which acts as a ”potential”, as Verlinde prescribes. This is not so in
the Renyi instance, in which one has to modify Verlinde’s Fe definition and
derive S with respect to the area.
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Strictly speaking, Verlinde’s conjecture can be unambiguously proved for the
Tsallis entropy with q = 4/3. The Renyi demonstration correspond to a
modified version of Verlinde’s conjecture.
Of course, ours is a very preliminary, if significant, effort. A much more
elaborate treatment would be desirable.
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