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Abstract: This study proposes the application of a current controller based on the reduced order generalised integrator (ROGI) to
control a three-phase three-wire shunt active power filter (SAPF). The ROGI-based controller has low computational burden and
it is suitable for its implementation in low-cost digital signal processors (DSPs). This controller is also frequency adaptive. This
allows it to maintain its high steady-state performance despite grid frequency variations. Unlike conventional high performance
SAPFs this current controller does not require the computation of high quality current references (with low distortion and total
harmonic distortion below that recommended by the IEEE Std 519-1992). Therefore most of the available computational power
can be used for compensating the harmonics produced by the load.
1 Introduction

Nowadays the usage of non-linear loads is common, in both
domestic and industrial levels. A non-linear load connected
to the grid produces currents with harmonic content, and
this content degrades the quality of the grid voltage at the
point of common coupling (PCC). The IEEE Std 519-1992
[1] describes recommendable practices regarding the
production of harmonic currents by the consumer. The most
restrictive recommendations are given for the large
consumers, whose consumption must have a total harmonic
distortion (THD) of less than 5%.
Complying with this recommendation has been the goal of

many researchers. Among the means developed to do so, the
active filters can be highlighted. In recent years, one of
the main focuses of research of the active filters has been
the shunt active power filter (SAPF) [2–6]. In what follows,
some relevant results obtained to this date on this field are
briefly described. In [2], a discrete time repetitive controller
implemented in a rotating dq frame is designed considering
that the system is feeded by a pure sinusoidal grid voltage.
The proposal is capable of reactive power compensation
and of load unbalance compensation. However, in order to
work properly, the algorithm requires the sampling
frequency to be a multiple of the grid frequency. Therefore
its performance degrades in presence of frequency
variations. In [3], a recursive method to obtain a current
reference with low distortion, synchronised with the grid is
proposed. This method is based on the structure ‘Park
transform-low pass filter-Park antitransform’. The authors
prove that the method is sensitive to frequency variations,
and present a frequency adaptive variant which uses a phase
locked loop (PLL). The proposal is used to generate the
current reference for a current controller based on
second-order generalised integrators (SOGIs), [7]. The
implementation of this controller requires the measurement
of the load and SAPF currents. In [4], the load current is
controlled using a SAPF with a proportional-integral (PI)
controller implemented in the rotating dq frame. The
controller gains are computed through the theory of
the linear quadratic regulator (LQR). In this case, the
synchronisation is also achieved through a PLL, and the
implementation requires the measurement of the load and
SAPF currents. A different approach is proposed in [5], the
plant model parameters are estimated through variable
structure, and these parameters are used to tune the gains of
a controller, online, through pole placement. The scheme is
implemented in the rotating dq frame, synchronised through
a PLL. The controller shows good performance, even in
presence of unbalanced grid voltages. In [6], a current
controller for the SAPF which is based on SOGIs is
proposed. In this paper, the SAPF is implemented using an
LCL coupling filter with active damping. A methodology to
choose the parameters of the coupling filter and the active
damping system is also proposed. The proposed control
scheme is also implemented in the rotating dq frame and
synchronised through a PLL. In [8], an improved predictive
current controller for SAPF is proposed. The proposal is
based on the conventional dead-beat controller, and
improves upon it by compensating the delays of its digital
implementation. This is done by predicting the state of the
system one and two sampling instants ahead. The proposal
is more robust to noise than the conventional dead-beat
controller, and it is also robust to parametric uncertainties,
although its performance is affected by these. Suresh et al.
[9] proposed an adaptive fuzzy hysteresis current controller
for SAPFs. The application of the fuzzy logic control (FLC)
increases the robustness to parameter uncertainties and
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achieves an improved steady state and transient tracking
performance when compared to the traditional PI controller.
In [10], the application of FLC with different member
functions to an instantaneous real active and reactive
component control strategy is studied. The controller is
used to improve the performance of a SAPF under
balanced, unbalanced and distorted grid voltage conditions.
It is concluded that using Gaussian member functions
outperforms other member functions and PI controllers,
complying with the IEEE Std 519-1992 recommendations
on harmonic levels.
Most of the strategies described above are implemented in a

rotating dq frame and assume that the grid voltage is a pure
sinusoid, which allows them to achieve the synchronisation
through simple algorithms [e.g. the synchronous reference
frame PLL (SRF-PLL) [11]]. However, in some cases the
grid voltage at the PCC can be distorted. In these cases, the
synchronisation algorithm must be immune to the highest
harmonic component that the SAPF is expected to reject.
Otherwise, the current references generated by the
synchronisation algorithm will contain these harmonics. The
required immunity can be achieved through a SRF-PLL
with slow transient response. This attained at the expense of
reducing the SAPF convergence speed to frequency or
voltage variations, which may not be acceptable in some
applications. Synchronisation strategies with fast
convergence speed and low distortion are usually more
complex than a SRF-PLL [12–14], and their
implementation increases the required computational power
significantly. This reduces the resources available for the
current controller, which can be critical in a low-cost digital
signal processor (DSP) application.
This paper proposes the use of a ROGI-based current

controller to control a three-phase SAPF. The controller is
implemented in the stationary reference frame and it is
based on ROGIs [15]. The features of this controller are as
follows: it compensates high-order harmonics, reducing the
distortion of the grid-side currents, in compliance with the
IEEE Std 519-1992, even when the grid voltage is highly
distorted; it does not require accurate current references, nor
current references that must be updated quickly in presence
of load transients or grid voltage transients. This saves the
computational load required to generate these.
To maintain its performance in presence of grid frequency

variations, a frequency adaptation algorithm is required [16].
To this end, a new frequency estimation algorithm is proposed
here. This algorithm reduces the estimated frequency ripple, it
is simple, has fast convergence speed and low-computational
burden. The main contribution of this paper is therefore
Fig. 1 System description
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2-fold: it shows that the ROGI-based current controller can
be used in SAPF applications; and it proposes a new
frequency estimation algorithm to use with this current
controller. The low-computational burden of the whole
control and frequency estimation algorithm makes it ideal
for its implementation in low-cost DSPs.
The paper is organised as follows. In Section 2, a

description of the system under study is presented. Section
3 describes the current controller and the proposed
frequency estimator. Also, in this section, an analysis of
coupling inductor uncertainties is performed. In Section 4,
the simulation and experimental results are shown. Finally,
conclusions are drawn in Section 5.
2 System description

Fig. 1 shows the topology of the system under study. It is
composed of a non-linear load and a SAPF, both connected
to a three-phase three-wire grid. The SAPF is composed of
a coupling inductor Lf, a high frequency filtering capacitor
Cf, a voltage source converter (VSC), a dc bus capacitor C
and a controller. The grid impedance, seen from the PCC,
is modelled by the inductor Lg. Also, depending on the
nature of the non-linear load the system might have a
smoothing inductor Ll, connected between the non-linear
load and the PCC. This inductor is used to smooth the
steep flanks of the load current that cannot be compensated
by the SAPF.
For simplicity, in this figure, the three-phase signals are

denoted with the superscriptRST. To perform the control, the
measurement of three-phase voltages at the PCC (VR

g , V
S
g

and VT
g ), two-grid phase currents (IRg and ISg ) and the dc bus

voltage (Vdc) are required.
The measured ac signals are transformed to the stationary

reference frame through Clarke’s transform, and are
expressed throughout this paper using complex notation
[17]. The transformation of the signals VR

g , VS
g and VT

g
results in the complex signal vg = vgα + jvgβ, and the
transformation of the signals IRg and ISg results in the
complex signal ig = igα + jigβ, where j = ����−1

√
. From now

on, all the ac signals will be considered on the stationary
reference frame unless otherwise stated.
3 ROGI-based controller

Fig. 2 shows the plant model and the ROGI-based controller.
The signals ig, if, inl, vg and vf are defined applying Clarke’s
transform to their RST versions defined in Fig. 1.
The block PLANT represents the continuous time model of

the plant, which is the coupling inductance Lf connected
between vg and vf, whose current is added to the load
current inl to obtain the grid current ig. The block
CONTROLLER represents the proposed controller, and it is
subdivided in three additional subblocks: bus controller,
current controller and frequency estimator, which are
described in what follows.
3.1 Bus controller

This controller is responsible for regulating the mean value of
the bus dc voltage Vdc to its reference value V ∗

dc. It consists of
a PI regulator, whose input and output are the error signal
Vdc − V ∗

dc and the signal g, respectively. The output signal g
is used to synthesise the current reference i∗g of the current
IET Power Electron., 2014, Vol. 7, Iss. 5, pp. 1083–1091
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Fig. 2 Plant model and ROGI-based controller
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controller block. This reference is

i∗g = gvg (1)

As will be shown in the following, the signal g defines the
amplitude of the fundamental component of the current
drained from the grid by the SAPF-load set.

3.2 Current controller

3.2.1 General description: This controller must fulfill
three objectives:

(a) It must ensure that in steady state the grid current ig
follows the positive sequence fundamental component of
the grid voltage vg.
(b) It must be immune to the harmonics present at the PCC
voltage. This means that in absence of load, the controller
must be able to regulate its current at the necessary value to
stay operative, without introducing harmonics on its own.
(c) It must ensure that, in steady state, ig does not contain
harmonics of the fundamental frequency.

The objective (a) is achieved through the differential
equation

ḣ0 = K0e+ jv̂h0 (2)

where e is the input, K0 is a design constant and v̂ is the
estimated frequency of the positive sequence fundamental
component of the PCC voltage (whose frequency is ω).
This differential equation can be represented in a compact
form through the input–output relation (IOR) H0 shown in
Fig. 2, that is defined as

H0 =
h0
e
= K0

p− jv̂
(3)

where p is the derivative operator. The IORs HN and HP

shown in Fig. 2, which will be described shortly, will be
ignored for the time being. The IOR (3) implements a
ROGI tuned at frequency v̂ , hence it has infinite gain to an
input signal of positive sequence and frequency v̂ . Also, it
has low gain to all other frequencies, and for negative
sequence signals [15]. This implies that, if the closed loop
system is stable, the error signal e = ig − i∗g defined in
Fig. 2 that enters H0 cannot contain positive sequence
harmonics of frequency v̂ , once the steady state is reached.
Naturally, this implies that ig will follow the positive
sequence component of frequency v̂ present in i∗g. If v̂ is
IET Power Electron., 2014, Vol. 7, Iss. 5, pp. 1083–1091
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equal to the fundamental frequency ω of the grid voltage
and g = const., (which happens in steady state), from (1) it
is concluded that ig will copy the positive sequence
fundamental component of the grid voltage vg and that its
amplitude will be g times that of this component. This
verifies that H0 fulfills objective (a). Also, it is verified that
g in (1) defines the amplitude of ig.
The objectives (b) and (c) are achieved through the IORs

HN and HP of Fig. 2, which are defined as

HN =
∑N
n=1

K−(6n−1)

p+ j(6n− 1)v̂
(4)

HP =
∑P
n=1

K(6n+1)

p− j(6n+ 1)v̂
(5)

where N is the total number of negative sequence harmonics
to compensate, P is the total number of positive sequence
harmonics to compensate and K−(6n−1) and K(6n + 1) are
design constants. Equation (4) is a summation of ROGIs
tuned to the multiples − 5, − 11, − 17, ..., − (6N− 1) of
v̂ and (5) a summation of ROGIs tuned to the multiples 7,
13, 19, ..., (6P + 1) of v̂ . This means that HN has infinite
gain to negative sequence signals of frequencies 5, 11,
17, ..., (6N− 1) times v̂ and HP to positive sequence
signals of frequencies 7, 13, 19, ..., (6P + 1) times v̂ .
Therefore, if the gains are properly chosen so that the
system is closed-loop stable, ig will not contain either
harmonics of those frequencies or sequences once steady
state is reached. Then, if v̂ = v, g = const. and HN and HP

model all the harmonics of inl, the current ig will not
contain them once the steady state is reached. Also, the
harmonic content of inl is that of the grid voltage plus the
harmonics produced by the non-linear load. Therefore,
modelling all the harmonics of inl in HN and HP guarantees
immunity to the harmonics present in the PCC voltage. The
choice of those harmonic successions previously described
is not arbitrary, since these are the dominant harmonic
sequences in three-phase systems with normal imbalances
(<3% unbalance [18]).
3.2.2 Choice of gains: As detailed in [15], the
ROGI-based controller implements a full state feedback. As
the current ig is a system state, the constant K defined in
Fig. 2 is the gain of this state. The value of K and of the
gains of (3) and (4) can be obtained through the LQR
theory [19], which requires to know the system’s open-loop
model described in state variable form. For the system of
Fig. 2, opening the feedback path from ig to the block
1085
& The Institution of Engineering and Technology 2014



Table 1 Parameters

Parameters Five value Five description

vg 110 Vrms grid voltage
ω0 2π50 rad/s nominal freq.
Lg 90 μH grid impedance
Lf 5.5 mH coupling ind.
Cf 1 μF high freq. cap.
C 330 μF dc bus cap.
Ll 0 [unless otherwise stated] smooth ind.
RL 70 Ω load resistor
Controller
Ts 100 μs sample time
V ∗
DC 500 V dc bus ref.

KpPI 0.001 A/V bus PI prop. gain
KiPI 0.01 A/V bus PI inte. gain
N 28 [ROGIs] ROGI quantity
R 10 LQR scalar
Q diag([100 100 1 …1]) LQR matrix
σr 200 rad/s BPF cut-off
σ 100 rad/s LPF cut-off

www.ietdl.org

current controller, the open-loop model results

ẋ = Ax+ Bvf (6)

where

A =

0 0 0 0 . . . 0 0
1 jv̂ 0 0 . . . 0 0
1 0 −5jv̂ 0 . . . 0 0
1 0 0 j7v̂ . . . 0 0

..

. ..
. ..

. ..
. . .

.
0 0

1 0 0 0 . . . −(6N − 1) 0
1 0 0 0 . . . 0 (6P + 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

B = 1/Lf 0 0 0 . . . 0 0
[ ]T

(8)

The state vector is defined as x = if r0
[

r−5 r7 . . . r−(6N−1) r(6P+1)]T where rn is the output
of the nth IOR defined in (4) or in (5), before the
multiplication by its corresponding gain. The choice of the
parameters Q and R of the LQR theory is made as
described in [20].
3.2.3 Steady-state response: To verify that the
ROGI-based controller fulfills the objectives (a)–(c) of
Section 3.2, the effect of the signals i∗g, vg and inl on the
grid current ig will now be analysed. In order to do so, the
closed-loop frequency response of ig to those signals will
be found, assuming that the system has reached steady state
(g = const. and v̂ = v). The state variable description of the
closed-loop system results

ẋ = Aclx+ Bv vg + Bi i
∗
g + Bnl inl (9)
Fig. 3 Bode diagrams with the frequency axis normalised with
respect to v̂

a |(Ig/I∗g )|(jV)
b |Ig/Vg|( jΩ)
c |Ig/Inl|( jΩ)
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where Acl =A−BK

K = K K0 K−5 K7 . . . K−(6N−1) K(6P+1)

[ ]
(10)

Bv = −B (11)

Bi = 0 −1 0 0 . . . 0 0
[ ]T

(12)

Bnl =
K

Lf
−1 −1 −1 . . . −1 −1

[ ]T
(13)

Then, the frequency responses of interest are obtained
through

Ig
I∗g
(jV) = C jVI − Acl

( )−1
Bi (14)

Ig
Vg

(jV) = C jVI − Acl

( )−1
Bv (15)

Ig
Inl

(jV) = Cj VI − Acl

( )−1
Bnl − 1 (16)

where C = 1 0 0 0 . . . 0 0
[ ]

, Ig, I
∗
g , Inl and Vg are

the Laplace transforms of ig, i
∗
g, inl and vg, respectively, and I

is the identity matrix with the dimensions of A. In Fig. 3, the
magnitudes of these frequency responses are shown, with the
frequency axis normalised with respect to the estimated
frequency v̂ . These were plotted for a controller with N = 2
and P = 2 (that is, cancelation of harmonic sequences − 5,
7,− 11 and 13), whose gains are obtained choosing
Q = diag 100 1 1 1 1 1

[ ]( )
and R = 10 and

applying the LQR theory. The remaining system parameters
are shown in Table 1 of Section 4. Fig. 3a shows the
magnitude of (14). This response has zeros to the harmonic
sequences −11, −5, 7 and 13. This implies that ig will not
contain these harmonic components once steady state is
reached, even when they are present in i∗g. Also, since the
frequency response has unitary gain (0 dB) and phase 0°
(not shown) to the positive sequence component of
frequency v̂ present in i∗g, ig will contain an exact copy of
this component once steady state is reached. From (1), it is
once again verified that ig will follow the positive sequence
fundamental component of the grid voltage, and that g
IET Power Electron., 2014, Vol. 7, Iss. 5, pp. 1083–1091
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determines the amplitude of this current. Fig. 3b shows the
magnitude of (15), which describes the effect of vg
harmonics on ig. In this case, the response has zeros to
harmonic sequences −11, −5, 1, 7 and 13. Hence, ig will
not contain these sequences once steady state is reached,
even if vg does. This implies that, if HN and HP model all
the harmonics of vg, the controller will be immune to the
PCC voltage distortion. This result had already been
verified in [15]. However, the computation of the
magnitude of (16), which is shown in Fig. 3c, was not
previously performed. As can be seen in that figure, this
transfer function has the same zeros as (15), plus a dc zero
provided by the proportional feedback. Therefore ig will not
have these sequences either, even if inl does.
The previous analysis guarantees that the harmonics

modelled in (4) and (5) are rejected and do not appear in ig
once steady state is reached. Also, the positive sequence
component of frequency v̂ of i∗g is copied (magnitude and
phase) by ig once steady state is reached. This implies that
the controller is capable of producing grid currents with
low-distortion level if its ROGIs are tuned to the grid
frequency v̂ = v( ) and if HN and HP model all the
harmonics of inl. However, it is clear that if (3)–(5) are not
tuned exactly to this frequency, the harmonic cancellation
will not be accurate and ig will be distorted. For this reason,
in Section 3.3, a frequency estimator is proposed.

3.2.4 Discretisation: The controller discretisation is
performed through pole mapping to the discrete complex
plane. This is done through the transformation e−jnv̂Ts ,
where nv̂ is the pole of the nth IOR in the continuous time
domain, and Ts is the sample time. This discretisation only
adds one additional state to the number of states required
for the discrete time implementation of the controller,
which corresponds to consider the processing delay as a
state of the system. This additional state must be taken into
account to improve the controller’s stability margins. A
detailed analysis of the implementation of this kind of
discretised controllers is carried out in [15].

3.2.5 Coupling inductor and grid uncertainties:
Once the controller feedback gains are chosen, it is possible
to analyse the effect that uncertainties in the value of Lf and
Lg have on the closed-loop stability. This can be done
plotting the maximum real part of the closed-loop poles of
the system as these parameters vary. Fig. 4a shows the
Fig. 4 Effect of uncertainties in the value of Lf and Lg on the
closed-loop stability

a Real part of the closed loop poles as Lf varies
b Real part of the closed loop poles as Lg varies
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maximum real part of the eigenvalues of Acl for 0.5 < Lf/
Lnom < 1.5, where Lnom is the nominal value of Lf defined in
Table 1 (Lnom = 5.5 mH). As can be seen, since the real part
of all the poles is negative, the system remains stable.
Fig. 4a shows the maximum real part of the eigenvalues of
Acl +BiLg/(Lf + Lg)Kg for 0 < Lg/Lnom < 2. These were
plotted for different values of g, however, the effect of g on
the pole location is negligible for its typical values (g ≪ 1).
As can be seen, since the real part of all the poles is
negative, the system also remains stable. Both figures were
plotted for v̂ = v0.

3.3 Frequency estimator

The output of the IOR H0 is the signal h0, as shown in Fig. 2.
Since this IOR regulates the fundamental component of ig,
then h0 will be a sinusoidal signal of angular frequency ω,
whose amplitude and phase will be similar to those of the
positive sequence fundamental component of vg (since the
voltage drop vf− vg on Lf is relatively small). It will also
contain the harmonic components present in i∗g, attenuated
by the IOR H0. To further attenuate these harmonic
components, h0 is filtered through a band pass filter (BPF),
as shown in the block frequency estimator of Fig. 2. This
BPF is implemented with a ROGI tuned at the nominal grid
frequency ωo = const., and has cut-off frequency σr. Its
output r = rα + jrβ has instantaneous frequency ṽ, and in
steady state the mean value of this frequency will be �̃v = v
the value of the fundamental frequency of its input. This
frequency can be estimated by definition using r and its
derivative, as shown in the following equation

ṽ = d

dt
arctan

rb
ra

( )
= ra ṙb − ṙa rb

r2a + r2b
= r ⊗ ṙ

r†r (17)

where⊗ is the cross product between the vectors formed by
the real and imaginary parts of the signals involved and †
is the scalar product of these vectors. Then, ω can be
estimated filtering ṽ with a LPF to obtain its mean value,
which results

˙̂v = s sat
r ⊗ ṙ

r†r
( )

− v̂

[ ]
(18)

where σ is the LPF cut-off frequency and sat() is a function
that saturates ṽ within a set of ωo. The presence of the
saturation is justified, due to the fact that in distribution
systems the frequency ω does not show great deviations
with respect to ω0 (in general smaller than 1%). The
convergence speed of this estimator will be tightly linked
with the non-linear dynamic of the set ‘current
controller-frequency estimator’ plus the BPF dynamic. If
these dynamics are fast compared with that of the LPF used
in (18), then the convergence speed of (18) is determined
by the cut-off frequency of the LPF. According to classic
control theory, for a step input, the convergence time of the
output of a first-order LPF to 2% of its final value is [19]

tset =
4

s
(19)

which allows to choose σ according to the desired response
time.
When compared with the frequency estimator developed in

[14], the proposed estimator is conceptually different. In [14],
1087
& The Institution of Engineering and Technology 2014



Fig. 5 Simulation results: balanced grid and resistive non-linear
load

a Grid voltage
b Grid current
c Load current
d SAPF current

Fig. 6 Current harmonic content

a Simulation results (THDig
= 3.18%)

b Experimental results (THDig
= 2.22%)
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the frequency is computed through the cross-product of the
signals e = ig − i∗g (see Fig. 2) and h0. The sign of the
cross-product indicates whether v̂ should be increased or
decreased, therefore it is integrated to obtain the frequency
estimator. However from (1), e has the harmonic content of
vg, therefore v̂ will have steady-state ripple. In this paper,
h0 is filtered with a BPF and then the instantaneous
frequency of the output of this filter is computed by
definition. Since the calculation of the frequency by
definition has fast transient response, it can lead to
instability, because the resulting frequency adaptive current
controller is non-linear. Therefore it is filtered with a LPF
to decouple the frequency estimator and the current
controller dynamics. The resulting frequency estimator has
smaller steady-state ripple than that of [14]. This is because
of the additional filtering of the BPF.

3.3.1 Discretisation: The discretisation of the BPF is
discussed in detail in [14] so only the discretisation of (17)
and (18) will be shown. If r[k] is the discrete time version
of r at the sampling instant k, it is simple to verify that

r[k − 1]⊗ r[k]

r[k − 1]†r[k] = tan(△u[k]) (20)

where Δθ is the phase difference between r[k] and r[k− 1],
Du = ṽ[k]Ts, where ṽ[k] represents the average value of
the frequency ṽ over time Ts. From this last equation it
results that

ṽ[k] = Du[k]

Ts
= 1

Ts
arctan

r[k − 1]⊗ r[k]

r[k − 1]†r[k]
( )

(21)

The estimation of frequency ω, denoted v̂ , can be computed
obtaining the mean value of ṽ[k] through a discrete LPF

v̂[k] = a sat
1

Ts
arctan

r[k − 1]⊗ r[k]

r[k − 1]†r[k]
( )[ ]

+ bv̂[k − 1]

(22)

where a = 1− e−sTs and b = e−sTs , which are obtained
through zero-order hold discretisation of the LPF used in (18).

4 Simulation and experimental results

In this section, the simulation and experimental results
obtained for the system shown in Fig. 1 are presented. The
experimental results were obtained using a VSC prototype
with a power rating of 5.4 kVA for a 220 Vrms nominal
phase voltage. This VSC was built using discrete
IRG4PH50UD IGBTs. The VSC was connected to a strong
grid through a three-phase variac, which reduced the actual
voltage to 110 Vrms. This variac is modelled in Fig. 1 as
the grid inductance Lg = 90 μH, and was used to avoid
exceeding the maximum voltage of the available non-linear
load. The impedance of this inductance is 0.013 pu (base
impedance 2.24 Ω), therefore the variac also represents a
strong grid. This load was implemented using a three-phase
diode bridge and a Sorensen SLH-500-6-1800 Active load.
The controller and system parameters, both for simulation
and experimental results, are shown in Table 1. The
controller was implemented in a fixed point DSP
TMS320F2812 with a clock frequency of 150 MHz. The
frequency of the pulse-width modulation used in the VSC
was 20 kHz. The sample time was Ts = 100 μs. The
1088
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harmonic compensation was performed with N = 14 and
P = 14, that is, up to the 85th (4250 Hz) harmonic was
compensated. Note that for the chosen value of Ts it is not
possible to compensate harmonic sequences much higher
than this, since it is close to the Nyquist frequency (5 kHz).
Also, the bus PI controller gains were chosen empirically in
order to obtain a 100 ms transient response to step load
changes. For the simulation results the pulse-width
modulator (PWM) was included, and a smoothing inductor
Ll = 1 mH was used (only in simulation). For better
simulation accuracy, the controller was implemented using
fixed point, as it is actually implemented in the DSP. For
the experimental results, all the signals were captured using
the high-resolution acquisition mode of the oscilloscope,
which filters out the switching ripple. Therefore the actual
experimental waveforms have some additional distortion
than that shown.
Fig. 5 shows the controller simulation results once the

steady state is reached. In Fig 5a, a grid phase voltage is
shown; in Fig. 5b, a grid phase current is shown; in Fig. 5c,
a load phase current is shown; and in Fig. 5d, a SAPF
IET Power Electron., 2014, Vol. 7, Iss. 5, pp. 1083–1091
doi: 10.1049/iet-pel.2013.0292
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phase current is shown. The harmonic content of the grid
phase current is shown in Fig. 6a, which results in a
distortion of THDig

= 3.18%. In this simulation the grid
voltage distortion was THDvs

= 3.7% and the load current
distortion was THDinl

= 28.29%. The additional harmonics
that appear in the figure are attributed to the PWM and to
the quantisation error of implementing the controller in
fixed point. As can be seen, proposed controller is capable
of achieving the consumption of a sinusoidal grid current in
phase with the fundamental component of the grid voltage.
The grid current distortion is below that suggested by IEEE
Std 519-1992 [1], which validates the controller’s harmonic
attenuation capability.
Fig. 7 shows the simulation results once the steady state is

reached for a load composed of the previous non-linear load
in parallel with a three-phase inductive load of 50 mH. Also,
to show the performance under normal grid voltage
imbalances, the grid voltage was forced to have a 2%
imbalance. As can be seen, for an inductive load the
controller is still capable of achieving the consumption of a
sinusoidal grid current in phase with the fundamental
component of the grid voltage. The resulting currents are
slightly more distorted than in the previous simulation
because the grid voltage imbalance generates current
harmonics which are not compensated by the controller.
However, the distortion levels are still within the values
suggested by IEEE Std 519-1992 [1]. These are,
THDiRSTg

= 5.66%/4.2%/4.87% for phases R, S and T,
Fig. 7 Simulation results: grid with 2% imbalance, inductive load
in parallel with resistive non-linear load

a Grid voltage
b Grid current
c Load current

Fig. 8 Simulation results: frequency estimator

Instantaneous grid frequency (dashed line), estimated frequency (solid line),
LPF response to a step input (dashed-dot line)
All normalised with respect to ω0
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respectively. In this simulation, the load had an average
power consumption of 672 W and 575 VAR, and a current
distortion of THDiRST

nl
= 9.38%/9.9%/10.03% The grid

voltage distortion was THD THDvRSTg
= 3.63%/

3.69%/3.68%To verify the behaviour of the frequency
estimator, Fig. 8 shows the transient response of (22) when
ω has a step variation of − 1%. This figure also shows the
dynamic response of a LPF with cut-off frequency σ to an
Fig. 9 Experimental results

a Steady-state (timescale: 5 ms/div).
From top to bottom, grid voltage (200 V/div), grid current (5 A/div), load
current (5 A/div) and SAPF current (5 A/div)
b Load change (same signals as in (a), timescale: 10 ms/div)
c Estimated frequency variation (timescale: 10 ms/div)
From top to bottom, grid voltage (200 V/div), grid current (5 A/div) and
estimated frequency [ω0 (2/225 div + 443/450)]

1089
& The Institution of Engineering and Technology 2014



www.ietdl.org

input step of the same magnitude. All the signals shown are
normalised with respect to ω0. These results were obtained
once the simulation of Fig. 5 reached steady state. As can
be seen, the estimator setting time is tset ≃ 40 ms in
concordance with (19) and the value of σ defined in
Table 1. It is therefore verified that (19) is a good
approximation of the setting time of (18).
Fig. 9 shows the experimental results. In Figs. 9a and b, the

signals shown are, from top to bottom, the captures on one
phase of: the grid voltage, the grid current, the load current
and the SAPF current. For Fig. 9c, the signals are, from top
to bottom: the grid voltage, the grid current and the
estimated frequency. For these tests the grid voltage THD
wasTHDvg

= 3.67%, whereas the non-linear load THD was
THDinl

= 29.4%.
In Fig. 9a, the steady-state system response is shown. As

can be seen, the resulting grid current has low distortion,
which results THD THDig

= 2.22%. The harmonic content
of this current is shown in Fig. 6b. In Fig. 9b, the controller
transient response to a sudden non-linear load change (from
200 to 70 Ω) is shown. As this figure shows, the controller
compensates the load change in approximately 60 ms.
Although it might seem like a long transient time, the
controller implementation has 2 (N + P) + 1 = 57 dynamic
states, therefore the dynamic response is fast for this
high-order system. Finally, in Fig. 9c, the frequency
estimator transient response is shown. To do so, at an
arbitrary time instant the estimated frequency is forced to
0.99 ω0. As can be seen, the estimator converges in
approximately tset ≃ 40 ms in concordance with (19) and
the value of σ defined in Table 1. Also, no significant
current perturbations are observed during the frequency
transient.
To verify that the bus controller is working properly,

Fig. 10 shows the effect of sudden load changes on the bus
voltage (from no-load to full-load). As the figure shows, the
bus voltage transients converge in about 100 ms, as expected.
The computational burden of the controller without the

harmonic compensation (N + P = 0) is 5.3 μs, from which
1 μs are required for the frequency estimation, and the
remaining time is required for computing (3) and the bus
controller. Adding ROGIs increases the computational
burden by 1.59 μs/ROGI. Therefore, the implemented
controller, which as N + P = 28, requires approximately 50
Fig. 10 Experimental results (timescale: 50 ms/div)

Bus voltage variation on load turn on and turn off
From top to bottom, Vdc (100 V/div), IRg (5 A/div), ISg (5 A/div) and ITg
(5 A/div)
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μs, half the available computation time for Ts = 100 μs. If
the analogue-to-digital converter capture time is added to
this (∼ 13 μs), the available computation time decreases
even further. In case that the DSP is required to implement
additional computation tasks (such as communications,
protections etc.) the number of ROGIs can be reduced to
N + P = 16 (harmonic 49, 2450 Hz) and still achieve a
THDig

that fulfills the requirements established by the IEEE
Std 519-1992. In this case, the computation time will be
approximately 30 μs], freeing a significant amount of
computation power.

5 Conclusions

An application to SAPF of a ROGI-based controller for a
three-phase system has been presented. This controller does
not require a dedicated synchronisation algorithm, and it is
grid frequency adaptive. The frequency estimation
algorithm is simple, and has a convergence speed
comparable to that of more complex strategies. The
low-computational burden of this algorithm frees resources
for the harmonic compensation task. Since the controller is
frequency adaptive it has very good steady-state harmonic
rejection capabilities, even when the grid frequency deviates
from its nominal value. The application of the ROGI-based
controller has been validated through a steady-state
analysis, which shows the harmonic rejection capabilities
both from the non-linear load and from the grid voltage.
Also, simulation and experimental results have been
presented. These results show that the transient response of
the controller to sudden load changes is satisfactory for the
resulting high dynamic order controller.
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