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Abstract

Following Chakrabarti,Chandrasekhar, and Naina [Physica A 389 (2010)
1571], we attempt a classical relativistic treatment of Verlinde’s emer-
gent entropic force conjecture by appealing to a relativistic Hamilto-
nian in the context of Tsalli’s statistics. The ensuing partition function
becomes the classical one for small velocities. We show that Tsallis’
relativistic (classical) free particle distribution at temperature 7' can
generate Newton’s gravitational force’s r—2 distance’s dependence. If
we want to repeat the concomitant argument by appealing to Renyi’s
distribution, the attempt fails and one needs to modify the conjecture.
Keywords: Tsallis” and Renyi’s relativistic distributions, classical par-
tition function, entropic force.
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1 Introduction

In 2011, Verlinde [1] put forward a conjecture that connects gravity to an
entropic force. Gravity would then arise out of information regarding the
positions of material bodies (it from bit). This idea links a thermal gravity-
treatment to 't Hooft’s holographic principle. As a consequence, gravitation
ought to be be regarded as an emergent phenomenon. Verlinde’s conjecture
attained considerable reception (just as an example, see [2]). For a superb
overview on the statistical mechanics of gravitation, we recommend Padman-
abhan’s work [3], and references therein.

Verlinde’s initiative originated works on cosmology, the dark energy hypoth-
esis, cosmological acceleration, cosmological inflation, and loop quantum
gravity. The literature is immense [4]. A relevant contribution to information
theory is that of Guseo [5], who proved that the local entropy function, re-
lated to a logistic distribution, is a catenary and vice versa. Such invariance
may be explained, at a deeper level, through the Verlindes conjecture on the
origin of gravity, as an effect of the entropic force. Guseo puts forward a new
interpretation of the local entropy in a system, as quantifying a hypothetical
attraction force that the system would exert [5].

The present effort does not deal with any of these issues. What we will do
is to show that a simple classical reasoning centered on Tsallis’ relativistic
probability distributions proves Varlinde’s conjecture. For Renyi’s relativistic
instance, one needs to modify the conjecture to achieve a similar result.
Our point of departure is Ref. [6], in which their authors studied a canonical
ensemble of N particles for a classical relativistic ideal gas, and found its
specific heat in the Tsallis-Mendes-Plastino (TMP) scenario [7]. We will
not use here the TMP scenario. Inspired by [6], we appeal as well to our
previous effort [8] for non-relativistic results and deal with Tsallis’ statistics
with linear constraints as a priori information [7]. In addition to finding, for
the first time ever, relativistic Verlinde-results in a Tsallis’context, we will,
for the sake of completeness, register some advances regarding the relativistic
Tsallis scenario with linear constraints for the ideal gas.



2 Tsallis’ relativistic partition function for the
free particle

The celebrated and well-known Tsalis entropy is a generalization of Shanon’s
one, that depends on a free real parameter ¢ [7].

The ¢ < 1 instance

We consider first the case ¢ < 1. This case is not relevant to our Verlinde’s
endeavor [8], but is a logical addition to the results of [6].

Tsallis’ relativistic g-partition function for N—free particles of mass m reads
(6]
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Using spherical coordinates and integrating over the angles the precedent
integral we have
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Let x be given by y = mcx. We have then
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ArVmdes [
Z = —7JTV'h3N / (s% + s%> (s +2)
0

[N

[1+ (1 —q)Bmc*s] = ds, (2.5)



or

[

Z_ AV m3c? 7 3 1
0

3 1

q—1
_— | 4
1— q)ﬁmcg} o

ATV m3c?

1= )ame 7 [ s (s+2)
0

N

: +<;y-“ds. 2.6

1= q)pme

Appealing to reference [9] we have now a result in terms of Hyper-geometric
functions F' and Beta functions B, namely,
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For Bmc? >> 1, me? >> kgT, we are in the non-relativistic case and have
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The case ¢ > 1

Let is now consider gravitationally relevant [8] case ¢ > 1 . We have for the
partition function
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Integrating on the angles we have again
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By recourse to [9] we now obtain
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For Bmc? >> 1, the classic case, the partition function reads
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which is the usual non relativistic Tsalli’s partition function for ¢ > 1 already
obtained in [8]. Figure 1 displays the graph of the function H(T') given by
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for g = %, the specific g—value needed for gravitaional considerations [8]. It
tells us that Z is always positive, as it should be.



3 Tsallis’ relativistic mean energy of the free
particle

Case ¢ < 1

Let us now calculate the average energy corresponding, firstly in the case
q < 1. For it we have
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With changes in the variables similar to those made for the partition function,
we obtain here
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This last equation can be rewritten as
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Returning again to reference [9], we obtain for < >
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From this last equation we obtain the mean energy expression for the non-
relativistic case
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Case ¢ larger than one
When ¢ > 1 we have
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For fmc? >> 1 (the non-relativistic case) we obtain the result of [§], i.e.,
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4 Specific heat in the linear constraints Tsal-
lis’ scenario

Let is now calculate the specific heat for the case ¢ = 2, relevant for Verlinde-
endeavors [8]. This was not done in [6]. We should ﬁrst note, with respect
to Hyper-geometric functions, that

d
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This expression is plotted in Figure 2. We see that the specific heat is always
positive, as it happens in the non-relativistic case [8].



5 The relativistic, Tsallis entropic force

We arrive now at our main present goal. We specialize things now to ¢ = %.
Why do we select this special value ¢ = %? There is a solid reason. This is
because

S=mn,Z+Z"718<U > .

Since the entropic force is to be defined as proportional to the gradient of S,
there is a unique g-value for which the dependence on r of the entropic force
is ~ 772 when v = 3. Thus we obtain, for ¢ = 4/3,
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Following Verlinde [1] we define the entropic force as
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where V indicates the four-gradient in Minkowskian space.
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where €, is the radial unit vector. We see that F, acquires an appearance
quite similar to that of Newton’s gravitational one, as conjectured by Verlinde
en [1]. In Figures 3 and 4 the function L =3 — § < U > is plotted. We see
that L is always positive. This entails that the relativistic entropic force is
purely gravitational.
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6 The relativistic, Renyi’s entropic force

In Renyi’s approach to our problem [8] the entropy is

S=mZ+In[l+(1—a)f<U>]T". (6.1)

For a = %, the expression for the entropy is
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The second term on the right hand of (6.2) is independent of r. Additionally,
from (5.2) we obtain
InZ =3Inr +Ina. (6.3)

Here we need to derive the entropy with respect to the area, thus changing
Verlindes conjecture. As in the non-relativistic case [8], we have then
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This is again a gravitational expression for the entropic force.

7 Conclusions

We obtained here the relativistic partition function Z of Tsalli’s theory with
linear constraints, that adequately reduces itself to its non-relativistic coun-
terpart for small velocities.

We do the same for the mean value of the energy< U > for the relativistic
Hamiltonian of the ideal gas.

We obtain the associated specific heat that turns out to be positive, as befits
an ideal gas.

From Z and < U > we obtained the relativistic entropy S

We have presented two very simple relativistic classical realizations of Ver-
linde’s conjecture. The Tsallis treatment, for ¢ = 4/3, seems to be neater,
as the entropic force is directly associated to the gradient of Tsallis” entropy
Sy, which acts as a "potential”, as Verlinde prescribes. This is not so in
the Renyi instance, in which one has to modify Verlinde’s F, definition and
derive S with respect to the area.
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Strictly speaking, Verlinde’s conjecture can be unambiguously proved for the
Tsallis entropy with ¢ = 4/3. The Renyi demonstration correspond to a
modified version of Verlinde’s conjecture.

Of course, ours is a very preliminary, if significant, effort. A much more
elaborate treatment would be desirable.
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