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Volterra Models for Digital PWM and Their Inverses
Fernando Chierchie and Sven Ole Aase

Abstract—In an all-digital class-D audio amplifier each signal
sample is mapped into a pulse using digital pulse-width-modula-
tion (PWM), and this intrinsically generates nonlinear distortion.
This article develops discrete-time Volterra models for digital
PWM. The analysis considers two types of demodulation filter, an
ideal filter which provides insight into the behavior of the PWM it-
self, and an analog low-order demodulator filter which models the
interaction of the PWM mapping with a real demodulator filter.
Symmetric, trailing edge, and leading edge PWM are considered.
Using the Volterra models, formulae for the inverse systems are
developed. This facilitates digital precompensation of the above
mentioned distortion by digitally pre-filtering the modulating
signal prior to the PWM mapping. This method is first simulated
and compared to pseudo-natural PWM, a well-known method
for PWM distortion reduction. Moreover, the method is verified
by real measurements from a physical realization of the prefilter
setup using real-time digital signal processing.
Index Terms—Nonlinear distortion, power amplifiers, pulse-

width modulation.

I. INTRODUCTION

P ULSE-WIDTH-MODULATION (PWM) is an old modu-
lation technique where the signal strength (or amplitude)

is converted into pulse width. One of the obvious purposes for
this conversion is in power heating, where the power of an elec-
tric oven is turned on and off in a controlled manner to obtain
the desired temperature. Another application where PWM was
introduced was in switched power converters and power sup-
plies. In 1975 the first commercial integrated circuit for PWM
control of power supplies started the development of a new in-
dustry [1].
The idea of using PWM for signal amplification, in a so-called

“class-D amplifier.” is also old [2], [3]. The main advantage of
class-D amplifiers compared to other types of amplifiers is their
high efficiency which can be above 90% in practical applica-
tions (theoretically 100% efficient), this compared to standard
class-A and class-B amplifiers with 50% and 78.5% theoret-
ical maximum efficiency, respectively, or class-AB which is a
trade-off between the linearity of class-A amplifiers and the ef-
ficiency of class-B, and has a theoretical maximum efficiency
below 78.5% [4].
More recent works are focused on the development of fully

digital, low-distortion class-D amplifiers [5]. The modulation
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Fig. 1. Analysis of digital PWM in the discrete-time domain.

for class-D amplifiers can be implemented in two ways: analog
or digital. In analog modulation, the (analog) modulating signal
is compared to a periodic saw-tooth or triangular signal, and the
output of the comparator is the PWM signal. In digital PWM,
the modulating signal is a discrete-time signal, and each signal
sample is mapped into the corresponding PWM pulse. The ad-
vantage of digital PWM is that the signal chain is kept digital all
the way to the output stage, the disadvantage is that the direct
mapping of sample height to pulse width introduces nonlinear
distortion in the audio frequency band [6].
A great research effort has been centered on analyzing PWM

nonlinearity in the frequency domain [6]–[8]. Also, many com-
pensation methods, mostly based on imitating the behavior of
analog PWM have been presented in recent decades, such as
the pioneer work of Goldberg and Sandler [9] and also in recent
works [10]. All these methods require without exception a high
PWM frequency which increases power losses.
New approaches [11]–[15] have been based on the analysis of

the distortion generated by digital PWM in the discrete-time do-
main, as shown in Fig. 1: Themodulating signal used to generate
the PWM signal is a discrete-time signal with
sampling frequency . Each sample is mapped
into a PWMpulse, and the resulting pulse train is passed through
an ideal (brick-wall) analog filter, with cut-off frequency ,
for reconstruction of the analog waveform . Since is
bandlimited to , this signal can be represented by its sam-
ples taken at frequency . Note that the sampling box in
Fig. 1 is printed in dotted line, thus implying that it is not re-
alized physically, but merely serves as a mathematical tool to
obtain a discrete-time representation of the reconstructed wave-
form . The whole idea is that with the setup presented, we
can evaluate the distortion generated by digital PWM by di-
rect comparison between the modulating signal and the
output . This was exploited in [12], [14] by modeling the
relation between and as a Volterra filter [16]. This
opened up the possibility to precompensate the nonlinear dis-
tortion induced by digital PWM by prefiltering the modulating
signal with a Volterra filter having the inverse characteris-
tics of the model filter, thus eliminating the nonlinear distortion
from the reconstructed waveform .

A. Contributions of This Work
The present work is both a unification of the PWM models

and inverses presented in [12], [14], as well as considerable ex-
tensions: a) Whereas [12], [14] only treats symmetric PWM,
both leading-, trailing-, and symmetric PWM are covered, as-
suming either ideal-, or low-order reconstruction filter. b) Gen-
eral model inverses are derived in Section III: Both leading-,
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trailing-, and symmetric PWM are covered, assuming either
ideal-, or low-order reconstruction filter. c) For the ideal re-
construction filter, the work in [12] is extended by deriving
explicit, closed-form expressions for the Volterra kernels. d)
In [12], [14], the performance of the prefilter was simulated
using MATLAB, assuming symmetric PWM. The present work
demonstrates the utility of the Volterra prefilter method using
two different experimental setups:

i) A comparison with an established method under tough
working conditions: Simulink is used to test the prefilter's
ability to remove strong nonlinearities due to very low
sampling (and PWM) frequency (88.2 kHz and 176.4
kHz). The performance is favorably compared to a well-
known algorithm for pseudo-natural PWM (PNPWM)
[5], [6], [17].

ii) Real measurements from a physical realization of the
prefilter using real-time DSP: Here we demonstrate the
success of the prefilter in a setup handling practical
issues such as finite pulse width precision, which is dealt
with using noise feedback coding (NFC). Here a higher
switching frequency (176 kHz) is used (still very low
compared to standard class-D applications), allowing
lower prefilter order and better working conditions for
the NFC module.

The article is organized as follows: In Section II we derive
the Volterra models for different types of PWM symmetries
and using different types of demodulator low-pass filters. In
Section III inverse models that facilitate precompensation for
the nonlinear distortion induced by digital PWM are presented.
Simulations, comparisons and experiments are presented in
Section IV and conclusions are elaborated in Section V.

II. VOLTERRA MODELS FOR DIGITAL PWM
The three most common types of PWM are: 1) Symmetric

PWM, where the pulse is centered on a fixed point and both
edges of the pulses are modulated; 2) Trailing edge PWM,
where the raising edge is fixed and the falling edge is modu-
lated; 3) Leading edge PWMwhere the falling edge is fixed and
the raising edge is modulated. In this section we analyze each
type of PWM, first assuming an ideal, analog demodulation
filter as shown in Fig. 1, then assuming a physically imple-
mentable low-order analog filter and a more elaborate setup to
be introduced later. It will be shown that for all cases, the model
describing the input-output relation is a diagonal Volterra filter.
We therefore start with a short introduction to Volterra filters.

A. Definition of the General and Diagonal Volterra Filter
If is the input to a Volterra filter then the output

can be written as

where

(1)

where can be considered as a th order impulse
response (kernel) characterizing the nonlinear behavior of the
system [18].
A simpler system is obtained if only the kernel values

for identical indexes are non-zero:

. In this case, the general equation (1)
for the nonlinear Volterra system can be simplified to

where “ ” denotes discrete-time convolution. This gives as
output

(2)

which is a diagonal Volterra model, or sometimes denoted a
parallel Hammerstein structure [16].

B. General Setup and Assumptions
The modulating analog signal , where has

a maximum frequency component , where . This
signal is sampled at frequency to obtain the discrete-time
representation . Each sample is used to construct a
pulse of width and height 1. Full-range modulation is
considered in the sense that if , adjacent pulses
touch since the pulse width is . In this case, using a passive,
analog low-pass filter with unity passband gain, will result in
the reconstruction of a time-continuous signal . Also
note that this system is equivalent to a zero-centered systemwith

and pulse amplitudes 1/2.
The general procedure to compute the Volterra kernels for

the different types of PWM symmetry and different types of
output filter, is based on computing the convolution integral be-
tween a single pulse and the impulse response of the
output demodulator filer. Since is a linear time-invariant
system, the complete output due to a PWM signal, composed of
shifted pulses of different widths, can be computed by shifting
and adding the output due to each pulse. After some consider-
ations, sampling of the finite bandwidth output signal results in
nonlinear, discrete-time models for the different types of PWM.
To demodulate the PWM signal an analog low-pass filter is

typically used. In this work, two kinds of low-pass filters are
considered, first an ideal , or so-called brick-wall filter is
used and then, a low-order filter is studied. Each filter leads to
a specific Volterra model of PWM.

C. Volterra Kernels Using an Ideal Analog Low-Pass Filter
In this subsection we consider an ideal analog low-pass filter

for the demodulation of the PWM signal. The impulse response
of this filter with cutoff frequency and unity passband gain
is [19]

(3)

with .
The scheme used to find the Volterra model for PWMwith an

ideal low-pass demodulator filter is shown in the block diagram
of Fig. 1. The modulating signal samples are individually
mapped into PWM pulses in the PCM to PWMblock, the output
is low-pass filtered using the filter in (3) to obtain the signal
and finally sampling at gives .
First the output in Fig. 1 due to a single pulse is computed

for all the three types of symmetry. Then, the complete output
due to a PWM signal is calculated.
Symmetric PWM and Ideal Filter: In digital PWM each

signal sample is mapped into a pulse. Fig. 2(a) shows how a
single input sample is mapped into a single pulse
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Fig. 2. Single pulse used to compute the convolution integral for the ideal low-pass filter. (a) Symmetric PWM. (b) Trailing edge PWM. (c) Leading edge
PWM. The up-arrows indicate the sampling instants used to compute .

centered at , of height one and width . This pulse
produces a response at the output of the ideal filter
that is calculated using the convolution integral

where .
The signal can be sampled at without aliasing

problems because the filter removes all frequency com-
ponents above . The sampling instants are indicated in
Fig. 2 using arrows. Writing , the sampled output is

(4)
For each , is a nonlinear function of which can be
expanded as a power series around zero. It is seen from (4) that

is an odd function of : , and this
results in an odd power series expansion for each :

...

...

(5)

Equation (5) also indicates how to construct the impulse re-
sponses for symmetric PWM (superscript )
using the power series expansion. As will be shown at the end
of this section, these impulse responses are the kernels of a diag-
onal Volterra system as described in Section II-A. To find closed
form expressions for the kernels , , , in
(5), the expressions for in both (5) and (4) can be dif-
ferentiated -times with respect to . Then setting we
obtain

from (5), and

from (4), and equating the results we finally obtain

(6)

where is the -times derivative of the impulse response
of the demodulation filter given in (3).
Trailing Edge PWM and Ideal Filter: The kernels are com-

puted following the same procedure that was used for symmetric
PWM but taking into account the non-symmetric characteristics
of the trailing edge pulses, as shown in Fig. 2(b). Due to this
property of the pulse, the odd symmetry of (4) is lost and as a
result the power series expansion of for trailing edge also
includes even powers of . The Volterra kernels for trailing edge
PWM are found as

(7)

In addition to the inclusion of the even powered kernels, (7)
shows that compared to the symmetric PWM kernels in (6) the

attenuation factor is not present for trailing edge. This
means that the amplitude of the kernels for are higher
and it follows that trailing edge exhibits more nonlinearities than
symmetric PWM. This is in agreement with previous knowledge
of PWM which states that symmetric PWM has reduced dis-
tortion compared to trailing edge PWM; this has been demon-
strated using frequency domain methods [6], [7].
Leading Edge PWM and Ideal Filter: For leading edge PWM

the pulse in Fig. 2(c) is used to compute the convolution. Again,
the even ordered Volterra kernels are present, and following the
same procedure as before we get:

(8)

As for the case of trailing edge modulation the factor
is not present. The difference between and is in
the sign of the even kernels due to the component.
For the three types of PWM the kernels in (6), (7), and (8)

involve the computation of the derivative of the impulse re-
sponse of the ideal low-pass filter. The derivative of

can be easily computed using the quotient rule
for derivatives. Table I summarizes all the Volterra kernels of
order 1 to 5 when an ideal low-pass filer is used for PWM de-
modulation.
It is worth noting that for the kernel of order all three

types of symmetry present the same result:
, a discrete-time impulse which is an identity

operator. This implies that digital PWM in the forms discussed
here do not induce linear distortion.
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TABLE I
KERNELS OF VOLTERRA MODELS FOR DIGITAL PWM USING IDEAL LOW-PASS FILTER

Fig. 3. Block diagram to find the PWM model when using a low order analog low-pass filter .

It should also be pointed out that for the case of trailing and
leading edge modulation, the even-numbered kernels falls off
as , whereas the odd numbered kernels falls off as ,
as in the case of symmetric modulation. This reflects the fact
that trailing and leading edge modulation induce much more
nonlinear distortion than the symmetric modulation.
A Complete Diagonal Volterra Model Using an Ideal Analog

Filter: Since the low-pass filter is a linear time-invariant
system, the complete output of the filter due to a PWM signal
can be computed, using superposition, as the sum of the
shifted-outputs produced by each pulse of width

constituting the PWM signal. For symmetric PWM the
complete output is

(9)

which is the sum of the outputs of the discrete-time convolution
(indicated with ) of the kernel and the odd powers

of the modulating signal . For trailing and leading
edge PWM the even kernels and even powers of the modulating
signal are also present:

(10)

where the kernel can be either for trailing edge
or for leading edge. For the three types of symmetry, (9)
and (10) represent a diagonal Volterra model as in (2).

D. Volterra Kernels Using a Low-Order Analog Low-Pass
Filer

In this section a low-order, analog, causal low-pass filter with
impulse response is considered for the demodulation of

the PWM signal. Compared to the ideal filter , the filter
has a finite attenuation of the higher frequency compo-

nents (above ) of the PWM signal, because of this, some
extra considerations must be made before the sampling takes
place.
The block diagram considered for the development of this

model, first introduced in [14], is shown in Fig. 3. The input
signal sampled at is mapped into a PWM signal in the
pulse code modulation (PCM) to PWM block. After that, the
low order analog low-pass filter with impulse response
is used to filter the PWM signal. In an actual amplifier imple-
mentation the output signal is the voltage feeding the loud-
speaker. The objective is to find a discrete-time representation

of in the frequency range 0 to . Direct sampling
of would lead to aliasing, instead of this, the dashed boxes
in Fig. 3 are used to find the model. Again, we emphasize that
the dashed boxes are not part of a real implementation, they are
only used for modeling purposes.
A low order analog filter with impulse response is used

to reduce, to a negligible level, the frequency components of
above . After that, the signal is sampled at and

finally a digital equalization filter with unit pulse response
is used to compensate the pass-band effects of the filter .
In this way the signal is a discrete-time representation of
the actual analog signal in the 0 to frequency range.
First the output in Fig. 3 due to a single pulse is com-

puted for all the three types of symmetry. Then, the complete
output due to a PWM signal is calculated, and the equalization
filer is included to find .
Symmetric PWM and Low-Order Analog Filter: In this case

the location of the pulse due to the sample is defined in
Fig. 4(a). The convolution is computed between a single pulse
of width and the impulse response that results from the
serial connection of the two filters: . Since
both filters are causal, the total filter is also causal, so

for . This situation is different from that of the
ideal filter and leads to three possible regions for the convolution
integral: non-overlap, partial overlap, and complete overlap. For
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Fig. 4. Single pulse used to compute the convolution integral for the causal, low-order low-pass filter. (a) Symmetric PWM. (b) Trailing edge PWM.
(c) Leading edge PWM. The up-arrows indicate the sampling instants used to compute .

these three regions the output of the total filter can
be computed as

if
if
if .

if
if
if .

(11)

where , and
.

The signal in (11) is sampled at at the sampling
instants indicated by the arrows in Fig. 4, and writing
we have

(12)

and when . It worth noting that when sampling
the signal, the partial overlap region in (11) is never sampled.
This is because and
and hence the output in the partial overlap region:

, is always between two samples. The advantage of this
carefully chosen sampling strategy is that (12) exhibit the same
odd symmetry as (4), and the resulting Volterra kernels will be
zero for even order.
As for the case of the ideal filter, is a nonlinear function

of which can be expanded as a power series around :

...

(13)

where . The difference between (13) and the ex-
pansion for the ideal filter in (5) is that due to the causality of
the analog filters, all kernels are also causal.
To find a closed form expressions for the kernels in

(13), the same procedure as for the ideal filter is used. Equations

(12) and (13) for are differentiated -times with respect
to , then setting and equating results, we obtain

(14)
where is the -times derivative of the total impulse re-
sponse. Compared to the ideal filter in (6), the low-order analog
filter kernels in (14) include half a sample shift in the
sampling instant and they are causal, while in (6) is not.
Trailing Edge PWMand Low-Order Analog Filter: Using the

pulse in Fig. 4(b), the kernels are computed following the same
procedure as above to obtain

(15)
As for the case of the ideal filer, when compared to the sym-
metric case, the factor is missing showing the larger
distortion of trailing edge PWM. Comparing the results in (15)
with the results for trailing edge modulation and the ideal filter
in (7) it can be observed that the sampling instant is shifted by
one sample. This is just a consequence of the sampling scheme
shown in Fig. 4(b) and results in kernels that start taking non-
zero values at .
Leading Edge PWM and Low-Order Analog Filter: Fol-

lowing the same procedure as before but with the pulse in
Fig. 4(c), we obtain

(16)

As for the case of trailing edge modulation the factor is
not present. Apart from the one-sample time shift, the difference
between and is in the sign of the even kernels
due to the component. For leading edge and low-order
analog filter the sampling instants of are the same as
for the ideal filter kernel, in (8).
A Complete Diagonal Volterra Model Using a Low-Order

Analog Filter: Since the filter is a linear time-invariant
system, the complete output of the analog filters due to a
PWM signal can be computed as the sum of the shifted-outputs

produced by each pulse of width consti-
tuting the PWM signal. For symmetric PWM the output is

(17)

For trailing and leading edge the even powers are also included

(18)
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Fig. 5. Equalizing PWM using a prefilter: The audio signal is processed
prior to the PWM mapping.

where can be either in (15), or in (16).
Following Fig. 3, the final step to obtain the complete kernels

is to include the equalization filter

where

are the Volterra kernels for symmetric PWM (14). Using (18),
the complete kernels for trailing and leading edge PWM are:

and ,
respectively.

III. THE MODEL INVERSES
Having developed Volterra models for various types of

digital PWM, we now focus on their inverses. Knowledge
of the inverse model enables us to precompensate for the
nonlinear distortion induced by digital PWM. Fig. 5 shows the
procedure: Given a Volterra model characterized by the kernels

, find the inverse Volterra model characterized by
the kernels , so that the serial connection of the
two systems results in the identity operator.
The problem of finding an inverse Volterra filter was ad-

dressed for general Volterra filters by Fang et al. [20]. Using
a multidimensional -transform methodology, they managed
to construct th order linearization operators of a nonlinear
system. Following the results of [20], define the th order
nonlinear transfer function of a Volterra filter by

(19)
In [20] it was found that the general prefilter equalizer, or pre-

inverse, was given by the following nonlinear transfer functions:

(20)

where the second summation is over all possible combinations
of integers so that . For example,
for and only the constellation is
included in the sum.
All Volterra models developed in the previous section have

diagonal kernel functions, and this simplifies the expressions

for the inverse systems. This was shown in [12], [14], where
formulae for the case of symmetric PWM/ideal filter [12] and
symmetric PWM/low-order analog filter [14] were developed.

A. Preliminaries for Construction of Model Inverse
The prefilter in Fig. 5 is a Volterra filter, so the output

can be written as

where the th term in the sum is given as

(21)
where is the th order unit pulse response, or Volterra
kernel function. Its -dimensional -transform is the th order
nonlinear transfer function defined in the same manner
as in (19). In practice the th order approximation

to the true prefilter output will be used to
precompensate the distortion induced by PWM.
Due to the diagonal form of the Volterra filter kernels

found in Section II, the term in (20) can be simplified as

(22)
where denotes the associated diagonal form.
The construction of a model inverse relies on the following 3

theorems. The first theorem only applies when using symmetric
PWM, whereas Theorem 2 and 3 directly result from the diag-
onal property of the kernels.
Theorem 1: In the case of symmetric PWM, the prefilter

transfer functions are zero for even indexes, that is for
.

This theorem implies that, in (20), in the second summation
we only have to include constellations where all the s are odd.
Theorem 2: Given positive integers so that

, denote by the number of different
permutations of this set. Then

(23)

In (20), the second summation is over all possible combina-
tions of integers so that . Theorem
2 states that all combinations give identical terms in this sum.
Theorem 3: Given , and positive integers so

that , the z-domain term

(24)
corresponds to the time domain expression

(25)

The general time-domain input-output relation for the th
order nonlinear transfer function of the prefilter is given in
(21). Even though all the model kernels are diagonal,
the prefilter kernels will not be diagonal. However, Theorem 3
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states an alternative form of implementation of the order pre-
filter component where the input signals

are replaced by the product of previously computed terms
convoluted with the (diagonal) model

kernel . In (20), the th order nonlinear transfer function
of the prefilter is built as a sum of components such as that

given in (24), and then a final linear filter is applied to
the sum.
For proof of Theorems 1–3, see [12].

B. General, Order-Recursive, Discrete-Time Equations for
Model Inverse
With the preliminaries above we are now ready to derive a

general set of formulae for the inverse of all Volterra models
presented in Section II. With the methodology given here, any
prefilter order can be derived, but we limit the derivation to order
5. The kernel functions denoted can be any of the previ-
ously derived , , or either using an ideal-,
or a low-order analog low pass filter. The resulting equations
are order-recursive in the sense that the expression for is
dependent on .
1) First Order: For the first order we have

(26)

where is the unit pulse response of the inverse filter
.

2) Second Order: In (20) only need to be considered,
and here the only constellation is . This gives

and by Theorem 3 we get

(27)

3) Third Order: For the constellations are
and its permutation (21), and for the only constel-

lation is . By Theorem 2 we have

and by Theorem 3 we get

(28)

4) Fourth Order: Using simplified notation, for the
constellations are (13), (31), and (22), for the constella-
tions are (112), (121), and (211), and for the only con-
stellation is (1111). By Theorem 2 we have

and by Theorem 3 we get

(29)

5) Fifth Order: For the constellations are (14), (41),
(23), and (32), for the constellations are (113), (131),
(311), (122), (212), and (221), for the constellations are
(1112), (1121), (1211), and (2111), and finally for the
only constellation is (11111). By Theorem 2 we have

and by Theorem 3 we get

(30)

The expressions in (26), (27), (28), (29), and (30) apply to
all types of PWM symmetry (leading-edge, trailing-edge and
symmetric) and also for both types of demodulator filter (ideal
filter and low-order filter). Two situations where the expressions
are simplified should be noted. If the ideal filter is considered,
then since as shown in Table I for
all type of symmetries. This completely eliminates the filter

from all the equations. The second situation which sim-
plifies the computation of the prefilter is when considering sym-
metric PWM. For this type of modulation, both and
are zero for even values of , which in turn also simplifies the
computation of the odd components .

IV. EXPERIMENTS: SIMULATIONS, COMPARISONS AND
MEASUREMENTS RESULTS

The choice of reconstruction filter will affect the structure of
the prefilter as follows: Assuming an ideal low-pass filter, the
Volterra kernels have doubly infinite support, and the prefilter
must be implemented using (truncated) finite-impulse-response
(FIR) filter structures. If a low-order analog low-pass filter is as-
sumed as reconstruction filter, the prefilter can be implemented
using infinite-impulse-response (IIR) structures, see [14] for a
detailed case study. In the experiments to follow, we choose the
FIR structure for implementing the prefilter, corresponding to
the ideal filter assumption.
Firstly, the proposed prefilter is simulated and compared to

other methods under tough working conditions using very low
PWM frequencies: 88.2 kHz and 176.4 kHz: corresponding to

and up-sampling of the standard 44.1 kHz sampling fre-
quency. For the 88.2 kHz switching frequency the nonlinear
behavior of PWM is greatly accentuated and the compensation
methods are seriously challenged. Secondly, real measurements
from a physical realization of the prefilter using real-time DSP
is presented.

A. Comparisons to Other Methods and Simulations
Several methods have been proposed in the literature to

reduce PWM distortion. Click modulation is a PWM technique
that allows the generation of low switching rate binary signals
with separated baseband originally developed using analog
signal processing techniques [21]. Implementation of click
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Fig. 6. Simulation with 3 kHz sinusoid. . (a) Symmetric PWM.
(b) PNPWM. (c) Symmetric PWM with prefilter.

modulation applied to class-D amplifier are hardware de-
manding requiring more than one DSP and FPGA and/or they
fail to cover the entire audio frequency range [22], [23]. These
implementations suffer from the discrete-time approximations
applied to implement the digital click modulator [24]. Recently
a discrete-time approach of click modulation, which avoids
the aliasing problems of the discretization process has been
presented [25], but a real-time implementation has not yet been
reported.
A widespread method for distortion reduction is pseudo-nat-

ural PWM (PNPWM), which is designed to imitate the behavior
of analog or natural PWM (NPWM) using digital signal pro-
cessing. The algorithm is based on a two step procedure: inter-
polation and crossing-point estimation between the interpolated
signal and the carrier signal. If both steps of the algorithm are
perfect, then PNPWM will behave as NPWM. It is well known
[6], [7] that NPWM avoids harmonics of the modulating signal
but does not avoid carrier side-bands to fall into baseband, for
this reason the PWM frequency must be high to reduce distor-
tion. This reduces power efficiency because the switching losses
of a power stage grows with frequency. Due to its well-known
behavior and extensive use, PNPWM was chosen to compare
against the proposed prefilter through simulations. Although
there are many methods of PNPWM reported in the literature
the algorithm proposed by Sarwate et al. [5], [6], [17] is one of
the better behaved and is chosen for comparisons.
For the simulations Simulink was used. The PWM signal is

generated and low-pass filtered with a high-order filter to avoid
aliasing when it is sampled to compute the FFT. A 9th order
prefilter (for prefilter equations, see [12]) with support

was used. Two low PWM frequencies were simulated:
88.2 kHz and 176.4 kHz to show the potential of the proposed
algorithm under harsh working conditions. Two input signals,
a relatively low-frequency 3 kHz sine and a sum of five high-
frequency sines with frequencies between 15 kHz and 17 kHz
in steps of 500 Hz were used for the test.
The spectra for are depicted in Fig. 6 and

Fig. 7. For the low-frequency sinusoidal the behavior of
PNPWM and the prefilter is almost the same with only some
low distortion components for PNPWM at 9 kHz and 15 kHz.
As expected PNPWM can effectively reduce the distortion
of this low frequency signal. When a high frequency signal
is used, Fig. 7 shows how side-bands of the PWM frequency
fall into the baseband [6]. The prefilter reduces all distortion

Fig. 7. Simulation with sines of: 15, 15.5, 16, 16.5, and 17 kHz.
kHz. (a) Symmetric PWM. (b) PNPWM. (c) Symmetric PWM with prefilter.

Fig. 8. Simulation with sines of: 15, 15.5, 16, 16.5 and 17 kHz.
kHz. (a) Symmetric PWM. (b) PNPWM. (c) Symmetric PWM with prefilter.

below 100 dB (between 0 Hz and 20 kHz) while PNPWM
fails to compensate distortion and is outperformed by standard
digital symmetric PWM. Spurious components are also of re-
duced amplitude between 20 kHz and when the proposed
method is used, and this eases the process of demodulation.
This phenomena is also observed when is
used, Fig. 8 shows that the proposed method gives a clean
spectrum with distortion below 100 dB up to , again
outperforming PNPWM.
Although computationally more demanding, this comparison

shows the potential of the proposed approach. The fact that the
nonlinear behavior of the digital PWM process is modeled and
the prefilter designed to eliminate all distortion (without trying
to imitate analog PWM), makes it a more promising technique
which allows different operating conditions and not necessary a
very high PWM frequency.

B. Measurements Results
A physical implementation of the Volterra prefilter was build

and the results are presented in this section. The PWM fre-
quency (“switching frequency”) is , a relatively
low switching frequency compared to typical class-D ampli-
fier implementations which usually operate at PWM frequen-
cies above 300 kHz, see for example [26, Table I] and citations
therein.
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1) Symmetric PWM: For this configuration a 5th order pre-
filter was found to be sufficient to cope with the PWM non-
linearities. The general equations for the model inverses where
presented in Section III. For the setup just described, the pre-
filter equations are reduced to:

(31)

where the expressions for and are given in the
“Symmetric” column in Table I. The support of the kernels are
truncated to the sample range . This length for
the FIRs of the prefilter was found to be enough to keep dis-
tortion components below 100 dB, for detailed simulations
of the prefilter's performance as a function of the FIR support
please refer to [12]. Finally, the prefilter output is computed as

. The computational complexity
of the prefilter can be addressed using (31). Three convolutions
with symmetric FIR filters with impulse response of length

are computed. This implies multiplications,
additionally 3 multiplications are required to compute
and and 1 additional multiplication to compute

giving a total of 157 multiplications per sample.
The digital input signal is received in S/PDIF format, a stan-

dard digital audio protocol used in consumer electronics [27, p.
77]. It is processed with a Sharc ADSP-21469 (450 MHz core
clock) digital signal processor (DSP). First, the input signal is
up-sampled to the PWM frequency using the sample-rate con-
verter block provided by the DSP and then, the prefiltering takes
place. The DSP also provides a PWM block which operates at
PWM-clock of 225MHz and for symmetric PWM the switching
frequency should be chosen as an integer divisor of half the
PWM-clock. Based on hardware restrictions, a switching fre-
quency of was used for the experiments. Noise
feedback coding (NFC) [14] is included to shape the quantiza-
tion noise out of the audio frequency band (0–20 kHz). All op-
erations are in real-time.
Standard measurements [27] were done to verify the perfor-

mance of the Volterra prefilter. A high precision signal analyzer
(AP-2722 [28]) was used both for generating the input digital
test signals using S/PDIF, and for measuring the results.
Single sinusoid distortion: One of the simplest and most ex-

tensively used methods to determine the nonlinear performance
of audio amplifiers is to excite the device under test with a pure
sinusoidal signal [27]. The input signal used for this test must
have energy only at the desired frequency while the noise
and harmonic components should be negligible. The nonlinear-
ities of digital PWM will produce harmonics of different fre-
quencies: and also side-bands of the switching fre-
quency which may fall into the audio frequency band (0–20
kHz) [6]. Frequency measurements with the signal analyzer al-
lows us to record the energy of the harmonics generated by
PWM relative to the amplitude of the fundamental component.
Measurements for a sinusoid are shown in Fig. 9.

Fig. 9(a) shows the obtained result when not using any prefilter.
The harmonic components at and are clearly present,
and the amplitudes relative to the fundamental frequency am-
plitude are 66 dB for and 77 dB for . These com-
ponents directly result from the nonlinear behavior of digital
PWM.1 Using the prefilter given in (31), the measured spec-
trum is depicted in Fig. 9(b). The second harmonic at and

Fig. 9. Symmetric PWM. Single 3 kHz sinusoidal measurement.
. (a) Symmetric PWM. (b) Symmetric PWM with prefilter.

Fig. 10. Symmetric PWM. IMD using 500 Hz and 8 kHz sinusoid.
. (a) Symmetric PWM. (b) Symmetric PWM with prefilter.

the third harmonic at are indistinguishable from the noise
floor.
Intermodulation distortion (IMD): This test signal is the

sum of two sinusoidal signals [27, p. 35] of frequencies and
. For the experiment the high frequency component

has 1/4 ( 12.04 dB) of the amplitude of the lower fre-
quency sinusoid .
When the system under test is nonlinear, frequency compo-

nents at with and integers appear. The spectra
for the first IMD measurements with and without the prefilter
are shown in Fig. 10. When no prefilter is used, intermodu-
lation components appears as shown in the measurement of
Fig. 10(a). These unwanted components are at ( 98 dB),

( 70 dB), and ( 85 dB). Also at
( 78 dB) and ( 88 dB). Fig. 10(b) clearly
shows how the proposed prefilter eliminates all the intermodu-
lation components.

1Even order harmonics like the component at are generated
due to the fact that the input to the Volterra model is of the form

because and hence the
odd order non-linearities also produce even order harmonics (due to the 1/2
factor).
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Fig. 11. Symmetric PWM. Band-limited noise. . Superimposed
measurements without and with 5th order prefilter.

Fig. 12. Symmetric PWM. THD+N Vs. frequency measurement.
. Without and with 5th order prefilter.

Band-limited random Gaussian noise: Fig. 11 shows the
spectra of the PWM signal for a modulating signal generated by
band-limiting white Gaussian noise. The spectra without pre-
filter and with 5th order prefilter are superimposed to facili-
tate the comparison. To generate the modulating signal white
Gaussian noise is filtered with a band-pass filter with cut-off
frequencies of 1 kHz and 9.5 kHz. Without the prefilter residual
noise due to the PWM nonlinearity is present in the 10 kHz and
19 kHz frequency band. The proposed prefilter clearly reduces
this distortion down to the noise floor. This measurement shows
the good behavior of the prefilter under a non-sinusoidal modu-
lating signal.
Total Harmonic Distortion plus Noise (THD+N): Most

signal analyzers for audio applications provide a tool to measure
the THD+N. This is a quantitative measurement of the com-
plete distortion caused by the device under test and includes not
only the harmonic distortion but also any additional noise. It is
measured by using a sinusoidal signal (fundamental frequency)
as input and then computing the quotient between the energy
of the harmonics plus noise (excluding the fundamental) and
the energy at the fundamental frequency. Fig. 12 shows the
superimposed curves of THD+N versus frequency without the
prefilter and with the 5th order prefilter. Without the prefilter
the THD+N grows rapidly as frequency increases until reaching
its maximum (approximately 0.4%) at around 10 kHz. At this
point THD+N decreases because the harmonic at 20 kHz is
out of the measurement frequency band. When the prefilter is
working the differences are significant, a flat THD+N measure-
ment is obtained in the frequency range of interest.
2) Non-Symmetric PWM: Trailing-Edge: Trailing-edge and

leading-edge nonlinearities are equivalent and therefore only
trailing-edge is chosen to evaluate the performance of non-sym-
metric PWM. Due to the slow time decay of the trailing-edge/
leading-edge kernels, the support of the prefilter kernels must
be much larger than for symmetric PWM. The kernel support is
now increased from 50 to 6000 samples.
Fig. 13 depicts the spectra for the 3 kHz sinusoidal and

Fig. 14 for the IMD test. Both experiments were done using
and 5th order prefilter, which was also used

for the symmetric PWM experiments. The prefilter equations
(26), (27), (28), (29) and (30) without the inverse are

Fig. 13. Trailing-edge PWM. Single 3kHz sinusoidal measurement.
. (a) Trailing-Edge PWM. (b) Trailing-edge PWMwith prefilter.

Fig. 14. Trailing-Edge PWM. IMD using 500 Hz and 8 kHz sinusoid.
. (a) Trailing-edge PWM. (b) Trailing-edge PWM with prefilter.

implemented. Due to limited DSP processing capabilities the
prefiltering for trailing-edge was done offline. This does not
affect the experimental results, but is clearly a challenge for
implementation of a real-time trailing edge prefilter. Future
work should consider IIR solutions as was done in [14].
The spectrum in Fig. 13(a), without prefilter, reveals the ac-

centuated nonlinear behavior of trailing-edge PWM compared
to symmetric PWM in Fig. 9(a). The second harmonic at 6 kHz
is 30 dB higher than for symmetric PWM while the third har-
monic at 9 kHz is 10 dB higher, additionally higher order har-
monics can be observed for trailing-edge. Using the 5th order
prefilter, Fig. 13(b) reveals that the amplitude of the distortion
component at 6 kHz is reduced by more than 65 dB and that all
the residual distortion components are below 100 dB. For the
IMD test the spectrum without prefilter is shown in Fig. 13(a).
Compared with the symmetric case in Fig. 10(a), the ampli-
tude of all distortion components are much higher, this is in
agreement with the theoretical analysis presented. When the 5th
order prefilter is operating all residual distortion components are
below 100 dB as shown in Fig. 13(b).
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V. CONCLUSIONS
This paper presented for the first time, and in a unified

framework, nonlinear Volterra models for three types of
PWM symmetries and considering two types of demodulation
filters. The mathematical models, which are time-discrete,
were expressed using diagonal kernel functions for all cases.
It follows from the analysis that trailing and leading edge
PWM exhibit more nonlinearities than symmetric PWM. This
conclusion is in agreement with previous results which are
based on frequency-domain analysis of PWM but in this work
the result is presented from a time-domain perspective and
verified experimentally. General expressions for the model
inverses that enable precompensation of PWM induced dis-
tortion were also presented. The performance of the prefilter
was evaluated extensively: firstly, simulations and compar-
isons with pseudo-natural PWM showed the superiority of
the proposed approach under tough operating conditions (low
PWM frequency); secondly, the prefilter performance was
demonstrated experimentally using a digital signal processor.
Measurements with a high precision signal analyzer showed
that using a 5th order prefilter the distortion is reduced to the
noise-floor level even when a relatively low PWM frequency
(176 kHz) is used. The prefilter enables a low PWM frequency
operation which reduces the power loss of the amplifier. In
the experiments it was verified that for symmetric PWM the
prefilter can be implemented using short FIR filters, on the
other hand, non-symmetric PWM requires a prefilter with long
FIRs due to the slow time decay of the Volterra kernels.
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