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About the Cauchy problem in Stelle’s quadratic gravity

Juliana Osorio Morales ∗and Osvaldo P. Santillán †

Abstract

The focus of the present work is on the Cauchy problem for the quadratic gravity models
introduced in [1]-[2]. These are renormalizable higher order derivative models of gravity, but at
cost of ghostly states propagating in the phase space. A previous work on the subject is [3].
The techniques employed here differ slightly from those in [3], but the main conclusions agree.
Furthermore, the analysis of the initial value formulation in [3] is enlarged and the use of harmonic
coordinates is clarified. In particular, it is shown that the initial constraints found [3] include
a redundant one. In other words, this constraint is satisfied when the equations of motion are
taken into account. In addition, some terms that are not specified in [3] are derived explicitly.
This procedure facilitates application of some of the mathematical theorems given in [4]. As a
consequence of these theorems, the existence of both C∞ solutions and maximal globally hyperbolic
developments is proved. The obtained equations may be relevant for the stability analysis of the
solutions under small perturbations of the initial data.

1. Introduction

The present work studies the Cauchy problem for the quadratic gravity scenarios introduced by Stelle

in [1]-[2]. The Stelle’s equations of motion are of fourth order. A pioner work about the subject is

[3], and the purpose of the present paper is to enlarge the results of that reference. There is a clear

interest in the quantization of these theories and, for this reason, it is of fundamental importance to

understand their Cauchy formulation first.

A major feature of the quadratic gravity scenarios of [1]-[2] is that they are renormalizable, which

is one of the expected properties of a consistent quantum gravity model. As it is well known, the

quantization of GR yields a non renormalizable Quantum Field Theory. However, it is widely believed

that a consistent quantum gravity theory should contain in the Lagrangian terms with higher order

derivatives of the metric. These terms are expected to play an insignificant role at low energies, but

at high energy they may play a central role and stabilize the divergent structure of the theory.

The reference [6] is a pioneer in the study of higher derivative theories in the context of Quantum

Field Theory, and suggested that higher derivative terms may stabilize the divergent behavior of GR

when the interaction with matter is turned on. Following these ideas, the works [1]-[2] presented a con-

crete renormalizable gravity model including the quadratic terms R2 and RµνR
µν in the Lagrangian.

Later on, it was noticed that the Euclidean versions of these models are asymptotically free [7]-[10],

see also [11].
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The renormalization property of the higher derivative models found in [1]-[2] is attractive from

the theoretical point of view. However, its main problem comes from the so called Ostrogradski ghost

[5], which may be an unwanted feature in a consistent quantum gravity model. The reason for the

appearance of a ghost is that the Hamiltonian is linear in the higher derivative fields momenta, and

it is not bounded from below. This creates negative norm states when quantizing the theory. These

modes propagate through the phase space and produce instabilities. In fact, when expanded around

the flat Minkowski background the theory is renormalizable, but the kinetic terms of the graviton and

the massive spin two degree of freedom have opposite signs. This suggests that one of these states is

a ghost.

Some references which attempt to avoid the problems described above are [12]-[15]. A specific

prescription for removing ghosts in the theory was introduced in [16]. Some attempts to avoid the

ghost instabilities by reducing the phase space are described in [17]. These ideas were pursued further

in [18] and [19]. Additional issues related to unitarity in these models were studied in [21]-[23]. The

use of the Stuckelberg trick in these scenarios for studying the high energy limit in which the graviton

mass tends to zero was discussed in [20].

There are also several classical aspects of these models which are of genuine interests. An example

is the black hole physics that is predicted from these scenarios. Black hole solutions for a higher

dimensional version of these models were considered in [24]-[25] and a precise numerical analysis of

the asymptotic behaviour of these solutions was performed in [28]-[29]. The effect of the addition of

a cosmological constant in the model was studied in [34] -[35]. In addition, it was shown that a new

branch of black hole solutions occurs along with the standard Schwarzschild branch in these models.

The standard and new branches cross at a point determined by a static negative-eigenvalue eigenfunc-

tion of the Lichnerowicz operator. The role of these Lichnerowicz modes was reconsidered recently in

[36]. The stability of black hole solutions mentioned above was studied in [28]-[32]. Furthermore, the

first law of thermodynamics for the black holes arising Stelle’s gravity was considered in [33]. Further

aspects of interest from the physical point of view are described in [37].

In the present work, an important role is played by second order quasi-linear hyperbolic systems,

whose generic form is given by

gµν(x, t, ui)
∂uq

∂xµ∂xν
= fq(ui, ∂ui), (1.1)

where uq with q = 1, .., n is a vector constituted the unknowns [38]-[40]. Here the matrix gpq is the

same for all the equations q = 1, ..n and it is of normal hyperbolic type, that is g44 ≤ 0 and gijxixj

is a positive definite form, with the latin indices indicating spatial directions. The explicit form of

the non linearity fq(ui, ∂jui) is of interest because it may characterize some formal properties of the

solutions of the model.

The structure of the present work is as follows. In Section 2 the main equations of the model are

reviewed, and the initial value formulation is outlined. In particular, the constraints to be satisfied

for the initial conditions are worked out explicitly. In Section 3 the use of harmonic coordinates is
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clarified, and it is shown that they are locally consistent if some initial conditions are imposed. Due

to the higher order nature of the Stelle’s equations, the corresponding initial conditions contains two

constraints which are not present in GR. The set of constraints found here agree with those in [3],

although the techniques employed are not completely the same. On the other hand, it is shown that

there is a redundant constraint in [3]. In other words, it comes as a consequence of the equations

of motion. In Section 4 the degrees of freedom of the Stelle quadratic gravity are described. This

material is not new, but it contains some intuitions that are helpful for understanding the procedure

employed in Section 5. The reader interested in formal mathematical aspects may skip Section 4 and

still be able to understand the main mathematical procedure employed in subsequent sections. In

Section 5 the evolution equations of the Stelle gravity models are analysed, an an order reduction

procedure bringing the system into the form (1.1) is used. In these terms, the non linearity of the

resulting system is characterized and, furthermore, it is shown that it satisfies a technical condition

namely, x-compactness. This condition permits to make statements about the mathematical nature of

the solutions of the model. The properties of these solutions are largely discussed in the conclusions

given in Section 6. Some technical details employed throughout the text are outlined in the appendix

A.

2. The Stelle’s equations and their initial value formulation

2.1 The main equations

The action of the Stelle higher derivative gravity model is the following [1]-[2]

S =

∫ [
1

16πGN
R+ αRµνR

µν + βR2

]√−g d4x+ Sm. (2.2)

It contains the Einstein term, proportional to the Ricci scalar R, plus two terms proportional to

RµνR
µν and R2 whose roles are to stabilize the divergent behavior of the Einstein model. Here Sm is

the matter Lagrangian and α and β are parameters, whose values are fixed by the unknown physics

at high energy scales. The equations of motion that are derived from this action are given by [1]-[2]

Hµν =
1

16πGN
Gµν + Eµν =

1

2
Tµν . (2.3)

Here Gµν is the standard Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (2.4)

Tµν is the energy momentum tensor for the matter fields and the quantity Eµν is given by

Eµν = (α− 2β)∇µ∇νR− α�Rµν − (
1

2
α− 2β)gµν�R+ 2αRαβRµανβ

− 2βRRµν −
1

2
gµν(αRαβR

αβ − βR2). (2.5)

In addition, the identity ∇µT
µν = 0 implies that ∇µH

µν = 0. This is an important identity for

proving that harmonic coordinates are consistent, as it will be discussed below. The present analysis
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is focused on the vacuum case Tµν = 0, although several aspects may be generalized when matter

fields are turned on.

It will be useful to express the equations of motion (2.3) in several equivalent forms. First of all,

it is not difficult to prove that equations (2.3) may be expressed as follows

1

16πGN
(Rµν −

1

2
Rgµν)− 2βR(Rµν −

1

2
Rgµν) + (2β − α)(gµν�−∇µ∇ν)R

+ α�(Rµν −
1

2
Rgµν) + 2α(Rµρνσ − 1

4
gµν Rρσ)(R

ρσ − 1

2
gρσR) (2.6)

+α(Rµν −
1

2
gµν R)R+

1

4
(α− 4β)gµνR

2 = 0.

It may be even convenient to write the last expression in terms of the Einstein tensor (2.4) as much

as possible. A convenient expression is

α�Gµν +
1

16πGN
Gµν + (α− 2β)RGµν + (2β − α)(gµν�−∇µ∇ν)R

+ 2α(Rµρνσ − 1

4
gµν Gρσ)G

ρσ +
1

2
(α− 2β)gµνR

2 = 0. (2.7)

As it is well known, the Einstein tensor Gµν is a expression of second order in terms of the metric gµν .

Thus, the equations (2.7) are of fourth order in the unknowns gµν .

2.2 The initial value formulation of the model

In standard GR, some of the Einstein equations, when projected over an initial spatial surface, become

of first order and are interpreted as constraints for the initial data. It is important to identify the

initial constraints for the Stelle gravity model (2.2). These are by definition the equations of motion

with order strictly less than four, projected on an initial Cauchy hypersurface.

Assume that a globally hyperbolic solution (M , g) of the Stelle’s equations (2.7) has been con-

structed. Then the space-time M can be foliated by spatial hypersurfaces Σt parametrized by a global

time function t, whose gradient is never vanishing [38]-[44]. Let na be a unit vector orthogonal to the

hypersurfaces Σt. Then the metric gµν induces a spatial metric hµν in Σt given by

hµν = gµν + nµ ⊗ nν .

The vector tµ defined by the condition tµ∇µt = 1 represents the flow of time t through the space-time

(M , g). Its spatial and time components are

Nµ = hµνt
ν , N = −tµnµ,

respectively. The quantity Nµ is known as the shift vector and N as the lapse function. Given a generic

vector Aµ, it can be decomposed as Aµ = nµAo+At, where the first part is orthogonal to Σ and At is

the tangent part. The quantity hνµ is a projector over the tangent space TΣ, that is, hµνAν = Aµt . An

analogous formula holds for tensor fields A ν1..νl
µ1...µk

. As it is well known, the projection Gµνn
ν |t=0 is of
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first order in time derivatives [41]. More precisely, the spatial and time components of this projection

at Σ are given by

Gµνn
µhνα = Dµk

µ
α −Dαk

µ
µ , Gµνn

µnν =
1

2
[R(3) + (kµµ)

2 − kµνk
µν ]. (2.8)

Here the following quantity

kµν =
1

2
Lnhµν ,

has been introduced, with Ln the standard Lie derivative along the n direction. In addition R(3) is the

curvature corresponding to hµν and Dα is the corresponding three dimensional covariant derivative.

These objects are defined on the tangent space TΣ of the surface Σ corresponding to the time t = 0,

and are of first order with respect to the time derivative ∂t. Details of these assertions can be found

in the standard textbooks [38]-[44], or in the extensive reference [45]. Given these expressions, it is

tempting to examine the projection of (2.7) on the customary directions of GR. Consider for instance

the Stelle’s equations projected on the nn directions

αnµnν�Gµν +
1

16πGN
nµnνGµν + (α− 2β)nµnνGµνR+ (2β − α)nµnν(gµν�−∇µ∇ν)R

+ 2α(nµnνRµρνσ −
1

4
nµnνgµν Gρσ)G

ρσ +
1

2
(α− 2β)nµnνgµνR

2 = 0. (2.9)

As Gµν and R are expressions with at most two derivatives, the only terms that may be of fourth

order are those related to the D’Alambertian � or to the covariant derivatives ∇α. However, from the

identity

∇α∇β(Gµνn
µnν) = nµnν∇α∇βGµν + (nν∇αn

µ + nν∇αn
µ)∇βGµν + (nν∇βn

µ + nν∇βn
µ)∇αGµν

+(nµ∇α∇βn
ν +∇αn

µ∇βn
ν +∇αn

ν∇βn
µ + nν∇α∇βn

µ)Gµν ,

it can be deduced that

nµnν�Gµν = �Gµνn
µnν − gαβ(nν∇αn

µ + nν∇αn
µ)∇βGµν − gαβ(nν∇βn

µ + nν∇βn
µ)∇αGµν

− (nµ�nν + gαβ∇αn
µ∇βn

ν + gαβ∇αn
ν∇βn

µ + nν�nµ)Gµν . (2.10)

Since Gµνn
µnν contains no second time derivatives, the first term in the left contains at most third

time derivatives. The other terms are clearly also of order less than four in time derivatives. In

addition

(nνnµgµν�− nµnν∇µ∇ν)R = (�− nµnν∇µ∇ν)R

= [(hαβ + nαnβ)∇α∇β − nµnν∇µ∇ν ]R = hαβ∇α∇βR = 0. (2.11)

The last formula clearly does not contains second time derivatives of R and therefore is at most of

third order. From (2.10)-(2.11) it follows that (2.9) is a expression of third order with respect to time

derivatives and therefore, when projected on the initial Cauchy surface Σ, it becomes a constraint.
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Consider now the projection nh

αnµhνα�Gµν +
1

16πGN
nµhναGµν + (α− 2β)nµhναGµνR+ (2β − α)nµhνα(gµν�−∇µ∇ν)R

+ 2α(nµhναRµρνσ −
1

4
nµhναgµν Gρσ)G

ρσ +
1

2
(α− 2β)nµhναgµνR

2 = 0. (2.12)

By use of an argument similar to the one leading to (2.10) it can be deduced that

nµhνα�Gµν = �Gµνn
µhνα − gγβ(nµ∇γh

ν
α + hνα∇γn

µ)∇βGµν − gγβ(hνα∇βn
µ + hνα∇βn

µ)∇γGµν

− (nµ�hνα + gαβ∇αn
µ∇βh

ν
α + gαβ∇αh

ν
α∇βn

µ + hνα�n
µ)Gµν . (2.13)

By taking into account that nµhναGµν is a expression involving first order time derivatives, it follows

from (2.13) that nµhνα�Gµν is at most of third order. In addition, as hαµgαν = hµν and nµhµν = 0 by

the orthogonality condition, it follows that

nµhνα(gµν�−∇µ∇ν)R = −nµhνα∇ν∇µR = nµD(3)
α ∇µR,

where in the last step, the fact that ∇µ∇ν = ∇ν∇µ when acting on scalar functions has been taken

into account. The operator D
(3)
α contains no time derivatives and therefore the last is a expression at

most of third order in time derivatives. Thus (2.12) is also a constraint. Its explicit form is

αnµhνα�Gµν +
1

16πGN
nµhναGµν + (α− 2β)nµhναGµνR

− (2β − α)nµD(3)
α ∇νR+ 2αnµhναRµρνσG

ρσ = 0. (2.14)

From all this discussion, it follows that the set initial conditions for the Stelle’s equations (2.7) is

composed as follows. First, define a spatial hypersurface Σ corresponding to the time t = 0. On this

hypersurface, introduce an initial metric g(0)µν = h(0)µν +n(0)µ ⊗n(0)ν together with three symmetric

quantities k(0)µν , G(0)µν and K(0)µν . The initial conditions then are given by 1

gµν |t=0 = g(0)µν , Lnhµν |t=0 = kµν ,

Gµν |t=0 = G(0)µν , nα∇αGµν |t=0 = K(0)µν . (2.15)

The first two formulas in (2.15) are present in GR, the last two are new and define the second and the

third time derivatives of the metric gµν respectively. Note that the value of R on Σ is defined by this

information, since R is proportional to the trace of Gµν . The quantities g(0)µν = h(0)µν +n(0)µ⊗n(0)ν ,
k(0)µν , G(0)µν and K(0)µν are not arbitrary, but related to each other by the constraints (2.9) and

(2.14). These quantities are the initial data for constructing the space-time evolution (M,g).

1The last condition may be replaced by LnGµν |t=0 = K′
(0)µν . But from the known expression LnT

ν1..ν2
µ1..µk

=

nµ∇νT
ν1..νl
µ1..µk

+
∑k

i=1 T
ν1..νl
µ1..σ..µk

∇µi
nσ −

∑k

i=1 T
ν1..σ..νl
µ1..µk

∇σn
µi , it follows that both data give the same information.
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3. The Stelle’s equations in harmonic coordinates

In the previous section, it has been shown that the dynamical Stelle’s equations are the six spatial

components of (2.7). The remaining equations instead are simply constraints. The unknowns are the

ten components gµν of the metric, which shows that the system is overdetermined. This reflects the

invariance of the model under diffeomorphisms. In order to remove this ambiguity, a coordinate gauge

should be imposed. A gauge that is successful in GR is the harmonic one. Its advantage is that, in

these coordinates, the Einstein equations take the form (1.1). Of course, this conclusion does not follow

directly for the Stelle’s quadratic gravity, since the equations are of higher order. However, by the use

of these coordinates and by use of the known procedure of order reduction, a quasi-linear hyperbolic

second order system equivalent to (1.1) can be constructed. The strategy is then to characterize the

solutions of Stelle’s equations from the general properties of those systems.

3.1 The consistency of the use of harmonic coordinates

The harmonic gauge is simple to describe. For an arbitrary space-time (M , gµν) locally parametrized

by some coordinates xµ, the Ricci tensor is given by the general formula

Rµν = −1

2
gαβ∂α∂βgµν +Qµν(g, ∂g) +

1

2
(gµβ∂νF

β + gνβ∂µF
β), (3.16)

where Qµν(g, ∂g) is a quantity which depends on the metric and its first derivatives. Its explicit form

is

Qµν = gαβ [Γµαγ∂βg
νγ + Γναγ∂βg

µγ − 2Γγαβ∂γg
νµ].

In addition

Fα = gµνΓαµν =
1√−g

∂

∂xα

(√−ggαβ
)
, α = 1, 2, 3, 4. (3.17)

The harmonic conditions is by definition Fα = 0, and the harmonic coordinates are those which satisfy

it. This is the gauge to be employed in the following. It is clear from the previous formulas that the

Ricci tensor, the scalar curvature and the Einstein tensor in harmonic coordinates are given by

RFµν = −1

2
gαβ∂α∂βgµν +Qµν(g, ∂g), RF = −1

2
gαβgσρ∂α∂βgσρ +Q(g, ∂g).

GFµν = −1

2
gαβ∂α∂βgµν +

1

4
gµνg

αβgσρ∂α∂βgσρ +Qµν(g, ∂g) −
1

2
gµνQ(g, ∂g), (3.18)

respectively. By taking the last formulas as the definitions of RFµν , R
F and GFµν it follows that

RFµν = Rµν −
1

2
(gµβ∂νF

β + gνβ∂µF
β), RF = R− ∂αF

α (3.19)

GFµν = Gµν −
1

2
(gµβ∂νF

β + gνβ∂µF
β − gµν∂αF

α). (3.20)

The previous discussion shows that the Ricci tensor in harmonic coordinates (Fα = 0) becomes a quasi-

diagonal second-order operator for the components of g, since it has the form 2Rµν = −gαβ∂α∂βgµν +
2Qµν , where the last term contains only first order terms. If the harmonic condition Fα = 0 is not
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fulfilled, then the expression for Rµν is not quasi-diagonal and the techniques derived from (1.1) should

not be applied.

The description given above suggests that the condition Fα = 0 may be of practical convenience.

However, it may not be legitimate to assume that the harmonic condition Fα = 0 holds, even if it is

satisfied on certain subset Ω the initial Cauchy surface Σ. The problem is that, given solution gµν of

(2.7), it may be the case that Fα 6= 0 in the Cauchy development D(Ω), even if initially Fα|t=0 = 0 on

Ω. If this is so, then the choice Fα = 0 is inconsistent. Thus, the equations that describe the evolution

of the quantity Fα should be obtained in order to check that, given suitable initial conditions, the

solution is Fα = 0 for all the times t ≥ 0.

The evolution equations for Fα are obtained as follows. The Stelle equations (2.3) in any coordinate

system are given by

Hµν = Gµν + (α− 2β)RGµν + (2β − α)(gµν�−∇µ∇ν)R

+ α�Gµν +

[
2αRµρνσ −

α

2
gµνGσρ

]
Gσρ +

1

2
(α− 2β)gµνR

2 = Tµν , (3.21)

while the use of harmonic gauge brings them to the form

HF
µν = GFµν + (α− 2β)RFGFµν + (2β − α)(gµν�

F −∇µ∇ν)R
F

+ α�FGFµν +

[
2αRµρνσ −

α

2
gµνG

F
σρ

]
GFσρ +

1

2
(α− 2β)gµν(R

F )2 = Tµν , . (3.22)

Here the notation �
F requires a short explanation. The laplacian acting on any scalar function, in

particular on R, is given in local coordinates by

�R = gαβ∂α∂βR+ FαR.

On the other hand if the harmonic coordinate condition (3.17) is imposed, then the second term is

zero. Thus, the simple formula

�
FRF = gαβ∂α∂βR

F ,

is obtained in this gauge. Analogous considerations follow for �FGFµν . In this situation, the action of

the D’Alambertian on a tensor like Gµν is slightly more complicated than for scalar fields. Nevertheless,

an inspection of the relevant formulas shows that, even for this situation, �FTµν = �Tµν −Fα∂αTµν .

Assume now that a particular solution gµν of (3.22) has been found. The tensor Hµν is divergence

free, this is a geometrical identity, the analogous of ∇µGµν = 0 in GR for the present model. The

energy momentum tensor Tµν is divergence free (in particular, the tensor Tµν = 0 has zero divergence).

Therefore ∇µHµν = 0 and, from (3.22), it also follows that ∇µHF
µν = 0. The difference therefore must

satisfy ∇µ(Hµν −HF
µν) = 0. The explicit expression for this difference is

δHµν = Hµν −HF
µν = δGµν + α�δGµν − αF δ∂δG

F
µν + (2β − α)(∂αF

αGµν +RF δGµν + ∂αF
αδGµν)

+
1

2
(α− 2β)gµν(2R

F ∂αF
α + ∂αF

α∂βF
β) +

[
2αRµρνσ − α

2
gµνG

F
σρ

]
δGσρ − α

2
gµνδGσρG

Fσρ

8



− α

2
gµνδGσρδG

σρ + (2β − α)(gµν�−∇µ∇ν)(∂αF
α) + (2β − α)gµνF

α∂αR
F . (3.23)

The expression for δGµν in terms of Fα can be read off from (3.20), the result is

δGµν =
1

2
(gµβ∂νF

β + gνβ∂µF
β − gµν∂αF

α). (3.24)

If the last definition is introduced into the expression for δHµν derived above then, after imposing

that ∇µδHµν = 0, a fourth order term �∇µδG
µ
ν will appear. This term is induced by the divergence

of the second term in the right hand side of (3.23). A fourth order non linear equation is difficult to

deal with.

An approach to sort out these problems out is to add new variables, and to construct a second

order system2

gµν(xα)
∂2ηq

∂xµ∂xν
= fq(ηl, ∂µηl), (3.25)

completely equivalent to the equations ∇µδHµν = 0 obtained from (3.23). Here ηα are the unknowns

and the second derivatives ∂µ∂νηq are allowed only on the right hand. Furthermore the quanti-

ties gµν(xα) should not contain the unknowns. It is also desirable that the resulting non linearity

fq(ηl, ∂µηl) is such that fq(0, 0) = 0. If this property is fulfilled then, by imposing the initial condi-

tions ηα = ∂βηα = 0, it follows from (3.25) that the second derivatives ∂α∂βην will also be zero. If the

non linearity fq(ηl, ∂µηl) is suitable enough, then by taking further derivatives in (3.25) it follows that

all the derivatives of ηα are zero and and in particular, that Fµ = 0.

The order reduction procedure sketched in the previous paragraph is implemented as follows. First,

note that the fourth order contribution to ∇µδHµν comes from the term �∇µδG
µ
ν . The fact that this

is a fourth order term follows from the definition (3.24), which shows that δGµν is a first order quantity

in Fµ. This suggests that the system can be converted into a second order one such as (3.25) if the

second order expression ∇µδG
µ
ν is considered as an independent variable. The independent variables

are then Fµ and ∇µδG
µ
ν . The system should then be supplemented with a second order equation for

Fα. This is obtained by taking the divergence of δGµν in (3.24) and adding the resulting equations to

the system (3.23). This divergence is explicitly

gµν∂µ∂νF
α = Aαβγ ∂βF

γ + gαν∇µδG
µ
ν . (3.26)

Here the quantities Aαβγ are local functions of the space-time coordinates, their expressions will not

be important in the following. On the other hand, the condition ∇µδHµν = 0 should be expressed in

terms of Fα and ∂µF
α everywhere by use of (3.20), with the exception for the terms ∇µδG

µ
ν . The last

are considered as independent unknowns. These replacements bring (3.23) into the following form

α�∇µ(δG
µ
ν ) = Lν(R

α
βγδ , ∂αF

β, ∂α∂βF
γ)−∇µ(δG

µ
ν )− (2β − α)

[
G β
ν ∂α∂βF

α + δG β
ν ∂βR

F

+RF∇µ(δG
µ
ν )+δG

β
ν ∂α∂βF

α+(∂αF
α)∇µ(δG

µ
ν )

]
−(α−2β)(RF ∂α∂νF

α+∂αF
α ∂νR

F+∂βF
β ∂α∂νF

α)

2Note that this system is just a simplified version of (1.1), in the sense that the quantity gµν(xα) does not depend on
the unknowns ηµ or ∂µην while in (1.1) gµν = gµν(xα, uq).
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−δGσρ∇µ

[
2αRµρνσ−

α

2
gµνG

F
σρ

]
+

[
2αRµρνσ−

α

2
gµνG

F
σρ

]
∇µδGσρ+

α

2
GFσρ∇νδGσρ+

α

2
δGσρ∇νG

Fσρ

+ αδGσρ∇νδG
σρ − (2β − α)Rδν∂δ∂αF

α + (2β − α)(∂νF
α)∂αR

F − (2β − α)Fα∇ν∂αR
F . (3.27)

In obtaining these expressions, the fact that ∇µ
�Gµν − �∇µGµν 6= 0 was taken into account. This

difference was denoted as Lν(R
α
βγδ, ∂αF

β, ∂α∂βF
γ) in (3.27), and is a linear combination in both ∂αF

β

and ∂α∂βF
γ . The explicit form of these terms will not be relevant in the following discussion, but it

is important to remark that Lν(R
α
βγδ , 0, 0) = 0.

The system composed by the equations (3.26)-(3.27) is of second order in the variables ∇µδG
µ
ν and

Fα, which is a desired feature. However, the sough-for system (3.25) contains second derivatives only

on the left, and these second derivatives are multiplied by quantities gµν(xα) which do not depend

on the unknowns ηα. On the other hand, in the obtained equations (3.26)-(3.27) there are still terms

such as ∂βF
β ∂α∂νF

α which are not compatible with the form (3.25). This problem can be avoided

by adding the partial derivatives Φαβ = ∂βF
α as a new set of variables. Take the partial derivatives ∂β

of (3.26), with β = 1, .., 4, and add the resulting equations to the system (3.26)-(3.27). The resulting

equations are now

gµν∂µ∂νF
α = −Aαβγ ∂βF

γ + gαν∇µδG
µ
ν , (3.28)

gµν∂µ∂νΦ
α
γ = −(∂γg

µν)∂µΦ
α
ν −Aαβδ ∂βΦ

δ
γ −Aαβδγ Φ

γ
β + (∂γg

αν)∇µδG
µ
ν + gαν∂γ(∇µδG

µ
ν ), (3.29)

α�∇µ(δG
µ
ν ) = −Lν(Rαβγδ,Φβα, ∂αΦγβ)−∇µ(δG

µ
ν )− (2β − α)

[
G β
ν ∂αΦ

α
β + δG β

ν ∂βR
F

+RF∇µ(δG
µ
ν ) + δG β

ν ∂αΦ
α
β +Φαα∇µ(δG

µ
ν )

]
− (α− 2β)(RF∂αΦ

α
ν +Φαα ∂νR

F +Φββ ∂αΦ
α
ν )

−δGσρ∇µ

[
2αRµρνσ −

α

2
gµνG

F
σρ

]
−

[
2αRµρνσ − α

2
gµνG

F
σρ

]
∇µδGσρ +

α

2
GFσρ∇νδGσρ

+
α

2
δGσρ∇νG

Fσρ + αδGσρ∇νδG
σρ − (2β − α)[Rδν∂δΦ

α
α +Φαν ∂αR

F + Fα∇ν∂αR
F ]. (3.30)

As before, expressions such as ∇µδGρσ or δGσρ in (3.27) should be written in terms of Fα and Φβα,

except for the variables ∇µ(δG
µ
ν ). In these terms, define the vector composed by the unknowns

ηα = (F β,Φβγ ,∇µδG
µ
ν ). (3.31)

Then it is seen that the system (3.28)-(3.30) obtained above is of the desired form (3.25). The non

linearity fq(ηα, ∂µηα) can be read from the right hand of the formulas (3.28)-(3.30). For instance, from

(3.28) it is seen that

fα1 (ηα, ∂µηα) = −Aαβγ ∂βF
γ + gαν∇µδG

µ
ν ,

and that fα1 (0, 0) = 0. The same argument follows for the other non linearities, although their

expressions are a bit more cumbersome. The quantity gµν in the left hand of (3.25) is identified with

the inverse metric. In addition, it can be seen that all the non linearities are polynomials in the

variables ηα and ∂µηα, with well behaved derivatives. From this, the following affirmation follows.
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Proposition 1. Consider the Stelle’s equations of motion

α�Gµν +
1

16πGN
Gµν + (α− 2β)RGµν + (2β − α)(gµν�−∇µ∇ν)R

+2α(Rµρνσ − 1

4
gµν Gρσ)G

ρσ +
1

2
(α− 2β)gµνR

2 = 0,

and the vector ηα = (F β ,Φβγ ,∇µδG
µ
ν ) composed by the quantities (3.17), its derivatives Φαβ = ∂αFβ and

the covariant derivatives of the quantities δGµν defined in (3.24). Assume that a globally hyperbolic

solution (M4, g4) of these equations has been constructed, with an initial Cauchy hypersurface Σ.

Then, if initially ηα|t=0 = ∂tηα|t=0 = 0 in a subset Ω of Σ, it follows that all the derivatives of ηα

will be zero and the solution will be zero in D(Ω). In particular, as the quantities ηα contain Fα as

entries, this ensures that Fα = 0 in D(Ω).

It is therefore concluded from Proposition 1 that if the initial constraints described above are

satisfied in Ω, then Fα = 0 in D(Ω). Therefore, the use of harmonic coordinates is justified for the

Stelle’s gravity models. Nevertheless, as it will be discussed below, these constraints are too restrictive

and some of them can be relaxed without spoiling the harmonic property.

3.2 A closer look to the initial conditions for harmonic coordinates

In the present section, the initial harmonic conditions of Proposition 1 will be discussed in detail.

From now, the discussion is focused on globally hyperbolic solutions (M,g). This means that the

space-time M is foliated by Cauchy surfaces Σt determined in terms of a regular scalar function t,

where the word ”regular” means that its gradient is never vanishing. Denote the initial Cauchy surface

at t = 0 by Σ. Then it follows from (3.31) that the initial conditions ηα|t=0 = ∂tηα|t=0 = 0 at a subset

Ω of Σ are given by

Fα|t=0 = 0, Ḟα|t=0 = 0,

∇νδG
ν
µ|t=0 = 0, ˙(∇νδGνµ)|t=0 = 0. (3.32)

It is important to remark that the constraints Φβα|t=0 = 0 and Φ̇βα|t=0 = 0 for the quantity Φβα = ∂αF
β

defined in (3.29) have not been included. The reason is that the spatial derivatives of Fα on the initial

surface Σ are all zero, thus Φβα|t=0 = 0 gives the same information as the second equation in (3.32)

and Φ̇βα|t=0 = 0 gives the same information as the third equation in (3.32), therefore they can be safely

omitted.

The last three constraints in (3.32) are not present in the GR. This reflects the fact that the

Stelle’s equations are of higher order. In order to clarify their meaning, consider the formula (3.26)

for ∇νδG
ν
µ. As initially ∂iF

α and ∂tF
α = 0 the third constraint in (3.32) implies that ∂2t F

α = 0 at

t = 0. The remaining constraint implies that ∂3t F
α = 0. Once these constraints are fulfilled, Fα = 0

during the evolution, which is the desired property for the use of the harmonic gauge.

However, there is an odd feature in the aforementioned constraints. The quantities Fα contain

first time derivatives of the metric gµν and therefore, the last condition ∂3t F
α = 0 may contain time

11



derivatives of gµν up to fourth order. On the other hand, the equations of motion (2.7) are itself of

fourth order, and this may indicate an inconsistency in the use of harmonic coordinates, unless this

constraint is shown to be redundant. This problem would be solved if, given the initial conditions

Fα = ∂tF
α = ∂2t F

α = 0 at Σ, the condition ∂3t F
α = 0 comes out as a consequence of the equation of

motion (2.7) in harmonic coordinates.

Before proving this redundancy, let us recall that the Stelle’s equations in the harmonic gauge

are given by HF
µν = 0. These equations are supplemented with the constraints (2.9)-(2.14). From

the definition HF
µν = Hµν − δHµν , it follows that the Stelle’s equations in harmonic coordinates are

equivalent to

Hµν = δHµν . (3.33)

The last expression is more practical, since the initial constraints were formulated above in terms of

Hµν , not in terms of HF
µν . In fact, the results of the previous section show that the initial constraints

are

nµnνHµν |t=0 = 0, nµhναHµν |t=0 = 0.

From this, together with the fact that the equations of motion are equivalent to Hµν = δHµν , it is

easily found that the initial conditions can be cast in the following form

nµnνδHµν |t=0 = 0, nµhναδHµν |t=0 = 0. (3.34)

The advantage of the formulas (3.34) is that the quantity δHµν is a expression given in terms of Fα,

as shown in the definition (3.23). This fact will be helpful for showing that ∂3t F
α = 0 is redundant. In

addition, it is convenient to write down the explicit expression of δHµν |t=0. Since it is assumed that

initially Fα = 0 and ∂µF
α = 0, it follows from (3.23) that

δHµν |t=0 = α�δGµν |t=0 + (2β − α)(gµν�−∇µ∇ν)(∂αF
α)|t=0.

On the other hand, from the formula

∇ν∇ν∂αF
α = ∂ν∂µ∂αF

α + Γβµν∂β∂αF
α = δµtδνt∂

3
t F

t + Γtµν∂
2
t F

α,

together with the harmonic condition Fα = Γα = 0 at t = 0 it is obtained that

�∂αF
α|t=0 = gγδ∂γ∂δ∂αF

α|t=0 = g00∂3t F
0|t=0.

Furthermore, it is not difficult to check that

∇α∇βGµν = ∇α[∂βGµν + ΓγβµGγν + ΓγβνGγµ + ΓγνµGγβ ] = ∂α∂βGµν + L1(Gγδ) + L2(∂ǫGγδ),

where Li are homogeneous and of first order in its arguments. Then, from the definition

δGµν =
1

2
(gµβ∂νF

β + gνβ∂µF
β − gµν∂αF

α),

it is obtained that δGµν |t=0 = 0.
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At this point, the initial condition ∂2t F
α|t=0 = 0 was ignored. Assume from now that this condition

holds. The task is to show that ∂3t F
α|t=0 = 0 due to the whole set of initial constraints. First of all,

it should be noted that ∂2t F
α|t=0 = 0 implies that ∂tδGµν |t=0 = 0. Furthermore

∇ν∇ν∂αF
α|t=0 = δµ0δν0∂

3
t F

0|t=0.

Therefore, it follows that

δHµν |t=0 = α�δGµν |t=0 + (2β − α)(gµν�−∇µ∇ν)(∂αF
α)|t=0 = g00∂2t δGµν |t=0

+(2β − α)(gµνg
00∂3t − δµ0δν0∂

3
t )F

t|t=0.

After deriving this formula, the next step is to impose (3.34). But the quantities Fα are only time

dependent in Σ. In this situation, the constraints (3.34) are satisfied if and only if δH0µ|t=0 = 0.

Suppose first the simplest situation namely, the one for which g0i = 0. Then, by taking into account

the already assumed initial conditions, the three constraints δH0i|t=0 = 0 with i = 1, 2, 3 are equivalent

to

g00∂2t δG0i|t=0 =
1

2
g00∂2t (gij∂tF

j − g0i∂tF
0)|t=0 =

1

2
g00gij∂

3
t F

j|t=0 = 0.

These are three homogeneous equations and, if the determinant of the spatial metric gij is non zero,

then ∂3t F
j = 0. On the other hand, the constraint δH0µ|t=0 = 0 implies that

g00∂2t δG00|t=0 + (2β − α)(g00g
00∂3t − ∂3t )F

t|t=0 = g00∂2t δGµν |t=0

=
1

2
g00∂2t (2g0β∂tF

β − g00∂tF
0)|t=0 = −1

2
g00g00∂

3
t F

0|t=0 = 0,

where the initial conditions Fα = ∂tF
α = ∂2t F

α = 0 have been taken into account. The last formula

shows that ∂3t F
0 = 0. Thus, the initial conditions ∂3t F

α|t=0 = 0 are direct consequences of the Stelle’s

equation and can be safely ignored, when g0i|t=0 = 0.

Consider now the opposite situation namely, the one for which g0i|t=0 6= 0. In this case, the

component δH00|t=0 leads to

g00∂2t δG00|t=0 + (2β − α)(g00g
00∂3t − ∂3t )F

t|t=0 =
1

2
g00(g00∂

3
t F

0 − g0i∂
3
t F

i)|t=0

+(2β − α)(g00g
00∂3t − ∂3t )F

t|t=0 = 0.

On the other hand, the projection δH0i|t=0 is explicitly

g00∂2t δG0i|t=0 + (2β − α)g0ig
00∂3t F

t|t=0 =
1

2
(giβ∂

3
t F

β − g0i∂
3
t F

t)|t=0

+(2β − α)g0ig
00∂3t F

t|t=0 = 0.

The last system of equations is homogeneous and, for a generic initial metric, it has a non zero

determinant. Therefore ∂3t F
α|t=0 = 0 when g0i 6= 0.

From the above discussion, it is concluded that the initial conditions for the harmonic gauge are

Fα|t=0 = 0, Ḟα|t=0 = 0, ∇νδG
ν
µ|t=0 = 0, (3.35)
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or equivalently Fα|t=0 = ∂tF
α|t=0 = ∂2t F

α|t=0 = 0 for α = 1, 2, 3, 4. The condition ∂3t F
α|t=0 = 0 or

equivalently, ˙(∇νδGνµ)|t=0 = 0, is therefore redundant. These results can be expressed shortly in the

form of the following proposition.

Proposition 2. Suppose that a globally hyperbolic solution (M4, g4) of the Stelle’s equations (2.7) has

been found, with Σ an initial Cauchy surface. If the conditions

Fα|t=0 = 0, Ḟα|t=0 = 0, ∇νδG
ν
µ|t=0 = 0,

are satisfied in a subset Ω of Σ, with δGµν defined in (3.24), then Fα = 0 in the Cauchy development

D(Ω).

This proposition is essentially the same as Proposition 1, but with the redundant initial conditions

removed.

4. The degrees of freedom of the theory

In the previous section, the consistency of the use of harmonic coordinates when dealing with the

Stelle’s equations was pointed out. The next step is to understand the properties of the solutions of

the model, when this gauge is imposed. The Stelle’s equations (2.7) are non linear of fourth order

for the unknown metric gµν . A possible approach for dealing with these equations is to convert them

into a larger system of lower order. But before to employ this procedure, it may be convenient to

identify the degrees of freedom of the Stelle’s model, since they may give a hint about which variables

should be taken as independent when making the order reduction procedure. The material of this

section is not mandatory and the more mathematically oriented reader may skip to the next sections.

However, the intuition beyond the mathematical formalism of these sections is inspired from the

present considerations. The degrees of freedom in Stelle’s gravity were already classified in [1]. For

the present purposes however, a more suited reference to follow is [20]. In order to clarify these degrees,

it is convenient to cast the action (2.2) into the following equivalent form

S =M2
P

∫
d4x

√−g
[
1

2
R+

1

12m2
R2 +

1

4M2
CµνρσC

µνρσ

]
. (4.36)

The equivalence between (4.36) and (2.2) follows from the fact that the Gauss-Bonnet termRµνρσR
µνρσ−

4RµνR
µν+R2 does not contribute to the equations of motion. The advantage of expressing the action

in the form (4.36) is that the Weyl tensor

Cµναβ = Rµναβ +Rµ[αgν]β −Rβ[αgν]µ +
1

3
Rgµ[αgβ]ν , (4.37)

is a conformal invariant. This property can be exploited to understand the degrees of freedom of the

model as follows. Note first that the last action is equivalent to the following one

S =M2
P

∫
d4x

√−g
[
1

2

(
1 +

φ

3m2

)
R− 1

12m2
φ2 +

1

4M2
CµνρσC

µνρσ

]
. (4.38)
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The equivalence follows from the fact that the φ equation of motion gives that φ = R, which upon

substitution into (4.38) returns (4.36). A transformation of the metric of the form gµν → Ω2gµν has

no effect on the Weyl invariant term CµνρσC
µνρσ. The specific choice

gµν → 3m2

φ+ 3m2
gµν ,

followed by a field redefinition

φ = 3m2
(
eψ − 1

)
, (4.39)

gives that gµν → e−ψgµν . The action in the new frame becomes

S =M2
P

∫
d4x

√−g
[
1

2
R− 3

4
(∂ψ)2 − 3

4
m2e−2ψ

(
eψ − 1

)2
+

1

4M2
CµνρσC

µνρσ

]
.

Next, in order to eliminate the Weyl term squared part CµνρσC
µνρσ, it may be helpful to introduce a

symmetric dimensionless auxiliary tensor field fµν . The action is then transformed into

S =M2
P

∫
d4x

√−g
[
1

2
R− 3

4
(∂ψ)2 − 3

4
m2e−2ψ

(
eψ − 1

)2
+ fµνGµν −

1

2
M2

(
fµνf

µν − fρρf
η
η

)]
,

(4.40)

where Gµν is the Einstein tensor of gµν , and indices are always lowered with the help of gµν . The

equations of motion for fµν give

fµν =
1

M2

(
Rµν −

1

6
Rgµν

)
. (4.41)

When this is inserted into (4.40) the original action is obtained, up to a term proportional to the

Gauss-Bonnet invariant RµνρσR
µνρσ − 4RµνR

µν +R2 which does not modify the equations of motion.

The formulation in (4.40) is manifestly of second order. A hint to deal with the Cauchy problem

for this model comes from the analysis of the degrees of freedom. These degrees are elucidated by a

second order expansion around the Minkowski background gµν = ηµν , fµν = 0, ψ = 0 of the action

(4.40), up to second order terms. The perturbation is expressed as

gµν = ηµν + hµν , fµν = Ψµν , ψ = χ, (4.42)

where the quantities hµν , Ψµν and χ represent small deviations from the trivial vacuum. The expanded

action is given by

S2 =M2
P

∫
d4x

[
− 3

4

(
(∂χ)2 +m2χ2

)
+

1

8
hµν (Eh)µν −

1

2
Ψµν (Eh)µν −

1

2
M2

(
ΨµνΨ

µν −Ψρ
ρΨ

η
η

) ]
,

where

(Eh)µν ≡ �hµν − ηµν�h− 2∂(µ∂
ρhν)ρ + ∂µ∂νh+ ηµν∂

ρ∂σhρσ,

is the graviton kinetic operator. The analogous operator was introduced for the perturbation Ψµν .

The tensor kinetic terms in the last action can be broken to a diagonal form by the use of the field

redefinition

hµν = 2
(
h′µν +Ψµν

)
,
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for which the action is converted into

S =

∫
d4x

[
− 3

4

(
(∂χ)2 −m2χ2

)
+

1

2
h′µν

(
Eh′

)
µν

− 1

2
Ψµν (EΨ)µν −

1

2
M2

(
ΨµνΨ

µν −Ψ ρ
ρ Ψ η

η

) ]
.

This linearized action was found in [2]. It shows that the degrees of freedom are composed by a

scalar field χ, a massless spin two field h′µν and a spin two massive field Ψµν whose kinetic energy has

opposite sign to that of the graviton. The signs of the kinetic terms of the spin two fields may be

interchanged, but it is likely that instabilities will not be avoided by this procedure.

5. The Stelle’s equations as a second order quasi-linear hyperbolic

system

5.1 A reduction order procedure for the Stelle’s equations

The previous discussion shows that the spin two degree of freedom Ψµν is identified with

fµν = Rµν −
1

6
gµνR,

when the space-time metric gµν = ηµν + hµν is close enough to a Minkowksi one ηµν . In the same

approximation, the identification φ = R in the previous section, together with the formula (4.39),

show that scalar degree of freedom ψ = χ is proportional to the Ricci scalar curvature R for small

values. Furthermore, the massless spin two field h′µν is identified with the graviton. This suggests that

it may be advantageous to find a system of equations of lower order, completely equivalent to (2.3), in

which the unknowns are constituted by the curvature fµν , the scalar curvature R and the metric gµν .

This may reduce the order of the system, thus making it more tractable. It will be more practical

however, to take the traceless part

R̃µν = Rµν −
1

4
gµνR,

of the Ricci curvature Rµν , the metric gµν and the scalar curvature R as the independent unknowns

[3].

A system with these properties is derived below, and differs slightly with the one found in [3].

However, our conclusions agree with that reference. The advantage of the present procedure is to

make explicit some terms the author [3] does not specify. This explicit form is of importance for

applying modern theorems, and for making statements about the regularity of the solutions of the

model. In addition, these terms may be relevant for studying stability problems.

Before obtaining the desired system, it is convenient to express the equations of motion (2.7) in

the following form

1

16πGN
(Rµν −

1

2
Rgµν)− 2βR(Rµν −

1

4
Rgµν) + (2β − α)(gµν�−∇µ∇ν)R

+ α�(Rµν −
1

2
Rgµν) + 2α(Rµρνσ − 1

4
gµν Rρσ)R

ρσ = 0. (5.43)
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The trace of (2.3) contains some terms proportional to R2 and to RµνR
µν , but these terms cancel each

other out. The resulting equation for R is simply

2(3β − 2α)�R − 1

16πGN
R = 0. (5.44)

The equation for the traceless component R̃µν can be found by multiplying the equation (5.44) by

gµν/4 and subtracting it from (5.43), yielding the result

1

16πGN
(Rµν −

1

4
Rgµν)− 2βR(Rµν −

1

4
Rgµν) + (2β − α)(

1

4
gµν�−∇µ∇ν)R

+ α�(Rµν −
1

4
Rgµν) + 2α(Rµρνσ − 1

4
gµν Rρσ)R

ρσ = 0. (5.45)

Alternatively, the last system can be written as follows

(2β − α)(
1

4
gµν�−∇µ∇ν)R+ α�R̃µν +

1

16πGN
R̃µν + (α− 2β)RR̃µν

+ 2α(Rµρνσ − 1

4
gµν R̃ρσ)R̃

ρσ = 0. (5.46)

By taking (5.44) into account, the last expression becomes

(
α� +

1

16πGN

)
R̃µν + (2β − α)

[
1

128πGN (3β − 2α)
gµν −∇µ∇ν

]
R+ (α− 2β)RR̃µν

+ 2α(Rµρνσ − 1

4
gµν R̃ρσ)R̃

ρσ = 0. (5.47)

Note that the trace of (5.47) is zero, as it should be.

In equations (5.44)-(5.47) the quantities gµν , R̃µν and R are not independent unknowns, which is

the desired feature. Thus, further work has to be done. Some remarks are in order. The system to be

constructed below is equivalent to (5.44)-(5.47) when harmonic coordinates are employed. However,

the use of the harmonic is legitimate when dealing with equations (2.7) or equivalently (5.44)-(5.47),

this was justified in the Propositions 1 and 2 of the previous sections. The point of using this gauge

is that it simplifies considerably the resulting equations.

The first equation to be introduced is simply

− 1

2
gηδgµν,ηδ +Qµν(g, ∂g) = R̃Fµν +

1

4
gµνR

F , (5.48)

which is valid for harmonic coordinates. The meaning of this identity is transparent. The left hand

side is the expression of the Ricci tensor RFµν in terms of the metric gµν in harmonic coordinates

(3.18)-(3.20), and the right hand is the same quantity expressed in terms of R̃Fµν and RF . This is a

second order equation for gµν , in which the quantities RF and R̃Fµν in the right hand side are acting

as sources.

The remaining equations are obtained as follows. Replace in (5.43) the quantities 2βR and

4Rµναβ − gµνRρσ in terms of the metric gµν , by assuming harmonic coordinates. Replace the other

curvature expressions by its RF or RFµν counterparts. Then consider the traceless part and the trace
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part of the resulting equation by taking into account that RF = gµνRFµν . The result are the two

following equations

2(3β − 2α)�RF − 1

16πGN
RF − α(gµρ∂σF

µ + gµσ∂ρF
µ)(R̃Fρσ +

1

4
gρσRF ) = 0, (5.49)

α�R̃Fµν − (2β − α)∇µ∇νR
F +

1

16πGN
R̃Fµν +

(2β − α)

128πGN (3β − 2α)
gµνR

F

+(α− 2β)

[
− gαβgσρgσρ,αβ + 2Q(g, ∂g)

]
R̃Fµν +

α

4
gµν

[
− gαβgρσ,αβ + 2Qρσ(g, ∂g)

]
gηρgδσR̃Fηδ

+ α

[
gρσ,µν + gµν,ρσ − gρν,µσ − gµσ,ρν + 2gαβ(Γ

α
ρνΓ

β
µσ − ΓαρσΓ

β
µν)

]
gησgδρR̃Fηδ = 0. (5.50)

The terms proportional to the derivatives ∂αF
β in (5.49) arise due to the fact that 4Rµσνρ− gµνRρσ is

traceless with respect to the indices µ and ν for any coordinate system but instead, 4Rµρνσ − gµνR
F
ρσ

is not. The expression for the trace follows from (3.16) and is the one inducing the last term in (5.49).

However, these terms may be neglected if the harmonic condition Fα = 0 is employed.

The unknowns for the system (5.48)-(5.50) are gµν , R̃
F
µν and R

F , and these equations are equivalent

to (5.44)-(5.47). These facts are collected in the following proposition.

Proposition 3. Consider a triple composed by a C4 metric gµν , a C
2 tensor R̃Fµν and a C2 scalar

RF , all these quantities defined in a 4-dimensional domain Ω of a given space-time M4. The metric

gµν is such that the harmonic condition Fα = 0 is satisfied and furthermore |gµν | 6= 0 in Ω. If this

triple is a local solution of the system (5.48)-(5.50) then the metric gµν is also a solution of the system

(5.44)-(5.47), when the curvatures R̃µν and R are expressed in terms of gµν by the standard formulas

of differential geometry. Conversely, given a C4 metric gµν which satisfies the harmonic condition

Fα = 0 and (5.44)-(5.47) in the domain Ω, consider the quantities R̃Fµν and RF constructed in terms

of the standard formulas of differential geometry. These tensors are C2 and the triple gµν , R̃
F
µν and

RF solve the system (5.48)-(5.50) in Ω. The metric gµν is also a solution of the Stelle’s classical

equations of motion (2.7) in Ω.

Proof: In order to prove this statement, find the trace and the traceless part of (5.48). This

procedure gives the expressions of R̃Fµν and RF in terms of the metric gµν . Replace the result in

(5.49)-(5.50), then the resulting equations are of fourth order in gµν . On the other hand, replace

all the curvatures in (5.44)-(5.47) in terms of gµν by use of the standard expressions of differential

geometry, by assuming the harmonic gauge. The resulting system is also of fourth order for gµν and,

furthermore, it coincides with the previous one. In fact, the system (5.48)-(5.50) was constructed

intentionally for this to happen. As the system (5.44)-(5.47) is the trace and the traceless part the

Stelle’s equation of motions (2.7) in harmonic coordinates it follows, by taking into account the regu-

larity of the metric and curvatures specified above, that the solutions of any of these systems will be

solutions of the Stelle’s gravity equations. �

18



At this point, it is perhaps worthy to discuss the subtle differences between the present approach

and the one employed in [3]. In [3] the author presents a system corresponding to the three unknowns

gµν , R̃µν and R. But it is just after this system is presented that the use of the harmonic coordinates

is justified. For this reason, this author is forced to introduce calligraphic curvatures variables R̃µν

and R, and to prove after some work they are equal to the standard ones. In addition, it is not clear

that the zero trace condition gµνR̃µν = 0 is satisfied for the calligraphic curvatures, until they are

shown to be equal to the standard ones. This complicates the analysis considerably. In the present

approach instead, the use of harmonic coordinates is justified from the results of the previous sections

and furthermore, the zero trace condition is ensured from the very beginning in (5.48). This is at the

cost of the appearance of a term proportional to the derivatives ∂αF
β in (5.49), which is absent in the

system derived in the reference [3], even before justifying the use of harmonic coordinates. However,

our conclusions about the Cauchy problem agree with that reference.

Having agreed upon the conclusions of [3], our purpose is to give an alternative point of view and

to enlarge the results given in this reference. In the present approach, all the resulting terms in the

second order formulation are given explicitly. This permits the application of certain mathematical

statements about the regularity of the solutions. In particular, this leads to the conclusion that, given

C∞ initial conditions, there exists two time values T1 < 0 and T2 > 0 for which the universe evolution

is C∞ in (T1, T2). Another consequence is the existence of a maximally hyperbolic development.

The obtained system may be useful, in addition, for proving the stability of the solution under small

perturbations of the initial conditions, although we have not a concrete proof of this fact.

5.2 The hyperbolic second order quasi-linear form of the Stelle’s system

The system of equations (5.48)-(5.50) obtained above is equivalent to the following one

− 1

2
gηδgµν,ηδ +Qµν(g, ∂g) = R̃µν +

1

4
gµνR, (5.51)

�R− 1

32πGN (3β − 2α)
R = 0, (5.52)

α�R̃µν − (2β − α)∇µ∇νR+
1

16πGN
R̃µν +

(2β − α)

128πGN (3β − 2α)
gµνR

+(α− 2β)

[
− gαβgσρgσρ,αβ + 2Q(g, ∂g)

]
R̃µν +

α

4
gµν

[
− gαβgρσ,αβ + 2Qρσ(g, ∂g)

]
R̃ρσ

+ α

[
gρσ,µν + gµν,ρσ − gρν,µσ − gµσ,ρν + 2gαβ(Γ

α
ρνΓ

β
µσ − ΓαρσΓ

β
µν)

]
R̃ρσ = 0, (5.53)

after imposing term by term the harmonic condition Fα = 0. In order to study formal properties of

the system (5.51)-(5.52) it is convenient to convert it into a hyperbolic quasi-linear system of the form

(1.1). The advantage is that these systems are well studied in the literature. However, the presence

of terms such as ∇µ∇νR or gαβgρσ,αβ in (5.53) imply that the system is not quasi-linear. In other

words, it is not of the form specified in (1.1). But this problem can be sorted out by introducing new
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variables rµ = ∂µR and cµνα = gµν,α, and by taking derivatives of the equations (5.51)-(5.52) and

adding them to the system. The resulting equations are

− 1

2
gηδgµν,ηδ = −Qµν(g, ∂g) + R̃µν +

1

4
gµνR, (5.54)

gαβ∂α∂βR =
1

32πGN (3β − 2α)
R, (5.55)

− 1

2
gηδcµνγ,ηδ =

1

2
gηδ,γ cµνη,δ −Qµν,γ(g, ∂g, c) + R̃µν,γ +

1

4
gµν,γR+

1

4
gµνrγ , (5.56)

gαβ∂α∂βrγ =
1

32πGN (3β − 2α)
rγ , (5.57)

α�R̃µν = (2β − α)∇µrν −
1

16πGN
R̃µν −

(2β − α)

128πGN (3β − 2α)
gµνR

−(α− 2β)

[
− gαβgσρcσρα,β + 2Q(g, ∂g)

]
R̃µν −

α

8
gµν

[
− gαβcρσα,β + 2Qρσ(g, ∂g)

]
R̃ρσ

− α

[
cρσµ,ν + cµνρ,σ − cρνµ,σ − cµσρ,ν + 2gαβ(Γ

α
ρνΓ

β
µσ − ΓαρσΓ

β
µν)

]
R̃ρσ. (5.58)

The fact that Fα = 0 was taken into account when writing these equations.

Lemma 1: The Stelle’s system (5.54)-(5.58) is of quasi-linear hyperbolic type, that is, it can be

expressed as

gµν(x, t, u)∂µ∂νuq(x, t) = fq(x, t, ui, ∂µuj), (5.59)

where uq with q = 1, .., n is a vector constituted by the n-unknowns and the matrix gpq is the same for

all the equations q = 1, ..n and it is of normal hyperbolic type, that is g44 ≤ 0 and gijxixj is a positive

definite form for every point x and t, with the latin indices indicating spatial directions.

Proof of Lemma 1: In order to understand this statement, consider the vector uα constituted by

all the unknowns

uα = (gµν , R, rγ , cµνα, R̃µν). (5.60)

The laplacian �R̃µν can be expressed as

�R̃µν = gαβ∂α∂βR̃µν +Hµν(R̃µν , ∂αR̃µν ,Γ
α
βγ),

where the termHµν(R̃µν , ∂αR̃µν ,Γ
α
βγ) is a linear combination of its arguments. The Christofell symbols

Γαβγ depend on the inverse metric gµν(gαβ) and its first derivatives ∂αgβγ . By moving the term Hµν to

the right hand side in (5.58), it follows that the left hand side of the system (5.54)-(5.58) is of the form

gαβ∂α∂βuq, which g
µν the same everywhere, and equal to the inverse space-time metric. Thus g44 ≤ 0

and gijxixj ≥ 0 with the latin indices denoting spatial directions. Therefore the system (5.54)-(5.58)

can be written in the form

gµν(x, t, u)∂µ∂νuq(x, t) = fq(x, t, ui, ∂µuj).
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This is of the form anticipated in the introduction (1.1). The non linearity fq(x, t, ui, ∂µuj) is a generic

notation for the terms (5.54)-(5.58) that do not contain second order derivatives. �

In the next subsection, some general theorems about systems of the form (5.59) will be discussed.

These results will be applied to the Stelle gravity model, which is the main purpose of the present

work.

5.3 General results about second order hyperbolic quasi-linear systems

In order to formulate some statements related to quasi-linear hyperbolic systems, the following relevant

definitions are needed.

Consider the map gµν ∈ C∞(RnN+2N+n+1, Ln), where Ln denotes the space of canonical (n+1)×
(n+ 1) Lorentz matrices. Assume that these quantities satisfy

|∂αgµν(x, t, ξ)| ≤ hI,α(|ξ|), (5.61)

where (x ,t) are local coordinates on R
n+1 and ξ parametrize the coordinates of R

nN+2N . Here

I = [T1, T2] is any compact time interval and hI,α : R → R are continuous increasing functions

for every multi index α =(α1,..,αnN+2N+n+1). Suppose that, for any compact interval I, there are

constants ai ≥ 0 with i = 1, 2, 3 such that

g00 ≤ −a1, det gij ≥ a2,

n∑

(µ,ν)=0

|gµν | ≤ a3. (5.62)

Definition: The quantities gµν satisfying the last condition are known as Cn,a metrics, and the ones

satisfying all of the aforementioned assumptions are known as C∞ N , n admissible metrics.

The second definition applies for the non linearity fq(x, t, ui, ∂µuj). Assume that there exist some

functions h̄I,α(|ξ|) such that the derivatives of the non linearity satisfy inequalities of the form

|∂αf(x, t, ξ)| ≤ h̄I,α(|ξ|), (5.63)

with h̄I,α(|ξ|) functions of the same type as the hI,α(|ξ|) above. The time interval I is supposed to

be compact. In addition f(x, t, ξ) is such that for each compact interval I, there exist a compact set

K ⊂ R
3 such that f(x, t, 0) = 0 for any x outside K and t ∈ I.

Definition: Non linearities f(x, t, ξ) which fulfil the conditions described above are known of locally

of x-compact support.

The following proposition is of importance for studying the space of solutions of the Stelle’s gravity

model [4, Ch. 9].
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Proposition 4. Consider the hyperbolic quasi-linear second order system

gµν(x, t, u)∂µ∂νuq(x, t) = fq(x, t, ui, ∂µuj),

with the initial conditions

u(x, T0) = U0, ∂tu(x, T0) = U1. (5.64)

Let U0, U1 ∈ C∞(Rn,RN ) and T0 ∈ R. Suppose that the quantity gµν(x, t, u) is a C∞ N , n admissible

metric, a concept that has been described in (5.61)-(5.62) and below. Furthermore, suppose that the

quantity fq(x, t, ui, ∂µuj) is locally of x-compact support, as described in (5.63). Then there exist two

times T1 and T2 such that T1 < T0 < T2 for which there exists a unique C∞ solution u of the system

(5.59) and (5.64). This solution is of x-compact support.

It should be emphasized that the x-compact support is a rather technical one. Its importance

resides in that a smooth function u : Rn+1 → Rm with such property can be viewed as an element in

C l[R,Hk(n,m)] for every value of l and k. This plays an important role in the proof of the proposition,

as shown in chapters 8 and 9 of [4].

5.4 The role of x-compactness in the Stelle’s system

The Proposition 4 given above ensures the existence of C∞ solutions for the equations (1.1) when the

non-linearity is of x-compact support, if suitable initial conditions are imposed. This is an important

result, and it is worthy to investigate whether the non linearity fq(x, t, ui, ∂µuj) defined by the equa-

tions (5.54)-(5.58) is of x-compact support. This non linearity corresponds to all the terms in these

equations which are not of second order. To give an example, from (5.54) it follows that

f1(uµ, ∂νuµ) = Qµν(g, ∂g) − R̃µν −
1

4
gµνR.

The other components fq(uµ, ∂νuµ) are similarly found from (5.55)-(5.58).

Proposition 5. By a metric redefinition gµν → gµν = |gµν |ngµν in (5.54)-(5.58), with n an appro-

priate integer, the system (5.55)-(5.58) is converted into one for which the resulting non linearity

f̃q(uµ, ∂νuµ) is locally of x-compact support.

The following elementary property about polynomials in several variables is needed in order to

prove this result.

Lemma 2: For any polynomial P (ξa) in several variables ξa with a = 1, ...,m, there exists a single

variable polynomial Q(x) with positive coefficients such that |P (ξa)| ≤ Q(|ξ|), with |ξ| the usual Eu-

clidean norm of the vector ξ = (ξ1, .., ξm).

Proof of the Lemma 2: Any polynomial in several variables ξa with a = 1, ...,m can be written in

generic form as

P (ξa) =

N1,..,Nm∑

q1,..,qm=0

aq1..qm(ξ
1)q1(ξ2)q2 ...(ξm)qm ,
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with aq1...qn constant coefficients. For such polynomials the following inequality takes place

|P (ξa)| ≤
N1,..,Nm∑

q1,..,qm=0

|aq1..qm ||ξ1|q1 |ξ2|q2 ...|ξm|qm.

On the other hand, as |ξa| ≤ |ξ| =
√

(ξ1)2 + ...+ (ξm)2, it follows that

|P (ξa)| ≤ Q(|ξ|) =
N1,..,Nm∑

q1,..,qm=0

|aq1..qm||ξ|q1+q2+..+qm.

The right hand is a polynomial in the variable |ξ| and it has positive coefficients. It is concluded that,

for a given polynomial P (ξa), there exists a polynomial Q(ξ) in one variable such that

|P (ξa)| ≤ Q(|ξ|). (5.65)

In addition, the coefficients of Q(ξ) are all positive, thus Q(|ξ|) ≥ 0 for all values of ξa. The last

property follows since the roots of Q(ξ) are all negative, thus Q(|ξ|) is positive and increasing. �

Proof of Proposition 5: The non linearity (5.54)-(5.58) is not a polynomial expression in terms

of the unknowns uα = (gµν , R, rγ , cµνα, R̃µν), therefore the previous lemma does not apply directly.

The problem resides in the factors in fq(uµ, ∂νuµ) which contain the inverse metric gαβ and some of

its derivatives. These expressions involve the inverse of the determinant of the metric |gµν |. This

determinant is a polynomial |gµν | = P (gαβ) in the metric components gαβ . In fact, it is not difficult

to check that the inverse metric gαβ can be expressed in terms of gµν in the form

gαβ =
Pαβ(gµν)

|gµν |
,

with Pαβ a polynomial expression in its argument. This is a quotient of two polynomials which,

in general, is not a polynomial. There are also Christoffel symbols Γαβγ in the non linearities. The

definition of the Christoffel symbol is

Γαβγ =
1

2
gαǫ(∂βgγǫ + ∂γgβǫ − ∂ǫgβγ).

This expression also involves the inverse metric and is of the form

Γαβγ =
Pαβγ(gµν , ∂µgνα)

|gµν |
,

with Pαβγ(gµν , ∂µgνα) also a polynomial in its arguments. In addition, there are also derivatives of the

inverse metric ∂γg
αβ in the non linearities in (5.54)-(5.58), which are of the form

∂γg
αβ =

Pαβγ(gµν)

|gµν |2
.

These are essentially all the factors that contain the determinant |gµν | in the denominators. It is

obvious that |gµν | → 0 when gµν → 0. This implies that fq(x, t, 0, 0) 6= 0 and in fact, this quantity
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may be divergent. However, there are finite negative powers |gµν |−m in fq(x, t, ui, ∂µuj). Denote the

maximal value of m as n. Then, by multiplying the system (5.54)-(5.58) by |gµν |n and by making a

field redefinition gµν → gµν = gµν |gµν |n in the left hand side of (5.59), the resulting system takes the

form

gµν∂µ∂νuq = f q(uµ, ∂νuµ). (5.66)

The resulting non linearity f q(x, t, ui, ∂µuj) = |gµν |nfq(x, t, ui, ∂µuj) is a polynomial in the variables

(ui, ∂µuj), since the multiplication by |gµν |n cancels out the negative powers |gµν |−m that were present

in fq(x, t, ui, ∂µuj). Furthermore, the resulting polynomial is such that f q(0, 0, x, t) = 0, since the non

linearities do not depend explicitly on (x, t) and do not contain a constant term. All the derivatives

of a polynomials are itself polynomials, and satisfy the inequalities (5.65) with Qk(|u|) continuous

and increasing, with k the order of the derivative. Thus, the non linearity f q(uµ, ∂νuµ) of the system

(5.66) is of x-compact support. �

The proposition given about is encouraging. However, despite the fact that there is a transfor-

mation of the system (5.54)-(5.58) which converts it into (5.66) with a non linearity f q(uµ, ∂νuµ)

of x-compact support, there is no warrant that, once a solution is obtained, the global restrictions

(5.61)-(5.62) for the modified inverse metric gµν will be fulfilled. Thus, proposition 4 may not apply

due to this inconsistency. Nevertheless, as shown below, this problem can be addressed by finding

local solutions, valid in patches of the space-time manifold, and gluing them to a global one.

6. Conclusions

The fact that the non linearity of the system (5.54)-(5.58) is of x-compact support allows to make

several conclusions about its solutions. The techniques to be employed below were applied in the

book [4] for the case of GR coupled to a real scalar field ϕ. This is not the same situation as in the

Stelle’s gravity model. However, the system describing GR coupled to a scalar field and the system

(5.54)-(5.58) are both of the form (5.59). For this reason, the results presented below are obtained

partially by analogy with the approach of that book. Since there are several very technical details in

[4], the following proofs will be just outlined, but the steps which are analogous and the ones which

need to be modified will be indicated separately.

A first conclusion is that, given suitable initial conditions, there exists a C∞ solution for the Stelle’s

gravity model.

Proposition 6. Consider Stelle equations (2.7) in harmonic coordinates. There exists a global hyper-

bolic development for the quantities g(0)µν = h(0)µν + n(0)µ ⊗ n(0)ν , k(0)µν , G(0)µν and K(0)µν defined

in (2.15) if they are C∞ and satisfy the initial constraints (2.9) and (2.14). The resulting solution is

also C∞.

Comment about the proof: The proof of Proposition 6 is not a direct consequence of Proposition

4. The problem is that Proposition 4 ensures the existence of solutions gµν of of x-compact support.
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However, an space-time metric can not be of x-compact support. The source of this conflict are the

global restrictions for the metric in (5.61)-(5.62), which may not be satisfied for a given solution

gµν . The only possibility is to apply this proposition in local patches Wα of the space-time manifold

M . These patches are selected such that the restrictions (5.61)-(5.62) are satisfied in Wα. After

obtaining these local solutions, an appropriate gluing procedure has to be implemented. This method

is explained in detail in [4, Ch. 14] and is applied for GR coupled to a scalar field. It can be generalized

to the present situation, since the equations of motion of GR coupled to a scalar field are also of the

form (5.59). The strategy is replace the quantity gµν in (5.66) by some quantities Aµν with some

suitable properties. The system them becomes

Aµν(x, t, u)∂µ∂νuq(x, t) = fq(x, t, ui, ∂µuj),

For instance, the quantities Aµν can be selected to be A00 = g00 in patches where gµν takes values

in the interval [−3/2,−1/2], and have the property that the range of A00 is contained in [−2,−1/4].

Analogous properties may be declared for A0i and Aij . There is nothing special about this choice of

intervals, and a continuum of other choices are possible. The important point is however that the

interval on which A0i = g0i should contain 0. Moreover, the range of A0i should contain the interval

on which A0i = g0i, with a margin. A similar procedure is done with the other fields of the model, in

this case R, R̃µν , cµνα, rα, together with a suitable modification of the initial and the harmonic coor-

dinate conditions. After making these replacements, a solution is obtained. Given a point p, there is a

neighbourhood Wp of p in which the solution obtained gµν coincides with the real space-time metric.

One then consider the union of all these neighbourhoods ∪pWp =M . There are further properties for

the solution to be globally defined, which should be satisfied in the intersections Wi ∩Wj. Following

[4, Ch. 14] the following properties may be proved.

- Given two solutions u1 and u2 of the system (5.66) corresponding to the neighbourhoodsW1 and

W2, then these are solutions of the Stelle’s equations (2.7) in the intersection W1 ∩W2.

- The initial data induced by both solutions on Σ ∩ (W1 ∩W2) coincide.

- The solutions coincide in the intersection W1 ∩W2.

We have checked that the gluing procedure described in [4, Ch. 14] can be applied to Stelle’s

quadratic gravity, when the equations of the model are formulated as a second order system of the

form (5.66). This is valid when harmonic coordinates are chosen. The detailed form of the arguments

we employed are illustrated in the appendix of our reference [46]. These properties imply that the

local solutions defined in Wp may be glued to a global solution, which furthermore is smooth. The

Proposition 6 then follows. �
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The following assertion states that two different developments inducing the same initial data on Σ

arise as an extension of a common global hyperbolic development.

Proposition 7. Consider a given C∞ data g(0)µν = h(0)µν + n(0)µ ⊗ n(0)ν , k(0)µν , G(0)µν and K(0)µν

for Stelle’s gravity in an initial hypersurface Σ. Assume that there exists two hyperbolic developments

(Ma, ga) and (Mb, gb) inducing this data with corresponding embeddings ia : Σ →Ma and ib : Σ →Mb.

Then there exists a global hyperbolic development (M , g) with a corresponding embedding i : Σ → M

and smooth orientation preserving maps ψa :M →Ma and ψb :M →Mb, which are diffeomorphisms

onto their images, such that ψ∗
aga = g and ψ∗

bgb = g. In addition ψa ◦ i = ia and ψb ◦ i = ib.

Comments about the proof: This proposition is similar to the one in [4, Ch. 14]. But, at first

sight, its proof does not follows completely by analogy with the notions of that book. The first

apparent problem is the use of harmonic coordinates, which is a major technique employed in [4]. In

the Stelle’s gravity models, the harmonic conditions are more restrictive that in standard GR coupled

to a scalar field ϕ, due to the higher derivative nature of the former, as discussed in the section 3

given above. Furthermore, the description of harmonic coordinates the book [4] employs is given in

terms of a reference metric hµν , which is also employed in the classic reference [42]. For this reason,

in the appendix A given below, the formulation of the Stelle’s gravity model in harmonic coordinates,

described in terms of a reference metric hµν , is worked out explicitly. The resulting initial conditions

are composed by the GR ones, together with new ones (1.78) and (1.81)-(1.82). These last conditions

are not required in the GR context, they are specific for the Stelle’s quadratic gravity. The presence

of the new constraints is an apparent complication for finding a proof of Proposition 7 by use of the

procedures implemented in [4].

Nevertheless, these problems can be sorted out. In order to see how, suppose that a solution (M ,

g) of the Stelle’s equations of motion has been found. Assume furthermore that this solution fulfils

the harmonic condition in terms of a reference metric h, described in the appendix A. On the other

hand, it is not assumed that the harmonic condition holds for (Ma, ga) or (Mb, gb). At the moment,

the only hyphotesis about (Ma, ga) or (Mb, gb) is that they are solutions of the Stelle’s equations

inducing the same initial data on the achronal hypersurface Σ as (M , g). Thus, it is not assumed that

these metrics are necessarily solutions of (5.54)-(5.58). Still, they are solutions of (2.7). The idea of

the proof is then to construct a local diffeomorphism between g and ga or gb and then to glue it to a

global one.

Suppose now that a solution (M , g) has been constructed on an open set D ⊆ R × Σ. Assume

furthermore that this solution satisfies the harmonic condition in terms of a reference metric hµν

described in the appendix. Then, as shown in the formula (1.74) of the appendix below, the relation

Γµ = gµνg
αβΣναβ holds, Σµαβ being the Christoffel symbols of the reference metric h in a region V ⊆ D.

This equality holds in any local coordinate system. This follows from the fact that the difference

Dµ = Γµ − gµνg
αβΣναβ,
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is a 1-form and, if it is vanish in one coordinate system, it is identically zero. Thus, the first task is

to make a local choice of coordinates for (M , g).

A convenient choice follows from the affirmation 12.5 of the book [4]. Consider a point p in the

embedding ia(Σ). As ia(Σ) is a spatial surface in Ma, there exists coordinates xµ in a region U

such that xµ(p) = 0 and such that q ∈ U ∩ Σ if and only if x0(q) = 0. Furthermore ∂x0 |q is a unit

future director vector normal to Σ for q ∈ U ∩ Σ. This is a local result and, more importantly, it

is independent on the gravity model employed. Define x̂i = xi|U∩ia(Σ), then x̂i are coordinates on

U ∩ ia(Σ). Consider ŷi = x̂i ◦ ia(Σ), then these are coordinates in UΣ = i−1
a (U). Define y0 = t

and yi = ŷi, then these are coordinates in R × UΣ. In these terms, one can make the replacement

Γµ = gµνg
αβΣναβ in the equations of motion, when they are restricted to V = R× UΣ ∩D. Note that

g00 = −1 and g0i = 0 for this choice of coordinates.

The next task is to construct a local coordinate system for ga. Following the equations 14.20 to

14.22 of the book [4] it follows that there exists a local coordinate system x̃µ such that

Γ(a)µ = g̃αβa Θν
αβ , (6.67)

where Γ
(a)µ
αβ are the Christoffel symbols with respect to the metric ga, and g̃

αβ
a are the inverse com-

ponents metrics of gaµν , both referred to these x̃µ coordinates. In addition Θν
αβ are the Christoffel

symbols of h with respect to the x coordinates. These coordinates are valid in a region W specified in

that reference. The deduction of this result does not include the new features (1.78) and (1.81)-(1.82)

outlined in the appendix and, therefore, is valid in the present context.

The discussion made so far is completely analogous to the one in [4, Ch. 14]. However, care should

be taken with the initial conditions, as the Stelle’s equations are of fourth order while the Einstein

equations are of second order. In order to clarify the differences that arise consider GR first. When

dealing with the Einstein model, it is useful to define the patches WΣ = i−1
a (W ∩ Σ). The formulas

of GR that are valid in these region are the following. For any point q in this region one has that

y(q) = ia ◦ x(q) = ia ◦ x̃(q). This formula leads to the following identity for the inclusions

ia∗∂yi |q = ∂x̃i |ia(q).

From this, it follows that

gij(q) = g̃aij(ia(q)), gµν ◦ y−1 = g̃aµν ◦ x−1.

In addition, for these coordinates

Γ̃aµ ◦ x−1 = Γµ ◦ y−1, (6.68)

and the second fundamental form satisfies the relation

kij(q) = k̃aij(ia(q)). (6.69)

This implies that ∂tgij(q) = ∂x̃0 g̃aij(ia(q)). As a conclusion it follows that

gµν ◦ y−1 = g̃aµν ◦ x−1, kµν ◦ y−1 = k̃aµν ◦ x−1. (6.70)

27



In addition (∂ykgµν) ◦ y−1 = (∂x̃k g̃aµν) ◦ x−1, from where it obtained that

(∂tgµν) ◦ y−1 = (∂x̃0 g̃aµν) ◦ x−1. (6.71)

The relations described above were employed in the GR relativity context. They show that both

metrics g and ga satisfy the same equations computed with their respective coordinates, and by use

of uniqueness results for second order systems, it follows that the metric ga considered as a function

of x has to coincide with g considered as a function of y, in the region W .

For the Stelle model instead, the use of harmonic coordinates requires the implementation of the

new conditions (1.78) and (1.81)-(1.82). These conditions involve the time derivatives k̇ij and k̈ij of

the second fundamental form kij . Thus, one is forced to derive identities such as (6.69)-(6.71) for k̇ij

or k̈ij . After these identities are obtained, one may conclude that with respect to the coordinates x̃ the

metric ga will satisfy the same equations that g with respect to the yµ coordinates. In addition, it may

be argued that the initial data coincide when computed with their respective coordinates. However

the Stelle’s equations (2.7) are of fourth order, while the arguments the book [4] employs are related

to second order quasi-linear hyperbolic systems. This implies that this line of reasoning do not apply

directly to the present case.

The previous obstacle is of course discouraging. However, an approach to sort it out comes from

(6.68). This formula relates the quantity Γµ constructed in terms of g with the quantity Γ̃aµ con-

structed in terms of g̃a. This fact, together with the independence of the harmonic description in

terms of the reference metric h with respect of the coordinates ( cf. formula (6.67)), imply that both g

and g̃a satisfy the harmonic condition in the neighbourhood W . Therefore both metrics g and g̃a are

described by the second order quasi-linear system (5.54)-(5.58) in W with the remaining quantities

uα in (5.60) computed with respect to their respective coordinates. The uniqueness arguments given

in [4] then apply for this system, since it is of second order. From this reasoning, it can be deduced

after some work that, given a point p in W , there exists an isometry ψa in an open neighbourhood of

i−1
a (p) with the property that ψ∗

aga = g. After further lengthy work following the steps of that book it

can be shown that these local isometry can be glued to a global one, and the proposition will follow. �

The global hyperbolic development of the previous proposition may not be unique. Thus, it is of

fundamental importance the notion of a maximal hyperbolic development. A hyperbolic development

(M , g, ϕ) is called maximal if, for any other global hyperbolic development (M ′, g′, ϕ′), there is an

embedding i′ : Σ →M ′ and an smooth orientation preserving maps ψ :M ′ →M such that ψ∗g = g′,

ψ∗ϕ = ϕ′ and ψ o i′ = i.

Proposition 8. Given a valid initial data g(0)µν = h(0)µν + n(0)µ ⊗ n(0)ν , k(0)µν , G(0)µν and K(0)µν

for the Stelle’s equation, there exist a maximal global hyperbolic development, which is unique up to

an isometry.
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Comment about the proposition: The proof of this result is absolutely non trivial, but the tech-

niques implemented in [4, Ch. 16] are valid in the present situation, since they involve abstract

mathematical notions such as partially ordered sets, Zorn lemma or topology arguments. These argu-

ments are not very sensitive to the details of the proof of the previous propositions, except for their

statements. Based on this, the proposition then follows. �

Finally, by analogy with [4, Ch. 15] the following conjecture may be formulated.

Proposition 9. (Conjecture) Let (M = Σ× I, g) a background solution of the vacuum Stelle gravity

model. By denoting by (g(0)µν , k(0)µν , G(0)µν , K(0)µν) the data induced on {0}×Σ by the full solution,

consider a sequence (g(0)jµν , k(0)jµν , G(0)jµν , K(0)jµν) of initial conditions converging to (g(0)µν , k(0)µν ,

G(0)µν , K(0)µν) for a suitable Sobolev norm, and satisfying the corresponding constraint equations.

Then there exist t1j and t2j such that on Mj = Σ× (t1j , t2j) there exists a Lorentzian metric gj which

satisfy the Stelle’s equation (2.7), and such that the initial data is (g(0)jµν , k(0)jµν , G(0)jµν , K(0)jµν).

The surface τ × Σ is a Cauchy one when τ ∈ (t1j , t2j). Furthermore, when τ ∈ I, the data on such

Cauchy hyper surface induced by hj converges to the one induced by g for large j.

The conjecture stated above is plausible sounding, but it may be not easy to prove it, since it

appears that its proof is sensitive to the details of the theory. In GR coupled to a real scalar field ϕ,

the suitable Sobolev space is H l+1, with 2l > n+ 2 being n+ 1 the space-time dimension. But in the

present context, a suitable norm has to be found independently. Hopefully, the system (5.54)-(5.58)

obtained here may be helpful for these purposes. It would be a relevant task to come out with a

proof (or a counterexample) of this assertion. In addition, it may be relevant to study the Cauchy

problem when the hypothesis of global hyperbolicity is relaxed [47]-[48]. We leave this for a future

investigation.
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A The description of harmonic coordinates in terms of a reference

metric

The use of a reference metric hµν in order to characterize harmonic coordinates, which was men-

tioned throughout the text, can be described as follows [42], [4]. The expression for the Ricci tensor
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corresponding to a generic metric gµν in an arbitrary coordinate system is given by

Rµν = −1

2
gαβ∂α∂βgµν + Pµν(g, ∂g) +∇(µΓν). (1.72)

The quantity Pµν(g, ∂g) in (1.72) is not exactly equal to Qµν(g, ∂g) in (3.16). However both expressions

for the Ricci curvature are equivalent. Define the modified Ricci tensor

R̂µν = −1

2
gαβ∂α∂βgµν + Pµν(g, ∂g) +∇(µLν). (1.73)

The quantities Lµ at the moment are not specified. But from the last two formulas it follows that

R̂µν = Rµν +∇(µDν),

where Dµ = Lµ − Γµ. If the quantities Lµ are defined as

Lµ = gµνg
αβΣναβ,

with Σναβ the Christoffel symbols of a reference metric hµν
3, then the difference Dµ = Lµ − Γµ is a

1-form. This property is of fundamental importance, since once Dµ = 0 in one coordinate system,

then it will hold in any coordinates. In other words, the equality

Γµ = gµνg
αβΣναβ, (1.74)

will be valid in any local coordinate system. Thus, given the initial surface Σ, if there is a domain

Ω(Σ) in which Dµ, ∇µDν , ∇µ∇νDα vanish, then they will vanish in the development D(Ω) described

by the Stelle’s equations (2.7). This fact will be independent on the choice of coordinates.

The advantage of using a reference metric hµν is that the quantity Γµ is replaced by Lµ, and the last

expression involves second derivatives of the reference metric hµν , and not the physical one gµν . Thus,

these terms do not spoil the quasi-linearity of the modified Ricci tensor R̂µν and, as a consequence,

R̂µν becomes a quasi-linear second order expression for the metric gµν . This is an important property

employed during the text.

The reference metric hµν has not yet specified, and one has the freedom to make any choice.

Usually, it is assumed that it has the Gaussian (synchronous) form

h = −dt2 + hijdx
idxj . (1.75)

In what concerns the physical metric gµν , one may fix the following initial conditions

gij|t=0 = hij |t=0, g0i|t=0 = 0, g00|t=0 = 1. (1.76)

∂0gij |t=0 = kij |t=0. (1.77)

In these terms, it follows that

D0 = L0 − Γ0 = L0 +
1

2
∂0g00 +TrK.

3The reference metric hµν is not necessarily equal to the physical metric gµν .
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where Kij = ∂0gij and, from the definitions above

Kij|t=0 = kij|t=0,

Di = Li − Γi = Li +
1

2
∂0g0i +

1

2
gkl(∂igkl − 2∂kgil).

The initial conditions are then Dα|t=0 = 0, ∂0Dα|t=0 = 0 and ∂20Dα|t=0 = 0, as the spatial derivatives

are clearly zero initially. From (1.77) it appears natural to impose the new constraints

∂20gij|t=0 = ∂0kij |t=0, ∂30gij |t=0 = ∂20kij |t=0. (1.78)

The last conditions are not employed in GR [4] but they are natural identifications and may be required

in the Stelle’s model due to the higher order nature of the equations of motion (2.7). Now, with all

these assumptions at hand, the constraints Dα = 0 at the initial surface Σ imply that

1

2
∂0g00|t=0 = −L0|t=0 − Tr k|t=0, (1.79)

1

2
∂0g0i|t=0− = −Li|t=0 −

1

2
gkl(2∂kgil − ∂igkl)|t=0. (1.80)

These equations are standard in GR. Note that (1.76)-(1.77) and (1.79)-(1.80) specify the initial metric

gµν values and their first time derivatives ∂tgµν . For a second order theory such as GR, these are

enough. But for the Stelle model, the new constraints described below are required. The constraints

related to the first time derivatives of Dα are

1

2
∂20g00|t=0 = −∂0L0|t=0 − ∂0Tr k|t=0.

1

2
∂20g0i|t=0− = −∂0Li|t=0 −

1

2
gkl(2∂kkil − ∂ikkl)|t=0 −

1

2
kkl(2∂kgil − ∂igkl)||t=0 (1.81)

This fixes the second time derivatives of the metric. The conditions related to the second derivatives

of Dα are instead
1

2
∂30g00|t=0 = −∂20L0|t=0 − ∂20Tr k|t=0,

1

2
∂30g0i|t=0− = −∂20Li|t=0 −

1

2
gkl(2∂k∂0kil − ∂i∂0kkl)|t=0 −

1

2
kkl(2∂kkil − ∂ikkl)||t=0 (1.82)

−1

2
kkl(2∂kkil − ∂ikkl)|t=0 −

1

2
∂0k

kl(2∂kgil − ∂igkl)||t=0.

The conditions (1.78) and (1.81)-(1.82) are new features arising in the Stelle’s gravity model, and fix

the initial values of the metric up to third time derivatives. These are the conditions employed in the

conclusions in section 6. Note that the description given here do not affect the validity of the harmonic

coordinates as described in section 3, since the resulting equations are similar to (3.26)-(3.30) with

Dµ playing a role analogous to Fµ.
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