
Speci¯cation Patterns: Formal and Easy¤

Fernando Asteasuain† and Víctor Braberman‡

Dpto. Computaci�on, FCEyN, UBA

Pabell�on I, Ciudad Universitaria
(C1428EGA), Buenos Aires, Argentina

†fasteasuain@dc.uba.ar
‡vbraber@dc.uba.ar

Received 2 March 2011

Revised 3 September 2014
Accepted 5 September 2014

Property speci¯cation is still one of the most challenging tasks for transference of software

veri¯cation technology. The use of patterns has been proposed in order to hide the complicated

handling of formal languages from the developer. However, this goal is not entirely satis¯ed.
When validating the desired property the developer may have to deal with the pattern repre-

sentation in some particular formalism. For this reason, we identify four desirable quality

attributes for the underlying speci¯cation language: succinctness, comparability, complemen-

tariness, and modi¯ability. We show that typical formalisms such as temporal logics or au-
tomata fail at some extent to support these features. Given this context we introduce

Featherweight Visual Scenarios (FVS), a declarative and graphical language based on scenarios,

as a possible alternative to specify behavioral properties. We illustrate FVS applicability by
modeling all the speci¯cation patterns and we thoroughly compare FVS to other known

approaches, showing that FVS speci¯cations are better suited for validation tasks. In addition,

we augment pattern speci¯cation by introducing the concept of violating behavior. Finally we

characterize the type of properties that can be written in FVS and we formally introduce its
syntax and semantics.

Keywords: Behavioral modeling; speci¯cation patterns; requirements engineering.

1. Introduction

Property speci¯cation is still one of the most challenging tasks for transference

of software veri¯cation technology like model checking [7] and model-based testing

[9, 34]. Users of these techniques must still face the challenge of expressing properties

in the language or formalism used in the speci¯cation tool. Using natural language to

*This work was partially funded by ANPCYT PICT 1774/11 and 0724/12, UBACYT W0813, UBACYT

20020130100384BA and MEALS 295261. Víctor Braberman is also a±liated to CONICET.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, No. 4 (2015) 669–700

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015500060

669

http://dx.doi.org/10.1142/S0218194015500060

express requirements may appear as an alternative to formal approaches, but in

general leads to ambiguous and imprecise speci¯cations, threatening the advantages

of an automated veri¯cation process. One alternative is the use of speci¯cation

languages that resemble known and familiar programming languages, like JML [20]

or Spec Explorer [35], used typically for pre and post contract speci¯cation. None-

theless, when the intention is to predicate about the expected behavior over traces of

reactive systems in a declarative way the mainstream options are formal formal

approaches like Linear Temporal Logic (LTL) or operational notations such as ¯nite-

state machines. In these approaches users are required to have a considerable ex-

pertise on the formalism to accurately express the requirement they want to express

(e.g. [14, 17, 13, 32, 8, 29, 3]) and this clearly constitutes not a minor obstacle.

The usage of speci¯cation patterns has been proposed as an interesting alternative

to overcome this problem [12, 13]. The main purpose of a pattern is to capture

recurring solutions to a particular type of problem. In [13], patterns are described

considering two aspects. On the one hand, the intent of the pattern is described, that

is, the structure of the de¯ned behavior. This is usually expressed using a disciplined

natural language (DNL) notation [32]. For example, the intent for the Response

pattern is denoted as \One or more occurrences of action result in one or more

occurrences of response". On the other hand, each pattern has a scope, which is the

extend of the program execution over which the pattern must hold. For example, we

can say that the pattern must hold between the occurrence of two given events.

Although patterns o®er a friendlier way to express typical requirements, the user still

needs to validate the property: \Is this the right requirement?". What is more, the

user needs to be able to compare properties. For example, in order to select between

two candidates properties the user might need to answer typical questions like:

\Which one constitutes a stronger formulation of requirements?, Which one imposes

more restrictions?, How are these properties related and why?". Another important

input in order to validate a property comes from reasoning about violating behavior.

That is, to reason about the generic scenarios of requirement's violation to gain

insight into the sort of behavior that is being ruled out.

However, to perform all these validations tasks based solely on the DNL de-

scription of the patterns may be hard to achieve and many times the pattern

translation into an formalism must be analyzed instead [17, 32]. Besides, sometimes a

property needs to be slightly modi¯ed to suit actual system requirements, and this,

again, suggests manipulations of the translated versions. Therefore, using patterns is

not enough to entirely hide the subtleties of the underlying formalism from the user.

This suggests the need of a formal speci¯cation language easy to use, and su±ciently

expressive to enable skilled and non-skilled users to use it appropriately (e.g. [17,

26]). More speci¯cally we propose four quality attributes desirable for the formalism

to accurately handle validation tasks: succinctness, comparability, complementari-

ness, and modi¯ability. Given this context we propose a graphical language based on

scenarios which aims to improve and ease the property speci¯cation process. The

670 F. Asteasuain & V. Braberman

language, called FVS (Featherweight Visual Scenarios) [2] is a simple fragment of

VTS (Visual Timed Scenarios) [6], a visual language to de¯ne complex event-based

requirements.

1.1. Declarative description of properties: Existing di±culties

As mentioned before, we propose the following quality attributes as desirable char-

acteristics for a given formalism to accurately handle speci¯cation tasks: succinct-

ness, comparability, complementariness, and modi¯ability. Succinctness, de¯ned in

[36], refers to how short a formula can be found to express a given property, and is

considered one of the foremost quantitative measures when characterizing the ex-

pressive power of a formal language, and also a natural measure for comparing

the strength of di®erent formalisms [15]. In this sense, succinctness requires that the

speci¯cation of a pattern expressed in the formalism should be as succinct as the

DNL description of the pattern.

The resulting speci¯cation of the patterns should be easy to compare and dis-

tinguish. This objective constitutes the comparability attribute. For example,

when comparing two related patterns it is natural to try to understand which one

is more restrictive. More concretely, we de¯ne comparability as the ability to con-

sider two related patterns speci¯cations and understand the di®erences and simi-

larities between them, and determine if there exists an embedding between both

speci¯cations.

Complementariness refers to the ability of reasoning about how the property is

violated, which provides meaningful information to the speci¯er. The formalism

should provide an easy way to reason about violating behavior. Speci¯cally, we

de¯ne complementariness as the ability of a language to generate general scenarios,

expressed in that very same language, leading to a violation of a given property.

Finally, we de¯ne modi¯ability as the ability to manipulate objects expressed in

the formalism, so that a speci¯cation can be adapted to subtle modi¯cations in the

application context, following the spirit of the changeability concept introduced by

Parnas [25]. Small changes in the application context should lead to minor and

localized modi¯cations in the speci¯cation. This implies that the di®erences between

the original and the modi¯ed speci¯cation should be small and localized.

We believe that the provided mappings of the patterns to LTL detailed in [12, 13]

fail at some extent to support these features. The resulting LTL formulae may result

in complicated artifacts, which are di±cult to compare without deductive manipu-

lation and tool support. Reasoning about violating behavior is also troublesome since

it requires sophisticated formulae manipulation. Further, since the user is dealing

with complex formulae it is not always easy to gain insight about the obtained result

from a tool. For example, it is hard to analyze the possible scenarios leading to a

property violation directly from the negation of the property given by a tool. Simi-

larly, the \no" or \yes" answer to an implication query between two LTL formulae

Speci¯cation Patterns: Formal and Easy 671

might not be completely satisfactory, since it is demanding for the user to understand

and debug why the answer is such. In addition, modi¯ability involves formulae

manipulation. Appropriate manipulation of a formula with several arguments and

operators, and/or a high depth of nesting is usually a di±cult task and there is no

tool support to help the speci¯er in the process.

If the underlying formalism is instead an automata-based one, the analysis is

similar. In order to accurately compare two automata language inclusion needs to be

tested. Similarly, operations to complement the language of an automaton are not

trivial and may su®er from exponential state-explosion problems. Modi¯ability also

follows an analogous reasoning. Intricate operations may be needed to modify an

automaton to adapt to di®erent situations.

The expressive power of the formalism is also an interesting topic to point out.

Complexity and expressivity of the formalism must be adequately balanced: the

formalism must be expressive enough to denote all the properties of interest, keeping

speci¯cations simple and understandable for human comprehension. Similarly, an

unnecessary increase in the expressive power of the formalism may lead to more

complex speci¯cations. For example, as is shown later on this work, it is not neces-

sary for a formalism to have the same expressive power as full LTL in order to model

all the speci¯cation patterns.

1.2. Previous work and new contributions

In previous work [2] we presented FVS as a property speci¯cation language. In that

work we illustrated FVS features by describing three speci¯cation patterns: the

Response pattern, the Precedence pattern and the Constrained Chain pattern. For

each pattern we considered only two possible scopes, Global and Between. In con-

trast to our preliminary results, which were based on three patterns with two scopes

[2], in this paper we now present a complete speci¯cation for all the patterns and

each possible scope. That is, from the initial comparison with three patterns and

only two scopes, we now present eleven speci¯cation patterns, considering the ¯ve

scopes for each one. This allows for a richer and more exhaustive comparison against

known approaches. In this way, results are not only valid for a subset of the spec-

i¯cation patterns, but for the complete set of speci¯cations patterns. In this work we

demonstrate that those initial results can be generalized considering all the speci-

¯cations patterns. In addition, in this paper we include a simple yet interesting

example showing our approach in action through all the property speci¯cation

process.

Also we show in this work how FVS is able to combine the properties proposed in

the extended pattern speci¯cation in [32]. Moreover, on the top of this extension, we

now introduce the notion of violating behavior for each pattern. That is, violating

behavior is added to each pattern as a valuable information for the speci¯er. In our

previous work [2] we claimed that formality is a key aspect regarding property

speci¯cation. We now take this notion one step further presenting FVS syntax and

672 F. Asteasuain & V. Braberman

semantics and we also characterize the type of properties that can be written in FVS,

which constitutes an essential input to assess FVS expressive power. Finally, in this

work we do not only present speci¯cation patterns but we also provide examples for

pattern instantiation in concrete cases to highlight FVS applicability.

The rest of this paper is structured as follows. Background section (Sec. 2)

describes the speci¯cation patterns mentioned in this paper and informally explains

FVS, whereas its syntax and semantics are formally introduced in Sec. 3. Section 4

shows the FVS speci¯cation for every pattern described in [13], including each

possible scope. Analysis and comparison with other formalisms are presented in

Sec. 5. Finally, Sec. 6 mentions related work, and Sec. 7 presents future work and

conclusions.

2. Background

In this section we brie°y introduce speci¯cations patterns and informally describe the

main features of FVS. A formal characterization of the language is presented later in

Sec. 3.

2.1. Speci¯cation patterns

Using patterns for property speci¯cation was ¯rst introduced by [13]. According to

the authors, patterns fall into two main categories based on their semantics: Oc-

currence, where patterns require events to occur or not to occur and Order, where

patterns constrain the order of events. The ¯rst category includes four patterns,

namely the Absence pattern, the Universality pattern, the Existence pattern and the

Bounded Existence pattern whereas the former category de¯nes other ¯ve patterns:

the Precedence pattern, the Response pattern, the Precedence Chain pattern, the

Response Chain pattern and the Constrained Chain pattern. All the patterns

descriptions are available online [12] where also mappings to di®erent formalisms are

supplied. Speci¯cation patterns constitutes a highly valuable and noticeably repre-

sentative case of study: a study presented in [13] collects 555 speci¯cations from at

least 35 di®erent sources and it was found that 92% of them matched one of the

speci¯cation patterns.

In this work we will focus only on their mapping to LTL, being one of the most

used formalisms for speci¯cation. The LTL formulae discussed in this work refer to

the LTL mapping speci¯ed in [12]. The other formalisms discussed here are those

used in the Propel Language [32]: an extended ¯nite-state automaton representation

and a template representation, based on a restrict subset of natural language. Propel

presents a very exhaustive extension to some of these patterns, which covers addi-

tional issues regarding patterns behavior. FVS is thoroughly compared to all of these

approaches. All the speci¯cation patterns discussed in this work are those presented

in [13], which are available online in [12]. We also discuss an extended version of these

patterns described in [32].

Speci¯cation Patterns: Formal and Easy 673

2.2. FVS: Feather weight visual scenarios

FVS is a graphical language based on scenarios. Scenarios are partial order of events,

consisting of points, which are labeled with the possible events occurring at that

point, and arrows connecting them. An arrow between two points indicates prece-

dence of the source with respect to the destination: for instance, in Fig. 1(a) A-event

precedes B-event. We use an abbreviation for a frequent sub-pattern: a certain point

represents the next occurrence of an event after another. The abbreviation is a

second (open) arrow near the destination point. For example, in Fig. 1(b) the sce-

nario captures the very next B-event following an A-event, and not any other

B-event. Conversely, to represent the previous occurrence of a (source) event, there is

a symmetrical notation: an open arrow near the source extreme. In Fig. 1(c) the

scenario captures just the immediately previous A-event from B-event. Events la-

beling the arrow are interpreted as forbidden events between both points. In Fig. 1

(d) A-event precedes B-event such that C-event does not occur between them. The

abbreviations presented before can also be expressed using labeled arrows. Scenario

in Fig. 1(e) shows an equivalent version of the scenario in Fig. 1(b). Finally, two

distinguished points are introduced to denote the beginning and the end of the trace:

a big full circle for begin, and two concentric circles for end. Both points are shown in

Fig. 1(f).

2.2.1. FVS rules

We now introduce the concept of Rule Scenario (RS) or simply a rule,a a core concept

in the language. Roughly speaking, a rule is divided into two parts: a scenario playing

the role of an antecedent and at least one scenario playing the role of a consequent.

The intuition is that whenever a trace \matches" a given antecedent scenario, then it

must also match at least one of the consequents. In other words, rules take the form

of an implication: an antecedent scenario and one or more consequent scenarios. The

antecedent is a common substructure of all consequents, enabling complex rela-

tionship between points in antecedent and consequents: our rules are not limited, like

most triggered scenario notions, to feature antecedent as a pre-chart where events

should precede consequent events. Thus, rules can state expected behavior hap-

pening in the past or in the middle of a bunch of events. Graphically, the antecedent

(a) (b) (c) (d) (e) (f)

Fig. 1. Basic elements in FVS.

aRule Scenarios represent the FVS's version of Conditional Scenarios available in VTS [6].

674 F. Asteasuain & V. Braberman

is shown in black, and consequents in grey. Since a rule can feature more than one

consequent, elements which do not belong to the antecedent scenario are numbered

to identify the consequent they belong to. An example is shown in Fig. 2. The

interpretation of the rule is that, whenever an Access request event is followed by an

Access granted event (without a logo® in between), one of two other event sequences

must be observed too. One of them (consequent 1) requires that, after the access has

been requested, a valid password is entered. The other one (consequent 2) allows for

the case where a valid password has been entered before access to the resource is

requested. Note the power of our trigger notation, where the antecedent need not

precede the consequents in time.

2.2.2. Anti-scenarios

An interesting feature in FVS is that anti-scenarios can be automatically generated

from rule scenarios. This is valuable information for the developer since it represents

a sketch of how things could go wrong and violate the rule. The complete procedure is

detailed in [6], but informally the algorithm computes all possible situations where

the antecedent is found, but none of the consequents is matchable. One anti-scenario

for the rule in Fig. 2 is shown in Fig. 3. In this case, a valid password was not entered

since the beginning of the trace and still access is granted.

2.3. On FVS expressive power

We now brie°y compare the expressive power of FVS and LTL with the aim of

assessing the following question: What kind of properties can be written in FVS? Any

property described in FVS can be written in LTL. Given any FVS rule �, we can

obtain an anti-scenario :�, standing for the complementary behavior of �. The

representation of :� is just a plain scenario, a partial order of events considering

precedence and occurrence restrictions. These type of properties can be expressed in

LTL by linearizing and using the nesting of operator Until.

Fig. 2. Rule scenarios in FVS.

Fig. 3. An anti-scenario in FVS.

Speci¯cation Patterns: Formal and Easy 675

On the other hand, FVS as presented here is strictly less expressive than LTL:

FVS can not express what is commonly known as strong fairness or compassion [22].

Compassion requires that if certain conditions are true in¯nitely often then certain

other conditions must also hold in¯nitely often. In LTL compassion can be written as

W}p ! W}q, where p and q are pure past formulas [21].

However, not being able to denote compassion does not impose a practical limi-

tation to FVS for the de¯ned purposes of this paper. More concretely, compassion is

mostly used for synthesizing a system from a declarative speci¯cation [11, 27]. On the

other hand, the kind of properties that we are interested in are focused on describing

the expected behavior of an existing system, like the properties involved in the

speci¯cation patterns. As it is shown later in this work, all of the speci¯cation pat-

terns proposed by [13] can be modeled in FVS. In addition, another study in [23]

indicates that these kind of properties are the most common properties in concurrent

systems.

3. FVS Syntax and Semantics

We now formally de¯ne FVS syntax and semantics to provide a rigorous de¯nition of

the language. The reader that is not interested in the formality of the language may

skip this section and is referred to Sec. 4: Pattern Speci¯cation in FVS.

We introduce FVS syntax and semantics as follows. First we present the

formal de¯nition of FVS scenarios. Second, we de¯ne a key operation between

scenarios: morphisms, which allows the formal de¯nitions of FVS rules. Finally,

we de¯ne the formal semantics of FVS, by de¯ning the notion of traces and rules

satis¯ability.

3.1. FVS syntax

De¯nition 3.1 (FVS Scenario). An FVS scenario is a tuple h�;P ; ‘;�; 6�; <; �i,
where:

S1: � is a ¯nite set of propositional variables standing for types of events;

S2: P is a ¯nite set of points;

S3: ‘ : P !PL(�), is a function that labels each point with a set of events, where

PL is the set of propositional formulas that can be obtained from a variable set

�;

S4: �� P � P is an equivalence relation (to \alias" points);

S5: 6�� P � P is an asymmetric relation among points (\separation" of points);

S6: <� ðP] 0f g � P] 1f gÞnfh0;1ig is a precedence relation between points

(0 and 1 represent the beginning and the end of execution, respectively);

S7: � : ð6� [<Þ ! PLð�Þ assigns to each pair of points, related by precedence or

separation, a formula which constrains the set of events occurrences that

676 F. Asteasuain & V. Braberman

may occur between the pair. Function � satis¯es the following condition.

�ðp; qÞ) �ðp;wÞ _ ‘ðwÞ _ �ðw; qÞ; 8p < w < q 2 P .

For a better comprehension of this section we provide examples inspired in a small

and simple protocol, where a server handles clients' requests trying to gain access

to some resources. Scenario in Fig. 4(a) illustrates the occurrence of two events

Client1Request and Client2Request standing for two requests from clients followed

by their corresponding responses from the server. Scenario in Fig. 4(b) illustrates

the occurrence of a client request, followed by an event ResourceLocked and a

ResponseDenied event. In addition, the client does not raise another request until the

answer is provided.

We now formally de¯ne morphisms between scenarios. Intuitively, we would like

to obtain a matching between scenarios, i.e. a mapping between their points

exhibiting how an scenario \specializes" another one.

De¯nition 3.2 (Morphism). Given two scenarios S1, S2 (assuming a common

universe of event propositions), and f a total function between P1 and P2 we say

that f is a morphism from S1 to S2 (denoted f : S1 ! S2) i®

M1: ‘2ðaÞ)‘1ðpÞ is a tautology for all p 2 P1 and all a 2 P2 such that a�2fðpÞ;
M2: �2ðfðpÞ; fðqÞÞ) �1ðp; qÞ is a tautology for all p; q 2 P1;

M3: p�1 q then fðpÞ�2 fðqÞ for all p; q 2 P1;

M4: p 6�1 q then fðpÞ6�2 fðqÞ for all p; q 2 P1;

M5: p<1 q then fðpÞ<2 fðqÞ for all p; q 2 P1.

We say that S2 features more constraints than S1 when there exists a morphism

m : S1 ! S2. This relation between two scenarios establishes that S1 is embedded

into S2 if the latter features more constrains (this is analogous to a logical sub-

sumption). Conversely, we say, in this case, that S2 specializes S1.

Figure 5 illustrates a morphism example (shown in dotted arrows). The scenario

in the top of the ¯gure (scenario S2) shows a sequence of requests and responses but

also taking into account events re°ecting the resource's status (locked or unlocked).

On the other hand the scenario in the bottom of the ¯gure (scenario S1) shows only a

(a)

(b)

Fig. 4. Examples of FVS scenarios in a client-server architecture.

Speci¯cation Patterns: Formal and Easy 677

client's request followed by a server's response. It can be noted that scenario S2

features more constrains, since it considers the resource's status. In particular,

considering the given morphism's de¯nition is satis¯ed that Client1Request)
Client1Request and that ResourceUnlocked ^RequestGranted) RequestGranted

are tautologies.

3.1.1. FVS rules

FVS rules model the expected behavior of the system, enabling a very rich, °exible

and powerful mechanism to predicate and reason about systems' behavior. As it was

said before, a rule structure is divided into two parts: a scenario playing the role of an

antecedent and, at least, one scenario playing the role of a consequent. Whenever the

antecedent is matched (i.e. a morphism f exists), then f should be extensible to show

a matching of a consequent scenario (i.e. at least one of the consequents is matched

too). The formal de¯nition is given below.

De¯nition 3.3 (FVS Rule). Given a scenario S0 (antecedent) and an indexed set

of scenarios and morphisms from the antecedent f1 : S0 ! S1, f2 : S0 ! S2; . . . ; fk :

S0 ! Sk (consequents), we call R ¼ hS0; fðSi; fiÞgi¼1...ki an FVS Rule.

As an example, consider the following rules in Fig. 6 modeling a portion of the

expected behavior of the protocol introduced before. The rule in Fig. 6(a) says that

every request will be eventually granted. Similarly, rule in Fig. 6(b) basically says

(a) (b)

(c)

Fig. 6. FVS rules examples instantiating speci¯cation patterns.

Fig. 5. A morphism example.

678 F. Asteasuain & V. Braberman

that whenever an event RequestGranted occurs then there has occurred an event

ClientRequest in the past. That is, every RequestGranted event must be preceded

by a client's request. Finally, rule in Fig. 6(c) say that is not possible for Client1

to raise two consecutive requests without the occurrence of a request from Client2.

That is, between two consecutive requests from Client1 there must exist a

request from Client2, indicating a request's alternation between clients. These rules

represent possible instantiations of some speci¯cation patterns: the Response pattern

(Fig. 6(a)), the Precedence pattern (Fig. 6(b)) and the Existence pattern (Fig. 6(c))

[13]. These patterns are completely speci¯ed in FVS in Sec. 4. In the next section

FVS semantics is fully described.

3.2. FVS semantics

Semantics can be formalized using the notion of morphisms. The following de¯nition

establishes when a certain scenario S ful¯lls an FVS rule R:

De¯nition 3.4 (FVS Rules' Semantics). An scenario S satis¯es an FVS rule R

ðS � RÞ i® for every morphism m : S0 ! S there exists mi : Si ! S, for some

i 2 f1::kg, such that m ¼ mi � fi.
Two more de¯nitions are needed to completely describe FVS semantics, which are

described next. These de¯nitions are focused in establishing the set of valid traces of

a system. In order to do so, traces must be properly de¯ned as well as their rela-

tionship with scenarios and rules satis¯ability.

3.2.1. Trace-based semantics

As said, traces model the abstract outcome of an event-based system. To keep our

framework homogenous traces are understood as particular scenarios in the following

way. Precedence in trace scenarios are total orders and ‘ function explicitly speci¯es

the presence or absence of each possible event in each point of the trace, returning a

minterm (a conjunctive clause where event propositions appears only once, either

complemented or uncomplemented) over the set of available events.

De¯nition 3.5 (Traces).A trace scenario S� is an scenario h��;P�;‘�;��; 6��;<�; ��i
where:

T1: P�, <� is a total order;

T2: ‘�ðpÞ returns a minterm over �� for all p 2 P�;

T3: ��ðp; qÞ = false if there is no w such that p<�w<�q;

T4: p�� q if and only if p ¼ q, for all p, q 2 P�.

Given this de¯nition, we need a further operation to relate traces and scenarios

saying when a general scenario can be projected into a trace. This notion is the trace

morphism. In this way, we can later de¯ne when a trace satisfy a rule (or a set of rules).

Speci¯cation Patterns: Formal and Easy 679

De¯nition 3.6 (Trace morphism). Given the trace scenario S� and a scenario S,
(assuming a common universe of event propositions and labels), and g a total

function between P and P� we say that g is a projection morphism from S to S�

(denoted g : S ! S�) i®

M1: �� � �

M2: ‘�ðgðpÞÞ) 9 �1; �2 . . . �n ‘ðpÞ is a tautology for all p 2 P where �aux =

f�1; �2 . . . �ng
M3: ��ðgðpÞ; gðqÞÞ) 9 �1; �2 . . . �n �ðp; qÞ is a tautology for all p; q 2 P where �aux

= f�1; �2 . . . �ng;
M4: p � q then gðpÞ ¼ gðqÞ for all p; q 2 P ;

M5: p 6� q then gðpÞ6�� gðqÞ for all p; q 2 P ;

M6: p < q then gðpÞ<� gðqÞ for all p; q 2 P .

This de¯nition is very similar to the morphism operation previously de¯ned, but

introducing the necessary changes in the morphism's function requirements to

properly deal with traces. Finally, the following de¯nition provides the semantics of

our language. The semantics of a set of rules R is the set of all traces that satisfy R.

Formally:

De¯nition 3.7 (Trace-semantics of a FVS rule set). A trace scenario S�,

satis¯es a set of rules R i® there exists an scenario S such that: 8 r 2 R S � r and 9 g,
a trace morphism g : S ! S�.

In other words, a trace will satisfy a set of rules if there exists an scenario that can

be projected into the trace and that satisfy all the rules in the set.

4. Pattern Speci¯cation in FVS

In this section we illustrate how FVS describe the speci¯cation patterns described in

[13]. Initially we specify the one of the simplest and most used patterns, the Response

pattern, introducing in Sec. 4.1 the notion of scopes. Next, Secs. 4.2 and 4.3 presents

all the occurrence and order patterns respectively. Lastly, Sec. 4.4 deals with the

extended pattern speci¯cation introduced by [32].

In the Response pattern the occurrence of one event (referred as the Action

event), leads to an occurrence of another event, the Response event. This illustrates a

cause-and-e®ect relationship between the events involved. Examples of the Response

pattern may be requirements such as \Every client request is acknowledged by the

server" or \every time the doors are opened the lights are turned on". The rule

depicted in Fig. 7 re°ects this behavior.

4.1. Modeling scopes

The previous section describes what the work in [13] de¯nes as the intent of the

pattern, that is, the structure of the de¯ned behavior. This notion can be completed

680 F. Asteasuain & V. Braberman

by de¯ning a scope for the pattern, establishing the extent of program execution over

which the pattern must hold. The available scopes de¯ned in [13] are:

. Global: the pattern denotes the whole execution.

. Before P: the pattern must hold before the ¯rst occurrence of an event P .

. After Q: the pattern must hold only after the ¯rst occurrence of an event Q.

. After Q until P: the pattern must hold after the occurrence of Q but before

the occurrence of P . It is not necessary the occurrence of ending delimiter P for the

pattern to hold.

. Between P and Q: Like the previous scope, the pattern must hold after the

occurrence of P but before the occurrence of Q. However, in this case, both deli-

miters must occur for the pattern to hold.

Scopes are introduced in FVS in the same way as any other restriction of

behavior. Thus, Global scope is implicity modeled by introducing no scope restric-

tions (all the rules shown up to here assumed Global scope). We now brie°y present

in Fig. 8 the Response pattern, considering each of the other possible scopes.

After this introduction to FVS features modeling the Response pattern, we now

complete patterns speci¯cation by modeling the rest of them in FVS. Note that in

what follows we model all the speci¯cation patterns proposed by [13]. In addition, we

describe each pattern considering the ¯ve available scopes.

4.2. Occurrence patterns

The following subsections consider each of the four patterns in this category:

Absence, Universality, Existence and Bounded Existence.

Fig. 7. The basic response pattern.

(a) Before P (b) After Q

(c) After Q Until P (d) Between P and Q

Fig. 8. Di®erent scopes for the response pattern.

Speci¯cation Patterns: Formal and Easy 681

4.2.1. The absence pattern

The intent of this pattern is to describe a portion of a system's execution that is free

of certain events. One of the most common examples of the Absence pattern is

mutual exclusion between processes. In this context, the scope of the pattern would

be a segment of the execution in which some process is in its critical section (i.e.

between an enter section event and a leave section event) and the forbidden event

would be the event that some other process enters its critical section. The next FVS

rules in Fig. 9 describe this pattern considering each possible scope. In these rules, we

consider the event F as event to be forbidden in the system's execution. That is, the

valid traces of the system's execution are only those where the absence of the event F

holds. For example, the rule for the global scope simply states that between the

beginning and the end of the execution, event F does never occur. This behavior is

then restricted according to the di®erent scopes's requirements. Note that the rule

describing the Until scope has two consequents denoting two possible admitted be-

havior. Since the scope can be satis¯ed with o without the occurrence of delimiter P ,

we consider two cases: one where P occurs and the other one where P does not occur.

In the given rule, either consequent one or consequent two must occur: after the

occurrence of the delimiter Q either both delimiter P and event F do not occur until

the end of execution (consequent 1) or delimiter P actually occurs but event F does

not occur in that segment (consequent 2).

4.2.2. The universality pattern

This pattern is suitable for those cases where a event occurs throughout a certain

scope. Actually, this pattern describes more appropriately state-based systems than

event-based systems. In state-bases systems, this pattern is used to express that a

certain property must be true in each state included in the scope. To model this

pattern considering events rather than states, we include an event standing for the

case where the property is no longer true. Under this vision, this pattern can be

reformulated as demanding the absence of such event. Therefore, this pattern can be

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 9. The absence pattern covering di®erent scopes.

682 F. Asteasuain & V. Braberman

modeled in event-based systems using the Absence pattern. This reformulation be-

havior is based on the Universality pattern de¯nition in [13], where it says that

universality of an event can be viewed as the absence of its negation. De¯ning an

event F as the event signalling the moment where the property of interest is no

longer true, the rules in Fig. 9 completely describe this pattern.

4.2.3. The existence pattern

Related to both the Universality pattern and the Absence pattern, the existence

patterns aims at describing a portion of a system's execution that contains an in-

stance of certain events. The rules in Fig. 10 considers the case where an event E

must indeed occur given a certain scope. These rules simply demand at least one

occurrence of event E in each possible scope.

4.2.4. The bounded existence pattern

This patterns allows to depict a portion of a system's execution that contains at most

a speci¯ed number k of instances of a designated event. According to the speci¯ed

number k, this pattern is also known as the k-Bounded Existence pattern. For ex-

ample, this pattern can be used to state that a client can be given access to a resource

at most twice while another client is also waiting for that resource. For this pattern

we consider the case where k ¼ 2, i.e. the 2-Bounded Existence pattern, and event E

stands for the \bounded" event.

Figure 11 illustrates this pattern considering all possible scopes. The rule for

global scope says that given the ¯rst occurrence of the E event then it is the case that

E occurs only more time (consequent number one), or simply E does not occur again

until the end of execution (consequent number two). The behavior analysis is similar

for the other rules describing other scopes. The After Q until P scope seems at ¯rst

(a) Global (b) Before P (c) After Q (d) After Q Until P (e) Between P and Q

Fig. 10. The existence pattern modeled as FVS rules.

(a) Global (b) Before P

Fig. 11. The 2-bounded existence pattern.

Speci¯cation Patterns: Formal and Easy 683

sight a bit more complicated, since four consequents are involved. However, the

mentioned consequents cover the basic behavior (after the initial E, either E occurs

just one more time or simply does not occur at all until the end of the scope), but

considering in this case not one but two possible delimiters for the scope: the oc-

currence of P (consequents 1 and 2), or the end of execution, that is, P does not occur

(consequents 3 and 4).

4.3. Order patterns

The order patterns predicate about relative order in which multiple events occur

during system execution. The ¯ve patterns belonging to this category are: the Pre-

cedence pattern, the Response pattern, the Precedence Chain pattern, the Response

Chain pattern and the Constrained Chain pattern. In next, we describe each one as

FVS rules.

4.3.1. The response pattern

The response pattern was already fully described in this work in Figs. 7 and 8.

4.3.2. Precedence pattern

The intent of this pattern is to describe relationships between a pair of events/states

where the occurrence of the ¯rst is a necessary pre-condition for an occurrence of the

second [12]. In this case, the occurrence of a stimuli S event must precede the

occurrence of a response R event. Figure 12 depicts this pattern considering all

possible scopes.

(c) After Q (d) Between P and Q

(e) After Q Until P

Fig. 11. (Continued)

684 F. Asteasuain & V. Braberman

4.3.3. The precedence chain pattern

The Precedence pattern as well as the Response pattern can be generalized obtaining

the Precedence Chain pattern and the Response Chain pattern. The generalized

versions considers one or more responses following one or more stimulus as well. The

precedence Chain pattern in particularly is used to describe a relationship between

two sequences of events in which the occurrence of a sequence R1;R2; . . . ;Rn within

the scope must be preceded by an occurrence of a sequence S1;S2; . . . ;Sn within the

same scope. Following the pattern description at [12] we model just two cases for this

pattern. In Fig. 13 one response R follows two stimulus S1 and S2 whereas in Fig. 14

two responses R1 and R2 follow stimuli S.

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 12. Precedence pattern in FVS.

(a) Global (b) Before P (c) After Q (d) After Q Until P (e) Between P and Q

Fig. 13. Precedence chain pattern in FVS with two stimulus and one response.

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 14. Precedence chain pattern in FVS with one stimuli and two responses.

Speci¯cation Patterns: Formal and Easy 685

4.3.4. The response chain pattern

We now consider the generalization of the Response pattern: the Response-Chain

pattern. In this pattern a sequence of events S1;S2; . . . ;Sn must always be followed

by a sequence of events R1;R2; . . . ;Rn. We ¯rst consider in Fig. 15 the case where

one stimuli S must be followed by two responses R1 and R2, considering each scope.

Note that the only di®erence with the rules describing the basic Response

pattern (one stimuli - one response), shown in Figs. 7 and 8, is just the inclusion of

the second response, keeping the pattern speci¯cation simple and succinct. In order

to provide a more complete description of this pattern, we now consider a second

case, where two stimulus are followed by one response. All the rules for this variation

are shown in Fig. 16.

4.3.5. Constrained chain pattern

This pattern introduces a variant for the Response-Chain pattern and the Prece-

dence Chain pattern. In this case, this pattern restricts user speci¯ed events from

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 15. Response chain pattern with one stimuli and two responses.

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 16. Response chain pattern with two stimulus and one response.

686 F. Asteasuain & V. Braberman

occurring between pairs of events in the chain sequences. As we have already shown,

restricting behavior is added very simply in our graphical language, as a label be-

tween the events involved. The example shown in Fig. 17 is an extension for the

Response Chain pattern with one stimuli and two responses, where a W event must

no occur in the response chain sequence for the property to hold.

4.4. Extended pattern speci¯cation

Work in [32] proposes an extension to the patterns' speci¯cation, including properties

such as: pre-arity, post-arity, immediacy, precedence, nullity and repeatability. In

this sense, in [2] we showed how FVS was able to model this extended pattern

de¯nition, re°ecting the °exibility of our notation. Now we illustrate how some of

these evolved properties can be easily combined: pre-arity, post-arity, immediacy

and nullity properties will be incrementally added to an initial speci¯cation. For this,

consider the previously seen concrete speci¯cation for the Response Pattern in Fig. 6

(a). By combining pre-arity and post-arity, we can establish new restrictions speci-

fying that events ClientRequest and RequestGrantedmust only occur in a interleaved

fashion. This is achieved by the following rules: once a request occurs, no other

request can arise until it is granted (pre-arity, in Fig. 18(a)). Similarly, in order to

ful¯ll with the required interleaving, between two consecutive RequestGranted

events, a ClientRequest must also occur (post-arity, in Fig. 18(b)).

(a) Global (b) Before P (c) After Q

(d) After Q Until P (e) Between P and Q

Fig. 17. Constrained chain pattern in FVS.

(a) (b)

Fig. 18. Combining pre and post arity in the response pattern.

Speci¯cation Patterns: Formal and Easy 687

On the top of this speci¯cation, we can easily add new restrictions. By using the

immediacy property we can introduce a new requirement: between the request is

dispatched and eventually granted, no Time-Out event is allowed to occur, as shown

in rule 19-a. Note that this rule also implies the pre-arity property described early.

The nullity property forces the developer to reason about the occurrence of the

ClientRequest event: is a trace where ClientRequest event does never occur a valid

trace of the system? Is that one the expected behavior of the system? If at least one

request must occur, a new rule is added (see Fig. 19(b)).

The set of rules in Figs. 18(b), 19(a) and 19(b) model a possible instantiation of

the extended de¯nition of the Response pattern. As said, we enhance the initial

speci¯cation by considering pre-arity, post-arity, immediacy and nullity properties.

In our example, the occurrence of the ClientRequest leads to the occurrence of the

RequestGranted event. In addition, ClientRequest event can not occur more times

until the occurrence of the RequestGranted event, the RequestGranted can only

occur one time after the occurrence of the ClientRequest event, no Time-Out event

must occur in between, and ¯nally, at least one request is required to occur. Only

those traces satisfying these requirements will be considered valid.

5. Analysis and Comparison

We now compare FVS against the mentioned approaches considering the quality

attributes previously mentioned: succinctness, comparability, complementariness

and modi¯ability. Additionally, Sec. 5.2 shows our approach and other notations in

action developing an example focused in the property speci¯cation process.

5.1. Quality attributes comparison

To ease the comprehension of this section we present the speci¯cation of the Basic

Response pattern in all the formalisms studied in this work. Using a DNL description

such as the one proposed in Propel [32] we obtain the following characterization:

. Core Phrase (with Pre-arity, Immediacy and Post-arity options): One or more

occurrences of Action eventually result in one or more occurrences of Response.

. Nullity Phrase: Action may occur zero times.

. Precedence Phrase: Response may occur before the ¯rst Action occurs.

. Repetition Phrase: The behavior is repeatable.

(a) (b)

Fig. 19. Adding rules for immediacy and nullity properties.

688 F. Asteasuain & V. Braberman

The following ¯gure (Fig. 20) shows the very same pattern in Propel's automata

notation, in LTL, and ¯nally, as an FVS rule.

5.1.1. Succinctness

One way of analyzing succinctness is to examine how the speci¯cations grow when

scope restrictions are added, and more complex behavior is described. To compare

FVS against the resulting LTL formulae in [12] and Propel's notation we propose the

following alternative to somehow measure the complexity of the objects expressed in

the formalisms. For the LTL formulae in [12], we measure their depth of nesting (N)

and the number of operators involved (O). For Propel's automata notation we

measure the number of states (St) and number of transitions (T) of the automata

described in [32] and for Propel's DNL templates we measure the numbers of

statements (S) needed to express the property as detailed in [32]. For FVS rules we

measure the number of points (P) and the number of restrictions (R) speci¯ed,

including precedence and forbidden events.

As a ¯rst case of study, we compare only the basic Response pattern following the

characterization previously introduced (see Fig. 20). Table 1 exhibits the obtained

results for the Succinctness attribute, where all the approaches are compared. Au-

tomata and DNL entries in the second and third row respectively corresponds to the

available notations in the Propel language.

As it is shown in Table 1 the LTL formulae as given in [12] grow signi¯cantly

when a more intricate scope is involved. Propel's automata representation also be-

come more complicated, especially due to the growth of the number of transitions.

Conversely, scopes in FVS are introduced seamlessly, just as any other restriction

in the rules, without a®ecting succinctness. Propel's DNL notation handles scopes

adequately. However, Propel su®ers from some limitations when modeling scopes:

(a) Automata Notation (b) LTL Notation (c) FVS Notation

Fig. 20. The basic response pattern in three di®erent formalisms.

Table 1. Complexity comparison for the basic response pattern.

Formalism Global Before After Between Until

LTL N ¼ 1, O ¼ 3 N ¼ 2, O ¼ 5 N ¼ 3, O ¼ 5 N ¼ 4, O ¼ 12 N ¼ 4, O ¼ 10
Automata St ¼ 3, T ¼ 6 St ¼ 4, T ¼ 8 St ¼ 4, T ¼ 9 St ¼ 5, T ¼ 12 St ¼ 5, T ¼ 12

DNL S ¼ 7 S ¼ 8 S ¼ 8 S ¼ 10 S ¼ 10

FVS P ¼ 2, R ¼ 1 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 3 P ¼ 4, R ¼ 4 P ¼ 3, R ¼ 4

Speci¯cation Patterns: Formal and Easy 689

delimiters in the scopes must be distinct, and there must be no intersection between

events de¯ning the intent and the scope of the pattern. These limitations are not

present in FVS.

We now introduce a second comparison considering all the patterns in the

Occurrence category, comparing FVS and the LTL formulae given in [12]. Propel's

notation are not included since complete patterns speci¯cation are not present in

[32]. Table 2 shows the growth in the LTL formulae whereas Table 3 shows the

growth in the FVS rules. The 2-Bounded entry in the fourth row of both tables refers

to the Two-Bounded Existence pattern introduced before.

By analyzing Tables 2 and 3 we can see again an important growth of the LTL

formulae, specially when scopes as Between or Until are speci¯ed. Undoubtedly,

the Two-Bounded Existence pattern results in the most complex one. The given

LTL formulae for this pattern are extremely complex not only for Between or Until

scopes, but also for supposedly more simpler scopes as the Before scope, where 8

depth nesting formula and 22 operators formula is needed to specify its behavior.

What is more, this growth can be easily incremented by specifying a number k

greater than two (for example, the 3-bounded Existence pattern). On the other hand,

the FVS rules also grow in complexity, but in a signi¯cant smaller growth-rate than

the LTL formulae studied, easing the speci¯cation for a k-Bounded Existence pattern

with k > 2.

Finally, we complete the succinctness comparison by introducing the results for

the patterns in the Order Category. Again, a ¯rst table (Table 4) shows the growth

in the LTL formulae, while a second table (Table 5) deals with FVS rules. In both

tables P-Chain (x,y) and R-Chain (x,y) stands for the Precedence Chain pattern and

Response Chain pattern with x stimuli and y responses. Similarly, the C-Chain entry

corresponds to the Constrained Chain pattern introduced before. Again, FVS spe-

ci¯cations grow in an smaller rate, enhancing scalability and keeping speci¯cations

simple and understandable.

Table 2. LTL formulae succinctness for occurrence patterns.

Pattern Global Before After Between Until

Absence N ¼ 1, O ¼ 2 N ¼ 1, O ¼ 4 N ¼ 2, O ¼ 4 N ¼ 2, O ¼ 8 N ¼ 2, O ¼ 6

Existence N ¼ 1, O ¼ 1 N ¼ 1, O ¼ 4 N ¼ 2, O ¼ 6 N ¼ 3, O ¼ 8 N ¼ 3, O ¼ 8

2-Bounded N ¼ 4, O ¼ 8 N ¼ 8, O ¼ 22 N ¼ 6, O ¼ 13 N ¼ 10, O ¼ 24 N ¼ 9, O ¼ 24
Universality N ¼ 1, O ¼ 1 N ¼ 1, O ¼ 3 N ¼ 2, O ¼ 3 N ¼ 2, O ¼ 7 N ¼ 2, O ¼ 5

Table 3. FVS succinctness for occurrence patterns.

Pattern Global Before After Between Until

Absence P ¼ 2, R ¼ 1 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 4 P ¼ 3, R ¼ 4
Existence P ¼ 2, R ¼ 1 P ¼ 3, R ¼ 3 P ¼ 3, R ¼ 2 P ¼ 3, R ¼ 3 P ¼ 2, R ¼ 2

2-Bounded P ¼ 4, R ¼ 6 P ¼ 4, R ¼ 7 P ¼ 5, R ¼ 7 P ¼ 4, R ¼ 7 P ¼ 6, R ¼ 12

Universality P ¼ 2, R ¼ 1 P ¼ 2, R ¼ 1 P ¼ 3, R ¼ 2 P ¼ 2, R ¼ 1 P ¼ 3, R ¼ 3

690 F. Asteasuain & V. Braberman

A useful analysis comes up considering the di®erent variants of Response Chain

and the Precedence Chain patterns. By just including one more stimuli or a response

to the pattern causes a signi¯cant growth in the resulting LTL formulae, seriously

threatening the scalability principle for any manual analysis at least. This behavior is

more notable when considering Between or Until scopes. On the contrary, FVS rules

maintain a suitable complexity scaling appropriately. LTL formulae may be

expressed more naturally or more succinctly employing modalities such as past or

\from now on" operators [19, 24], but this require non trivial formulae manipulation,

or even got exposed to exponential blow-ups during the process [28].

5.1.2. Comparability

As mentioned previously, we de¯ne comparability as the ability to consider two

related patterns speci¯cations and understand di®erences and similarities between

them, and determine if there exists an embedding between both speci¯cations. This

goal is hard to achieve when dealing with complicated LTL formulae or when

comparing automata with several states and transitions. Formally, this would re-

quire testing language inclusion for automata or employing deductive simpli¯cation

mechanisms for LTL formulae. The situation is di®erent in FVS' speci¯cations. For

example, the rule for the Response Chain pattern is the natural extension to the

rule for the basic Response-pattern and this relationship can be visually depicted

without extra manipulation. To mention another example, recall the Constrained

Chain pattern in Fig. 17. The di®erence between the constrained version and the

Table 4. LTL formulae succinctness for order patterns.

Pattern Global Before After Between Until

Response N ¼ 1, O ¼ 3 N ¼ 3, O ¼ 8 N ¼ 2, O ¼ 5 N ¼ 4, O ¼ 12 N ¼ 4, O ¼ 10

Precedence N ¼ 0, O ¼ 2 N ¼ 2, O ¼ 5 N ¼ 2, O ¼ 7 N ¼ 3, O ¼ 9 N ¼ 3, O ¼ 7

P-Chain(2,1) N ¼ 3, O ¼ 10 N ¼ 4, O ¼ 11 N ¼ 4, O ¼ 16 N ¼ 3, O ¼ 13 N ¼ 6, O ¼ 13
P-Chain(1,2) N ¼ 2, O ¼ 7 N ¼ 2, O ¼ 13 N ¼ 3, O ¼ 13 N ¼ 3, O ¼ 15 N ¼ 4, O ¼ 19

R-Chain(2,1) N ¼ 3, O ¼ 9 N ¼ 3, O ¼ 13 N ¼ 4, O ¼ 12 N ¼ 4, O ¼ 15 N ¼ 5, O ¼ 24

R-Chain(1,2) N ¼ 2, O ¼ 6 N ¼ 4, O ¼ 12 N ¼ 3, O ¼ 7 N ¼ 5, O ¼ 14 N ¼ 4, O ¼ 19

C-Chain(2,1) N ¼ 3, O ¼ 9 N ¼ 4, O ¼ 16 N ¼ 4, O ¼ 10 N ¼ 6, O ¼ 18 N ¼ 5, O ¼ 25

Table 5. FVS succinctness for order patterns.

Pattern Global Before After Between Until

Response P ¼ 2, R ¼ 1 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 3 P ¼ 4, R ¼ 4 P ¼ 3, R ¼ 4

Precedence P ¼ 2, R ¼ 1 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 4 P ¼ 4, R ¼ 4

P-Chain(2,1) P ¼ 3, R ¼ 2 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 5 P ¼ 4, R ¼ 5
P-Chain(1,2) P ¼ 3, R ¼ 2 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 5 P ¼ 4, R ¼ 6

R-Chain(2,1) P ¼ 3, R ¼ 2 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 4 P ¼ 5, R ¼ 5 P ¼ 4, R ¼ 6

R-Chain(1,2) P ¼ 3, R ¼ 2 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 4 P ¼ 5, R ¼ 5 P ¼ 4, R ¼ 6

C-Chain(2,1) P ¼ 3, R ¼ 3 P ¼ 5, R ¼ 6 P ¼ 5, R ¼ 5 P ¼ 5, R ¼ 6 P ¼ 4, R ¼ 7

Speci¯cation Patterns: Formal and Easy 691

unconstrained version in Fig. 15 is clear when comparing both scenarios: the inclu-

sion of the restriction through labeled arrows.

More elaborated analysis can also be gathered visually. As an example, recall

the Response Chain pattern example considering Between scope (Fig. 15(b)) and

the Constrained Chain pattern considering the same scope (Fig. 17(b)). In both

rules antecedents are equivalent, but the consequent in Fig. 17(b) is \stronger" than

the consequent in Fig. 15(b), since it features more constrains. Thus, the rule

depicted in Fig. 17(b) is an specialization of the rule described in Fig. 15(b). The

specialization relationship is a notion is similar to logical subsumption [5]. This

also holds for the rules describing both patterns with Global scope (Figs. 17(a)

and 15(a)). Now, when comparing rules in Figs. 15(a) and 15(b) it can be seen

that although the consequent in Fig. 15(b) is stronger than the consequent in Fig. 15

(a), it is also the case that its antecedent is stronger too. Therefore in this case there

is no specialization relationship. On the other hand, this kind of analysis is di±cult

to achieve when using an automaton notation or an LTL formula without

proper manipulation. For example, the LTL version for the rules described in

Figs. 15(a) and 15(b) presented in [12] are: (WS1 ! }ðR1 ^X}R2ÞÞ, for Fig. 15-a,
and WððP ^ }QÞ ! ðS1 ! ð:QUðR1 ^ :Q ^Xð:QUR2ÞÞÞÞUQÞ, for Fig. 15(b). By
just looking at these formulae it is hard to recognize and understand the semantic

relationship between them and if not relationship holds what the underlying reason is.

Similar conclusions can be drawn analyzing the set of rules modeling a pattern

under all the available scopes. Consider for example, the precedence pattern in

Fig. 12. The main structure of the pattern, namely the occurrence of a stimuli S

event must precede the occurrence of a response R event, is embedded in all the

scopes. That is, even though di®erent scopes are introduced, the structure of the

pattern remains visible in every case. This fact clearly helps to fully understand the

di®erences scopes helping the speci¯er to decide the one that ¯ts better for the system

being analyzed. In other speci¯cations as the LTL formulas in [12] the main structure

of the pattern may not be as easy to ¯gure out because formulae became more

complex, as seen before in this work.

5.1.3. Complementariness

This attribute refers to the ability of a language to generate general scenarios

expressed in that very same language leading to a violation of a given property. FVS

supports this feature by automatically generating anti-scenarios. Figure 21 illus-

trates two anti-scenarios for the Response pattern and Between scope (in Fig. 8(d)):

Fig. 21(a) models the case where the Response event did not occur in the trace after

an Action event whereas in Fig. 21(b), the Response event did occur, but after the

occurrence of P .

We now provide further examples of violating behavior for the rest of the pre-

sented patterns, considering Global scope. Figure 22 presents violating behavior for

the Absence pattern, the Existence pattern, the two-Bounded Existence pattern and

692 F. Asteasuain & V. Braberman

the Precedence pattern. Due to the dual relationship between the Absence pattern

and the Universality pattern we provide only anti-scenarios for the former pattern.

The anti-scenario for the Absence pattern is a very simple one. It shows the occur-

rence of the event F (see Fig. 22(a)). Similarly, an anti-scenario for the Existence

pattern is an scenario where the event E does not occur throughout the entire

execution (see Fig. 22(b)). For the 2-Bounded Existence pattern, an scenario

representing a violation of the rule is one where there exists at least three occurrences

of the E event (see Fig. 22(c)). Finally, for the Precedence pattern an anti-scenario

consists of the occurrence of the response R such that stimuli S did not occur pre-

viously. This anti-scenario is depicted in Fig. 22(d).

For the Precedence Chain with two stimulus and one response, there exists four

anti-scenarios. In the ¯rst one, the response occurred, but none of the stimulus

(Fig. 23(a)). The following two cases stand for those cases where at least one stimuli

does not occur, one for S1 and the other for S2 (Figs. 23(b) and 23(c)). The last case

is where both stimulus occur, but in the wrong order. This is shown in Fig. 23(d).

Analogously, four anti-scenarios are presented in Fig. 24 for the Response Chain

pattern with one stimuli and two responses, representing situations where the pat-

tern is violated: none responses occur (24(a)), at least one response do not occur (24

(b) and 24(c)), or both responses occur, but in the wrong order (24(d)). Finally, anti-

scenarios for the Constrained Chain pattern are presented in Fig. 25, where a W

event must not occur trough out the response chain. In this case, a ¯fth anti-scenario

(a) (b)

Fig. 21. Anti-scenarios for the response pattern with between scope.

(a) (b) (c) (d)

Fig. 22. Violating behavior for several speci¯cation patterns.

(a) (b) (c) (d)

Fig. 23. Violating behavior for the precedence chain pattern.

Speci¯cation Patterns: Formal and Easy 693

arises in Fig. 25(e), standing for the extra case where both responses occur in the

right order, but W event does also occur between both responses.

Violating behavior can be achieved by negating a formula or complementing an

automaton, but this may involve non trivial operations. What's more, it may be

di±cult to reason about the obtained result. The main reason for this is that the

result given by a tool when complementing an LTL formula or an automaton is

another LTL formula or automaton, and it is di±cult to understand directly from the

formula or the automata what are the possible scenarios satisfying the negation of

the formula and therefore violating the property.

5.1.4. Modi¯ability

This attribute is focused on analyzing the impact of changes in speci¯cations. This

implies that small changes in the application context should lead to minor and

localized modi¯cations in the speci¯cation. For example, one interesting thing that

can be observed in the Response Chain pattern is that the sequence of events in-

volved must follow a strict order. In the example used here, with one stimuli S1 and

two responses R1 and R2, response event R1 must precede response event R2. For

some situations we would like to relax this condition, and to allow responses to occur

in any order. This is easily achievable in FVS, since the only di®erence with the

regular case is that no precedence restriction is present between both Response

events. The rule in Fig. 26(a) shows this version. As a second example, we now

consider another useful variant of the Response Chain pattern, where responses may

occur before or after delimiter Q. In this case, the interpretation of the pattern is

the following: an occurrence of stimuli S1 between P and Q must always be followed

by responses R1 and R2. This version is suitable, for example, for modeling race

(a) (b) (c)

(d) (e)

Fig. 25. Anti-scenarios for the constrained chain pattern.

(a) (b) (c) (d)

Fig. 24. Anti-scenarios for the response chain pattern.

694 F. Asteasuain & V. Braberman

conditions, a typical situation in multi-threaded or concurrent systems. The rule in

Fig. 26(b) re°ects this behavior.

Finally, we model a variation of the Constrained Chain pattern. In the original

speci¯cation, a W event must not occur throughout the response chain sequence. In

this variation, the restriction is extended, and W event must not occur not only

through the response chain sequence but since the occurrence of the stimuli. The rule

in Fig. 27 depicts this pattern variation considering each possible scope. Note that

the only di®erence with the original pattern in Fig. 17 is simply the inclusion of the

restriction Not(W) in the precedence arrow connecting the stimuli S1 with the ¯rst

response R1.

These examples show how the speci¯cations of the patterns in FVS can be easily

modi¯ed to ¯t in di®erent situations or contexts. With proper manipulation the

developer could get an equivalent automaton or LTL formula, but again, this is

bound to a complicated task.

5.2. Approach in action

To see our approach and other notations in action handling validation and de-

scription tasks, we consider a very simple yet interesting example presented in [17],

where typical speci¯cation di±culties when using formal languages and speci¯cation

(a) (b)

Fig. 26. Two variants of the one stimuli-two responses pattern.

Fig. 27. A variant of the constrained chain pattern.

Speci¯cation Patterns: Formal and Easy 695

patterns are described. In particular, we are going to analyze the example focusing on

the Response pattern. Authors in [17] also consider the Absence pattern, but similar

problems are found.

The main goal is to specify, in a formal language, the following property of a

telephone system: When the subscriber picks up the phone, dial-tone is always

generated. The speci¯er may detect this as an action-response property, and decides

to use in consequence the Response pattern. As said before, the LTL formula pro-

posed in [12] for this pattern is: Wðaction ! }responseÞ. To instantiate this pattern

the speci¯er replaces the general action and response events for actual events in the

system. In this case, those would be the o®hook and dialtone events. Therefore,

the concrete LTL formula obtained is Wðoffhook ! }dialtoneÞ. However, as noted

in [17] this speci¯cation does not re°ect the expected behavior. For example, the

following situation is not ruled out. If the subscriber fails to hear a dial-tone, he may

return the phone onhook and try one or more times, until dialtone is generated,

which is clearly not the intent. To solve this problem the authors in [17] ¯rst

tried to modify the LTL formula, but then realized it was easier to specify the

negation of the property rather than the property itself, and then prove it to

be unfeasible. From this point on, the use of speci¯cation patterns is dropped and

the property is ¯xed by proper LTL formulae manipulation. The new proposed

formula is the following: }ðoffhook ! ð:dialtone U onhookÞÞ. Nonetheless, this

LTL formula is not yet correct and more ¯xes are needed, as explained in [17]. The

¯nal LTL formula obtained is the following: } (offhook^X ðð:dialtone ^ :onhook)
U (:dialtone U onhook)).

Now we describe the same process but using FVS as the speci¯cation language.

The instantiated Response pattern is illustrated in Fig. 28(a). In order to solve the

problem that arises when the dialtone is generated not immediately but after several

attempts, a simple restriction is added to the scenario: the onhook event must not

occur between o®hook and dialtone events, as shown in Fig. 28(b). Going one step

further, the speci¯er can generate anti-scenarios for the rule in 28(b) for validation

purposes, which are shown in Fig. 28(c). The ¯rst one shows an error when the

subscriber returns the phone onhook and fails to hear a dialtone, behavior that

matches the previously mentioned ¯nal LTL formula given in [17]. The second anti-

(a) Initial speci¯cation of the property (b) Modi¯ed property contemplating onhook event

(c) Anti-Scenarios for the modi¯ed property

Fig. 28. Specifying and validating the telephone system property in FVS.

696 F. Asteasuain & V. Braberman

scenario in Fig. 28(c) denotes a situation where dialtone is never generated, but in

addition the subscriber never returns the phone onhook. It is worth noticing that this

last situation is not contemplated in the ¯nal LTL formula proposed in [17], which

fails to detect this behavior as an error.

Discussion. Specifying the property based on the use of speci¯cation patterns, LTL

formulae and automata manipulation de¯nitely exhibits some faults. In order to de-

tect the error when dialtone is generated by repetition, the speci¯er must be famil-

iarized with LTL. Speci¯cation patterns help the speci¯er to obtain the LTL formula,

but in order to validate it the speci¯er must have a thorough understanding of the

proposed LTL formula. Once an error is detected, the LTL formula must be adjusted

to re°ect the intended behavior. That is, speci¯cation patterns can no longer help the

speci¯er and the problem is solved in [17] by manipulating the LTL formula. This

iterative-¯xing procedure may be hard and error-prone, even if the speci¯er is trained

in temporal logics. As an example, authors in [17] are forced to model the negation of

the property instead of the property itself for complexity reasons. An analogous

analysis would be gathered if an automata based notation was used instead.

A di®erent scene occurs when employing FVS as the speci¯cation language. The

detected error is easily ¯xed by adding a simple restriction. In addition, the speci¯er

can visually depict how the original rule is embedded in the modi¯ed one, exposing

the bene¯ts of the comparability attribute. The only di®erence between both rules is

the forbidden event labeling the arrow. This is a small and localized change which

corresponds to the change in the requirements expressed in natural language.

Moreover, the anti-scenarios generated for the modi¯ed rule in FVS allow to discover

an error situation which is not captured in the ¯nal speci¯cation for the property

given in [17]. Finally, an interesting remark to be made is that with FVS the speci¯er

maintains the speci¯cation modeling the positive version of the system requirement,

instead of moving into reasoning about the negation of the property.

6. Related Work

TimeEdit [31] and GIL (Graphical Interval Logic) [10] are two graphical speci¯ca-

tion languages based on timeline diagrams that do not feature partial ordering of

events. TimeEdit is particularly focused on capturing complex chain events [3], while

FVS stands for a more general approach. TimeEdit features a restricted notion of

triggered scenarios using required events (events that are required to occur if all

previous events have occurred). This limitation makes properties about past events,

or events occurring in a certain scope, harder to specify and understand. GIL pro-

vides search operators to locate end points of intervals, similar to next and previous

in FVS. However, it previous operator can not be applied freely as in FVS: interval

recognition starts always forward a generic (or the ¯rst) point in the enclosing in-

terval. Thus, easily expressible situation in FVS like freshness, correlation constrains

or asserting the existence of a past in general can not be stated in GIL. Finally,

Speci¯cation Patterns: Formal and Easy 697

speci¯cation of complex properties involving several events in GIL requires nesting or

stacking operators, threatening succinctness, ease of validation, and modi¯ability

quality attributes. Other worth-mentioning approach is PSC (Property Sequence

Chart) [3], which is inspired in UML 2.0 Interaction Sequence Diagrams. PCS's

notation is also validated modeling property speci¯cation patterns. As said by the

authors, it might be di±cult to directly express properties in this language, and some

automated assistance tool may still be need to help the developer [4]. Denoting

complex constrains between events may require textual annotations. In addition,

properties in PCS are described as anti-scenarios (e.g [1]) and not as conditional or

triggered scenarios.

Other visual formalisms based on Message Sequence Charts such as [30, 33, 16]

have been proposed for scenario-based speci¯cations. We share with them the idea of

using partial orders to describe scenarios. However, our work di®ers in several

aspects. Our language is meant to express properties to be checked against a model or

an implementation under analysis; we do not focus on creating an executable

modeling language for di®erent phases of the development process. FVS's trigger

notation is distinguishable too: in our approach, the antecedent pattern is not re-

quired to predicate on a pre¯x of the behavior. Our consequents can refer to events

occurring before the trigger or interleaved with its events. To our best knowledge,

none of the previously mentioned approaches is equipped with deductive features for

comparability or complementariness reasoning. Finally, speci¯cation patterns are

extended in [18] considering timing requirements. Since VTS [6] can express real time

properties, it is reasonable to expect that these real-time patterns can be adequately

and naturally expressed on it.

7. Conclusions and Future Work

In this work we propose FVS as a possible alternative to specify behavioral properties

and we assess its performance by comparing it with three known formalisms analyzing

all of the speci¯cation patterns and scopes proposed by [13], obtaining that FVS is

apparently better suited for validations tasks. We enhance pattern speci¯cation by

not only including the extension proposed in [32], but also depicting violating be-

havior for each pattern. In addition, we demonstrate how di®erent features extending

pattern speci¯cations can be naturally combined in FVS. We show that FVS, al-

though less expressive than LTL, is capable of specifying all of the speci¯cation

patterns. Finally, we present the formal syntax and semantics of our language, and we

provide further examples by instantiating some of the patterns in concrete cases.

The obtained results may have some threats to validity. Based on the analysis and

conclusions of several works like [3, 8, 13, 14, 17, 29, 32] we pointed out that form-

alisms used to describe the expected behavior of reactive systems in a declarative

way fail at some extent to support validation tasks. We propose using four quality

attributes (succinctness, comparability, complementariness and modi¯ability) as one

possible way to establish how well a given formalism handle validation tasks. We do

698 F. Asteasuain & V. Braberman

not validate that ful¯lling these attributes helps to meet the goal of easing properties'

description and validation. This would require an empirical user study experiment

which is out of the scope of this paper. In addition, we do not claim that the quality

attributes we propose constitute a complete set of desirable features. However, some

authors do propose these activities as usual and useful validation tasks [10, 17, 31,

32]. On the other hand we demonstrated that FVS can model all the speci¯cation

patterns, including all the scopes. What is more, we showed that FVS adequately

supports validation tasks based on the proposed quality attributes.

Regarding future work, we are considering enhancing FVS's expressive power to

enable expressing arbitrary !-regular languages. This can be achieved by introducing

auxiliary events which allows the user to predicate about properties in a higher level

of abstraction. We are also working on de¯ning a synthesis algorithm for FVS's

rules, enabling the possibility of elaborated automatic analysis. Furthermore, we are

planning to improve FVS features by supporting validation of a set of requirements.

References

1. A. Alfonso, V. Braberman, N. Kicillof and A. Olivero, Visual timed event scenarios, in 6th
ICSE'04 (2004), pp. 168–177.

2. F. Asteasuain and V. Braberman, Speci¯cation patterns can be formal and also easy, in
Software Engineering and Knowledge Engineering (SEKE) 2010, pp. 430–436.

3. M. Autili, P. Inverardi and P. Pelliccione, Graphical scenarios for specifying temporal
properties: An automated approach, ASE 14(3) (2007) 293–340.

4. M. Autili and P. Pelliccione, Towards a graphical tool for re¯ning user to system
requirements, in ENTCS, Vol. 211, 2008, pp. 147–157.

5. V. Braberman, D. Garbervestky, N. Kicillof, D. Monteverde and A. Olivero, Speeding
Up Model Checking of Timed-Models by Combining Scenario Specialization and Live
Component Analysis, in FORMATS (Springer, 2009).

6. V. Braberman, N. Kicillof and A. Olivero, A scenario-matching approach to the descrip-
tion and model checking of real-time properties, IEEE TSE 31(12) (2005) 1028–1041.

7. E. Clarke, O. Grumberg and D. Peled, Model Checking (MIT Press, 1999).
8. R. Cobleigh, G. Avrunin and L. Clarke, User guidance for creating precise and accessible

property speci¯cations, in Proc. of 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, 2006, p. 218.

9. S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton and B. Horowitz, Model-
based testing in practice, in ICSE, 1999, pp. 285–294.

10. L. Dillon, G. Kutty, L. Moser, P. Melliar-Smith and Y. Ramakrishna, A graphical interval
logic for specifying concurrent systems, ACM Trans. Software Engineering and Meth-
odology 3(2) (1994) 131–165.

11. N. D'Ippolito, V. Braberman, N. Piterman and S. Uchitel, Synthesis of live behaviour
models, in Proc. of 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2010.

12. M. Dwyer, G. Avrunin and J. Corbett, Speci¯cation Patterns Web Site, in http://pat-
terns.projects.cis.ksu.edu/documentation/patterns.shtml.

13. M. Dwyer, G. Avrunin and J. Corbett, Patterns in property speci¯cations for ¯nite-
state veri¯cation, in Proc. of 21st International Conference on Software Engineering
(ICSE), Vol. 99, 1999.

Speci¯cation Patterns: Formal and Easy 699

14. D. Giannakopoulou and J. Magee, Fluent model checking for event-based systems,
in Proc. of 9th European Software Engineering Conference, 2003, p. 266.

15. M. Grohe and N. Schweikardt, The succinctness of ¯rst-order logic on linear orders, in
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004,
pp. 438–447.

16. D. Harel and R. Marelly, Playing with time: On the speci¯cation and execution of time-
enriched LSCS, in MASCOTS '02, pp. 193–202.

17. G. Holzmann, The logic of bugs, ACM Software Engineering Notes 27(6) (2002) 81–87.
18. S. Konrad and B. Cheng, Real-time speci¯cation patterns, in Proc. of 27th ICSE, 2005,

pp. 372–381.
19. F. Laroussinie, N. Markey and P. Schnoebelen, Temporal logic with forgettable past, in

Proceedings of Symposium on Logic in Computer Science, 2002, pp. 383–392.
20. G. Leavens, A. Baker and C. Ruby, Preliminary design of JML: A behavioral interface

speci¯cation language for Java, ACM SIGSOFT Software Engineering Notes 31(3)
(2006) 1–38.

21. Z. Manna and A. Pnueli, A hierarchy of temporal properties, in Proc. of Ninth ACM
PODC, 1987, pp. 205–205.

22. Z. Manna and A. Pnueli, Completing the temporal picture, in Automata, Languages and
Programming, 1989, pp. 534–558.

23. Z. Manna and A. Pnueli, A Temporal Proof Methodology for Reactive Systems (Springer-
Verlag, 1995).

24. N. Markey, Temporal logic with past is exponentially more succinct, EATCS Bull. 79
(2003) 122–128.

25. D. Parnas, On the criteria to be used in decomposing systems into modules, Commun.
ACM 15(12) (1972) 1053–1058.

26. D. Paun and M. Chechik, Events in linear-time properties, in Proc. of 4th International
Conference on Requirements Engineering, 1999.

27. N. Piterman, A. Pnueli and Y. Sa'ar, Synthesis of reactive (1) designs, in Lecture Notes in
Computer Science, Vol. 3855, 2006, pp. 364–380.

28. M. Pradella, P. San Pietro, P. Spoletini and A. Morzenti, Practical model checking of
LTL with past, in ATVA03, 2003.

29. R. W. R. and K. Viggers, Implementing protocols via declarative event patterns, in ACM
Sigsoft International Symposium on FSE, 2004, pp. 158–169.

30. B. Sengupta and R. Cleaveland, Triggered message sequence charts, in SIGSOFT FSE,
2002, pp. 167–176.

31. M. Smith, G. Holzmann and K. Etessami, Events and constraints: A graphical editor for
capturing logic requirements of programs, in Proc. of 5th IEEE RE, 2001, pp. 14–22.

32. R. Smith, G. Avrunin, L. Clarke and L. Osterweil, Propel: An approach supporting
property elucidation, in ICSE, Vol. 24, 2002, pp. 11–21.

33. S. Uchitel, J. Kramer and J. Magee, Negative scenarios for implied scenario elicitation, in
Proc. of FSE, 2002, pp. 109–118.

34. M. Utting and B. Legeard, Practical Model-based Testing: A tools approach (Morgan
Kaufmann, 2007).

35. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann and L. Nachmanson,
Model-based testing of object-oriented reactive systems with spec explorer, in Formal
Methods and Testing, 2008, pp. 39–76.

36. T. Wilke, CTL+ is exponentially more succinct than CTL, in Foundations of Software
Technology and Theoretical Computer Science, 1999, pp. 110–121.

700 F. Asteasuain & V. Braberman

	Specification Patterns:
	1. Introduction
	1.1. Declarative description of properties: Existing difficulties
	1.2. Previous work and new contributions

	2. Background
	2.1. Specification patterns
	2.2. FVS: Feather weight visual scenarios
	2.2.1. FVS rules
	2.2.2. Anti-scenarios

	2.3. On FVS expressive power

	3. FVS Syntax and Semantics
	3.1. FVS syntax
	3.1.1. FVS rules

	3.2. FVS semantics
	3.2.1. Trace-based semantics

	4. Pattern Specification in FVS
	4.1. Modeling scopes
	4.2. Occurrence patterns
	4.2.1. The absence pattern
	4.2.2. The universality pattern
	4.2.3. The existence pattern
	4.2.4. The bounded existence pattern

	4.3. Order patterns
	4.3.1. The response pattern
	4.3.2. Precedence pattern
	4.3.3. The precedence chain pattern
	4.3.4. The response chain pattern
	4.3.5. Constrained chain pattern

	4.4. Extended pattern specification

	5. Analysis and Comparison
	5.1. Quality attributes comparison
	5.1.1. Succinctness
	5.1.2. Comparability
	5.1.3. Complementariness
	5.1.4. Modifiability

	5.2. Approach in action

	6. Related Work
	7. Conclusions and Future Work
	References

