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Abstract In this paper we develope a Kripke style semantic for the logic of two-valued
states on orthomodular lattices. Kripke models are built from Baer∗ semigroups enriched
with an unary operation. A completeness theorem with respect to this Kripkean semantic is
established.
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1 Introduction

The notion of state is useful to model probabilities in different algebraic structures. In
the last decades, several authors have paid attention to the study of states on algebraic
structures, directly or indirectly related to quantum mechanics, as orthomodular posets
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[3, 17], MV -algebras [4, 18, 20] or effect algebras [21]. In this context, several families of
states are investigated within the quantum logical program because they provide different
representations of the event structure of quantum systems [9, 10, 12, 15, 16, 23, 24].

We focus our attention in the family of two-valued states on orthomodular lattices. Let us
recall that Hilbert lattices based on Hilbert spaces of dimension >2 do not admit any two-
valued state. However, there are algebras in the variety of orthomodular lattices in which
a two-valued state can be defined (see Example 1). Thus, from the algebraic-logic point
of view we can study the subclass of orthomodular lattices admitting two-valued states
[5, 7]. In this work we introduce a Kripke style semantic related to a logical calculus for
orthomodular lattices admiting two-valued states. A completeness theorem for this logic
system is obtained.

The paper is organized as follows. In Section 2 we recall some basic notions of uni-
versal algebra and orthomodular lattices. In Section 3, by adding an unary operation to
the orthomodular structure, an equational class called IE2-lattices capturing the notion
two-valued states, is introduced. In Section 4, a Hilbert-style calculus, algebrizable in
the variety of IE2-lattices, is defined. In Section 5, a Kripke style semantic based on
Baer∗-semigroups is developed. In this framework, a strong completeness theorem for
the mentioned Hilbert-style calculus is obtained. Finally, Section 6 is devoted to the
conclusions.

2 Basic Notions

We first introduce some basic notions about universal algebra and orthomodular lattices that
will play an important role in what follows. A variety is a class of algebras of the same
type defined by a set of equations. Let A be a variety of algebras of type σ . We denote by
T ermA the absolutely free algebra of type σ built from the set of variables V = {x1, x2, ...}.
Each element of T ermA is referred to as a term. We denote by t = s the equations of
T ermA. Let A ∈ A. If t ∈ T ermA and a1, . . . , an ∈ A, by tA(a1, . . . , an) we denote the
result of the application of the term operation tA to the elements a1, . . . , an. A valuation
in A is a map of the form v : V → A. Note that any valuation v in A can be uniquely
extended to an A-homomorphism v : T ermA → A in the usual way, i.e., if t1, . . . , tn ∈
T ermA then v(t (t1, . . . , tn)) = tA(v(t1), . . . , v(tn)). Thus, valuations are identified with
A-homomorphisms from the absolutely free algebra. If t, s ∈ T ermA, |=A t = s means
that for each valuation v in A, v(t) = v(s) and |=A t = s means that for each A ∈ A,
|=A t = s. A is directly indecomposable if A is not isomorphic to a product of two non
trivial algebras.

A lattice with involution is an algebra 〈L, ∨,∧,¬〉 such that 〈L,∨,∧〉 is a lattice and ¬
is a unary operation on L that fulfills the following conditions: ¬¬x = x and ¬(x ∨ y) =
¬x ∧ ¬y.

A bounded lattice is a lattice having a greatest element and a least element. For the sake
of simplicity we use the same symbols either for the numbers 1,0 or for the greatest element
and least element of a lattice.

An orthomodular lattice is an algebra 〈L,∧,∨, ¬, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 that
satisfies the following:

1. 〈L,∧,∨, ¬, 0, 1〉 is a bounded lattice with involution,
2. x ∧ ¬x = 0,
3. x ∨ (¬x ∧ (x ∨ y)) = x ∨ y.
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In the tradition of the quantum logical research, physical properties of the quan-
tum system are organized in the orthomodular lattice of closed subspaces L(H) =<

P(H), ∨,∧,⊥ , 0, 1 > of a Hilbert space H. Such lattices are called Hilbert lattices. This
first event structure was introduced in the thirties by Birkhoff and von Neumann [2].

Boolean algebras are orthomodular lattices satisfying the distributive law x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z). We denote by 2 the Boolean algebra of two elements. Let L be an
orthomodular lattice. Two elements a, b in L are orthogonal (noted a⊥b) iff a ≤ ¬b. An
element c ∈ L is said to be a complement of a iff a ∧ c = 0 and a ∨ c = 1. Given
a, b, c in L, we write: (a, b, c)D iff (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c); (a, b, c)D∗ iff
(a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) and (a, b, c)T iff (a, b, c)D, (a,b,c)D∗ hold for all
permutations of a, b, c. An element z of L is called central iff for all elements a, b ∈ L we
have (a, b, z)T . We denote by Z(L) the set of all central elements of L and it is called the
center of L.

Proposition 1 Let L be an orthomodular lattice. Then we have:

1. Z(L) is a Boolean sublattice of L [13, Theorem 4.15].
2. z ∈ Z(L) iff for each a ∈ L, a = (a ∧ z) ∨ (a ∧ ¬z) [13, Lemma 29.9].

Let A a be variety whose algebras have an orthomodular reduct. Then, an important
characterization of the equations in A is given by:

|=A t = s iff |=A (t ∧ s) ∨ (¬t ∧ ¬s) = 1 (1)

Thus, we can safely assume that all A-equations are of the form t = 1, where t ∈ T ermA.

3 Two-Valued States on Orthomodular Lattices

In general two-valued states represent probability measures s : O → {0, 1} where O is a
set equipped with an orthostructure usually called event structure. From a physical point of
view, two-valued measures are distinguished among the set of all classes of states because of
their relation to the hidden variable approach to quantum mechanics. For a detailed discus-
sion about the notion of two-valued state in orthostructures and hidden variables we remit
to [9].

Definition 1 Let L be an orthomodular lattice. A two-valued state on L is a function σ :
L → {0, 1} such that:

1. σ(1) = 1,
2. if x⊥y then σ(x ∨ y) = σ(x) + σ(y).

This notion of two-valued state is introduced in [22] for orthoposets. In order to develop
notions of hidden variables on orthostructures more general that Hilbert lattices we also
note that a similar definition of two-valued states was introduced in [19]. In the mentioned
work the second condition of Definition 1 is restricted by considering the orthogonal pairs
containing a central element.

It is well known that Hilbert lattices do not admit two-valued states. However there exists
a class of orthomodular lattices in which these states can be defined. The following example
shows this fact.
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Example 1 Let us consider the orthomodular lattice MO2 × 2 whose Hasse diagram has
the following form:

1

0
If we define the function σ : MO2 × 2 → {0, 1} such that:

σ(x) =
{

1, if x ∈ {1, ¬a,¬b, c,¬d,¬e}
0, if x ∈ {0, a, b, ¬c, d, e}

we can see that σ is a two-valued state.

We denote by E2 the class of pairs (L, σ ) such that L is an orthomodular lattice and σ is
a two-valued states on L (E2-lattices for short). It is straightforward to prove the following
proposition

Proposition 2 Let (L, σ ) ∈ E2. Then:

1. σ(1) = 1 and σ(0) = 0,
2. σ(¬x) = 1 − σ(x),
3. if x ≤ y then σ(x) ≤ σ(y),
4. σ(x ∧ y) ≤ min{σ(x), σ (y)},
5. σ(x ∨ y) = σ(x) + σ((x ∨ y) ∧ ¬x).

If we consider the set {0, 1} endowed with the natural Boolean structure, the above prop-
erties allow us to see two-valued states as functions to a Boolean algebra preserving order
and orthocomplementation. This suggests the possibility of thinking the two-valued state
as an unary operation added to the orthomodular structure. In this way we introduce the
following definition:

Definition 2 [5] An orthomodular lattice with an internal two-valued state or IE2-
lattice for short, is an algebra 〈L, ∧,∨,¬, s, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that
〈L, ∧,∨,¬, 0, 1〉 is an orthomodular lattice and s satisfies the following equations:

s1. s(1) = 1,
s2. s(¬x) = ¬s(x),
s3. s(x ∨ s(y)) = s(x) ∨ s(y),
s4. y = (y ∧ s(x)) ∨ (y ∧ ¬s(x)),
s5. s(x ∧ y) ≤ s(x) ∧ s(y),
s6. s(x ∨ (y ∧ ¬x)) = s(x) ∨ s(y ∧ ¬x).
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We shall refer to s as a internal two-valued state. We also define the subset of L given
by s(L) = {s(x) : x ∈ L}. Clearly the class of IE2-lattices is a variety that we call IE2.
Since IE2 admits an orthomodular reduct, by (1), all the equations in IE2 can be referred
to 1. The following proposition provides some basic properties about IE2-lattices.

Proposition 3 Let L be a IE2-lattice. Then we have:

1 〈s(L),∨,∧,¬, 0, 1〉 is a Boolean sublattice of Z(L),
2 If x ≤ y then s(x) ≤ s(y),
3 s(x) ∨ s(y) ≤ s(x ∨ y),
4 s(s(x)) = s(x),
5 x ∈ s(L) iff s(x) = x,
6 s(x ∧ s(y)) = s(x) ∧ s(y),
7 if x⊥y then s(x ∨ y) = s(x) ∨ s(y),
8 L is directly indecomposable iff s(L) = {0, 1}.

Proof 1...7) See [5, Proposition 3.5]. 8) See [5, Proposition 5.6]

Proposition 4 [5, Proposition 5.6] Let L be a IE2-lattice. Then L is directly indecompos-
able iff s(L) = {0, 1}.

We denote by D(IE2) the class of directly indecomposable algebras of the variety IE2.
The following theorem provide the relation between the class of orthomodular lattices that
admit two-valued states and the IE2-lattices.

Theorem 1 [8, Theorem 2.5]

1. For each (L, σ ) ∈ E2, sσ (x) =
{

1L, if σ(x) = 1
0L, if σ(x) = 0

defines an internal two-valued

state on L such that (L, sσ ) ∈ D(IE2).

2. For each (L, s) ∈ D(IE2), σs(x) =
{

1, if s(x) = 1L

0, if s(x) = 0L is a two-valued state on L.

Theorem 1 states that every orthomodular lattice with a two-valued state is univocally
identifiable to a directly indecomposable algebra of the variety IE2 and viceversa. Moreover
since D(IE2) contains the subdirectly irreducible algebras of IE2, it is immediate that

|=D(IE2) t = 1 iff |=IE2 t = 1 (2)

Equation (2) shows that the the variety IE2 captures in detail the notion of two-valued
state. Indeed, the equational theory of IE2 is ruled by the directly indecomposable IE2-
lattices which, by Theorem 1, represent the orthomodular lattices with a two-valued state.

4 Hilbert-Style Calculus for IE2

In [8] a Hilbert-style calculus with completeness respect to IE2 was introduced. In this
section we briefly describe this calculus by introducing some basic ideas that will allow us
to define in the next section a Kripke style semantic in which it can be interpreted.

Each subset T ⊆ T ermIE2 is referred as a theory. If u is a valuation, u(T ) = 1 means
that for each γ ∈ T , u(γ ) = 1. Let α ∈ T ermIE2 and T be a theory. We use T |=A α
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when for each valuation u over the algebras of IE2, if u(T ) = 1 then u(α) = 1. If for each
possible valuation u, u(α) = 1 then α is said to be a tautology and it is denoted |=IE2 α.

Definition 3 Let us consider the syntactic abbreviation in T ermIE2 given by

αRβ for (α ∧ β) ∨ (¬α ∧ ¬β).

Then, the calculus 〈T ermIE2 ,�〉 is defined by the following axioms:

A0. 1, 1R(α ∨ ¬α) and ¬1R0,
A1. αRα,
A2. ¬(αRβ) ∨ (¬(βRγ ) ∨ (αRγ )),
A3. ¬(αRβ) ∨ (¬αR¬β),
A4. ¬(αRβ) ∨ ((α ∧ γ )R(β ∧ γ )),
A5. (α ∧ β)R(β ∧ α),
A6. (α ∧ (β ∧ γ ))R((α ∧ β) ∧ γ ),
A7. (α ∧ (α ∨ β))Rα,
A8. (¬α ∧ α)R((¬α ∧ α) ∧ β),
A9. αR¬¬α,

A10. ¬(α ∨ β)R(¬α ∧ ¬β),
A11. (α ∨ (¬α ∧ (α ∨ β))R(α ∨ β),
A12. (αRβ)R(βRα),
A13. ¬(αRβ) ∨ (¬α ∨ β),
A14. s(1)R1,
A15. s(¬α)R¬s(α),
A16. s(α ∨ s(β))R(s(α) ∨ s(β)),
A17. ((α ∧ s(β)) ∨ (α ∧ ¬s(β))Rα,
A18. (s(α) ∧ s(β))R(s(α ∧ β)) ∨ (s(α) ∧ s(β))),
A19. s(α ∨ (β ∧ ¬α))R(s(α) ∨ s(β ∧ ¬α)),

and the following inference rules:

α, ¬α ∨ β

β
disjunctivesyllogism(DS)

α

s(α)
(S)

Let T be a theory. A proof from T is a sequence α1, ..., αn in T ermIE2 such that each
member is either an axiom or a member of T or follows from some preceding member of the
sequence using DS or S. T � α means that α is provable in T , that is, α is the last element
of a proof from T . If T = ∅, we use the notation � α and in this case we will say that α is
a theorem of 〈T ermIE2 , �〉. T is inconsistent if and only if T � α for each α ∈ T ermIE2 ;
otherwise it is consistent.

Proposition 5 [8, Theorem 3.3] Axioms of the 〈T ermIE2 ,�〉 are tautologies and inference
rules preserves valuations equal to 1.

The following theorem establishes the strong completeness for the calculus 〈T ermIE2 ,�〉
with respect to the variety IE2 and, by (2), with respect to the sub class D(IE2) of direct
indecomposable algebras.
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Theorem 2 [8, Theorem 3.5] Let α ∈ T ermIE2 and T be a theory. Then we have that:

T � α iff T |=IE2 α iff T |=D(IE2) α

5 Kripke-Style Semantics for 〈T ermIE2, �〉
In this section we develop Kripke models for the calculus 〈T ermIE2 , �〉 based on Baer∗-
semigroups.

Definition 4 A Baer ∗-semigroup [1, 6, 11], also called Foulis semigroup, is an algebra
〈G, ·,∗ ,′ , 0〉 of type 〈2, 1, 1, 0〉 such that, upon defining 1 = 0′, the following conditions
are satisfied:

1. 〈G, ·〉 is a semigroup,
2. 0 · x = x · 0 = 0,
3. 1 · x = x · 1 = x,
4. (x · y)∗ = y∗ · x∗,
5. x∗∗ = x,
6. x · x′ = 0,
7. x′ · x′ = x′ = (x′)∗,
8. x′ · y · (x · y)′ = y · (x · y)′.

Let G be a Baer ∗-semigroup. An element e ∈ S is a projector iff e = e∗ = e · e. The
set of all projectors of G is denoted by P(G). A projector e ∈ P(G) is said to be closed
iff e′′ = e. We denote by Pc(G) the set of all closed projectors. Moreover we can prove
that Pc(G) = {x′ : x ∈ S}. We can establish a partial order 〈P(G),≤〉 given by e ≤ f iff
e · f = e. If x ∈ G then we define the set x · G as

x · G = {x · g : g ∈ G}.

Proposition 6 [14, Proposition 3.11] Let G be a Baer∗- semigroup and e1, e2 ∈ P(G). If
e1 · G = e2 · G then e1 = e2.

Let G be a Baer∗- semigroup. Let us consider the following operations for any e1, e2 ∈
Pc(G):

e1 ∧ e2 = e1 · (e′
2 · e1)

′ and e1 ∨ e2 = (e′
1 ∧ e′

2)
′.

Then we can see that 〈Pc(G),∧,∨,′ , 0, 1〉 is an orthomodular lattice with respect to the
order 〈P(G),≤〉 [13, Theorem 37.8].

Definition 5 A IE∗
B -semigroup [7] is an algebra 〈G, ·,∗ ,′ , s, 0〉 of type 〈2, 1, 1, 1, 0〉 such

that 〈G, ·,∗ ,′ , 0〉 is a Baer ∗-semigroup and s satisfies the following equations:

1. s(1) = 1,
2. s(x′) = s(x)′,
3. s(x)′′ = s(x),
4. s(x′ ∨ s(y′)) = s(x′) ∨ s(y′),
5. y′ = (y′ ∧ s(x)) ∨ (y′ ∧ s(x)′),
6. s(x′ ∧ y′) ≤ s(x′) ∧ s(y′).
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Proposition 7 Let G be an IE∗
B -semigroup. Then,

1. s(x) ∈ Z(Pc(G)),
2. s(x′′) = s(x),
3. 〈Pc(G),∨,∧,′ , s/Pc(G), 0, 1〉 is an IEB -lattice and 〈s(G), ∨,∧,′ , 0, 1〉 is a Boolean

subalgebra of Z(Pc(G)).

Proof 1) By Axiom 3, for each x ∈ G, s(x) ∈ Pc(G). By Proposition 1–2 and
Axiom 5, s(x) ∈ Z(Pc(G)). 2) Immediate from Axiom 2 and Axiom 3. 3) Straightforward
calculation.

Proposition 8 Let L be a IEB -lattice, then there exists a IE∗
B -semigroup G(L) such that

L is IEB -isomorphic to Pc(G(L)).

Proof In [1, Proposition 2] it is proved that there exists a Baer∗-semigroup G(L) and an
orthonmodular isomorphism f : L → Pc(G(L)). Note that f naturally defines an IEB -
lattice structure on Pc(G(L)). In this way f is a IEB -isomorphism. Since for each x ∈
G(L), x′′ ∈ Pc(G(L)) then, we can define the operation ŝ on G(L) such that ŝ(x) = s(x′′).
We have to prove that 〈G(L), ·,∗ ,′ , ŝ, 0〉 is a IE∗

B -semigroup. Indeed,
Ax1) Is immediate. Ax2) ŝ(x′) = s(x′′′) = s(x′′)′ = ŝ(x)′. Ax3) ŝ(x)′′ =

s(x′′)′′ = s(x′′) because s(x) ∈ Pc(G(L)) and ′ is an orthocomplementation on
Pc(G(L)). Thus ŝ(x)′′ = ŝ(x). The rest of the axioms hold because ŝ/Pc(G(L)) = s

and 〈Pc(G),∨,∧,′ , s, 0, 1〉 is an IEB -lattice. Hence G(L) is a IE∗
B -semigroup as is

required.

Definition 6 A two valued state frame is a pair 〈G, u〉 such that G is a IE∗
B -semigroup and

u is a valuation u : T ermIE2 → Pc(G)

We denote by F∗
2 the class of all two valued state frames.

Definition 7 Let 〈G, u〉 be a two valued state frame. Then we define inductively the forcing
relation |=x〈G,u〉⊆ G × T ermIE2 as follows:

1. |=x
〈G,u〉 p iff x ∈ u(p) · G, for each variable p ∈ T ermIE2 ,

2. |=x〈G,u〉 α ∧ β iff |=x〈G,u〉 α and |=x〈G,u〉 β,

3. |=x〈G,u〉 ¬α iff ∀g ∈ G, |=g
〈G,u〉 α =⇒ g∗ · x = 0,

4. |=x
〈G,u〉 s(α) iff x = s(α) · x.

The relation |=x〈G,u〉 α is read as α is true at the point x in the two valued state frame
〈G, u〉 and, by |=〈G,u〉 α, we understand that for each x ∈ G, |=x〈G,u〉 α. If T is a theory,
|=〈G,u〉 T means that, for each β ∈ T we have that |=〈G,u〉 β. The notion of consequence in
the Kripke-style sense, denoted by T |=F∗

2
α, is introduced as follows:

T |=F∗
2

α iff ∀〈G,u〉 ∈ F∗
2 , |=〈G,u〉 T =⇒|=〈G,u〉 α.

Let α ∈ T ermIE2 , T be a theory and 〈G, u〉 be a two valued state frame. Then we
consider the following sets:

|α|〈G,u〉 = {x ∈ G :|=x〈G,u〉 α},
|T |〈G,u〉 =

⋂
α∈T

|α|〈G,u〉.
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Proposition 9 Let α ∈ T ermIE2 , T be a theory and 〈G,u〉 be a two valued state frame.
Then:

1. |α|〈G,u〉 = u(α) · G,
2. |=〈G,u〉 T iff |T |〈G,u〉 = G.

Proof 1) If α is a variable the proposition results trivial. Suppose that |=x
〈G,u〉 s(α). Then

x = s(α) · x proving that x ∈ s(α) · G. For the converse, let us suppose that x ∈ s(α) · G

i.e., x = s(α) · g. By Proposition 7-1, s(α) is a projector and then, it is idempotent. Thus
s(α) · x = s(α) · s(α) · g = s(α) · g = x. It proves that |=x〈G,u〉 s(α). Hence |s(α)|〈G,u〉 =
u(s(α)) · G. If α has the form β ∧ γ or ¬β it follows by induction on the complexity of
terms and we refer to [14, Lemma 3.16] for a detailed proof.

2) By the above item we have that , |=〈G,u〉 T iff ∀α ∈ T , |α|〈G,u〉 = G iff G =⋂
α∈T |α|〈G,u〉 = |T |〈G,u〉

Theorem 3 [Kripke style completeness] α ∈ T ermIE2 and T be a theory. Then,

T |=F∗
2

α ⇐⇒ T � α.

Proof Let us assume that T |=F∗
2

α. Let L ∈ IE2 and a valuation u : T ermIE2 →
L such that u(T ) = 1. By Theorem 8, there exists a IE∗

B -semigroup G(L) such that L

is IE2-isomorphic to Pc(G(L)). Thus, we can assume that the valuation u has the form
u : T ermIE2 → Pc(G(L)). Let us consider the two valued state frame 〈G(L), u〉. Since
for each β ∈ T , u(β) = 1, by Proposition 9, G(L) = u(β) · G(L) = |β|〈G(L),u〉 and
consequently |T |〈G(L),u〉 = 1 · G(L) = G(L). Then, by hypothesis, |=〈G(L),u〉 α and u(α) ·
G(L) = G(L). Hence, by Proposition 6, u(α) = 1 proving that T |=IE2 α. Then, by
Proposition 2, T � α.

For the converse let us assume that T � α and then T |=IE2 α. Suppose that |=〈G,u〉 T .
By Proposition 9-2, for each β ∈ T , u(β)·G = 1·G = G. Then, by Proposition 6, u(β) = 1
for each β ∈ T . Thus u(T ) = 1 and, by hypothesis, u(α) = 1. Consequently G = u(α) · G
and, by Proposition 9, |=〈G,u〉 α. It proves that T |=F∗

2
α.

6 Conclusions

In this work a Kripke style semantics for a logical calculus related to orthomodular lattices
admitting two-valued states is studied. Although it is well known that Hilbert lattices do not
admit two-valued states, there exists a class of orthomodular lattices in which these states
can be defined and its study could be useful to better understand the constraints imposed
by Hilbert lattices. This fact has motivated our logical approach to the mentioned class. A
completeness theorem respect to this semantic is established.

A generalization of the present study —i.e., the consideration of Kripke models based on
∗-semigroups for families of two-valued states defined on different orthostructures— will
be analyzed in a future work.
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