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Resumen 

Los nanomateriales de carbono desempeñan un papel importante en el desarrollo de tecnologías 

energéticas alternativas limpias y sustentables. Estos materiales son un fascinante tema de estudio, no 

solo por su buena estabilidad química, mecánica, buena conductividad eléctrica, alta superficie específica 

y tamaño de poro controlado, sino también porque su estructura porosa puede ser modificada con grupos 

funcionales para la construcción de sistemas más complejos con un amplio campo de aplicaciones. 

Además, la química de la superficie, la morfología y las propiedades estructurales de los materiales 



Carbon Nanomaterials...  21 

Anales AQA – Div. Jóvenes Profesionales                                               An. Asoc. Quim. Argent. 2019, 106(2), 20-38 
 FB @djpq.aqa – TW @jovenes_AQA 

carbonosos se pueden controlar mediante la elección racional del material precursor de carbón y la 

metodología de síntesis. Esta revisión destaca el reciente progreso de investigación sobre la síntesis de 

diferentes carbones porosos y su aplicación en el almacenamiento y la conversión de energía. 

Particularmente, discutiremos la síntesis y aplicaciones de carbones mesoporosos como recubrimientos 

funcionales de separadores para baterías de litio-azufre, carbonos nanoestructurados como soportes de 

catalizador para celdas de combustible y carbones porosos funcionalizados como catalizadores ácidos 

para la generación de biocombustibles. Concluyendo, se discuten las futuras perspectivas para el 

desarrollo y aplicación de estos nanomateriales carbonosos.     

 

Abstract 

Carbon nanomaterials play an important role in the development of alternative clean and sustainable 

energy technologies. These materials are a fascinating subject of study themselves, not only for its good 

chemical and mechanical stability, good electrical conductivity, high specific surface area and controlled 

pore size, but also because the pore structure can be further modified by active functional groups for the 

construction of more complex systems with a broad umbrella of applications. Furthermore, the surface 

chemistry, the morphology and the structural properties of the carbonaceous materials can be controlled 

by the judicious choice of the carbon precursor material and the route of fabrication. This minireview 

article spotlights the recent research progress on the synthesis of porous carbon nanomaterials and its 

application in energy storage and conversion. Particularly, we will discuss the synthesis and applications 

of mesoporous carbons as functional separator coatings in lithium-sulfur batteries, nanostructured carbons 

as catalyst supports for fuel cells and functionalized porous carbons as an acid catalyst for biofuel 

generation. Concluding the minireview, prospects for the future development of practical carbon 

nanomaterials are discussed. 
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1. Introduction 

Over the past decades, carbon nanomaterials in various allotropic forms (e.g., fullerenes, 

nanotubes, graphene, and diamonds) have received wide attention owing to their unique 

physical and chemical properties tunable in a wide range, such as large specific surface area, 

narrow pore size, large pore volume, low density, high thermal and mechanical stability and 

excellent electronic conductivity. Considering such features, different carbon nanomaterials 

have been developed: fullerenes (C60),1 carbon nanotubes (CNTs),2 graphitic carbon 
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nanoonions, graphene,3 graphene oxide (GO),4 carbon nanofibers (CNFs),5 microporous 

carbons (MPCs),6 ordered mesoporous carbons (OMCs),7 porous carbon spheres (CSs),8 hollow 

carbon spheres (HCSs),9 etc. To date, it is reasonable to say that the research on structured 

carbon materials is facing the most rapid development period ever. Carbon nanomaterials are 

versatile platforms for a wide number of applications, including sensing,10 adsorption,11 

electronics,12 nanomedicine,13 energy harvesting, storage and conversion14 and catalysis.15 

These applications depend to a great extent on the features of the carbon structure, surface 

chemistry, crystallinity, and morphology which, in turn, are determined by the chosen chemical 

synthesis methodology. The rational and controlled synthesis on carbon nanomaterials will 

offer a promising opportunity to accurately understand their (desired) physical and chemical 

properties from the molecular level point of view and, thereby, provide valuable guidelines for 

practical applications. This minireview spotlights our recent research progress on the synthesis 

of porous carbon nanomaterials for energy storage and conversion applications. 

 

2. Results and discussion 

2.1. Porous assemblies derived from graphene-based materials: Solvothermal synthesis. 

Graphene-based materials have been one of the most extensively explored materials for energy 

applications during the last ten years. Graphene and graphene-based materials have been used as 

electrodes for dye-sensitized solar cells, photo-catalysts for water splitting, electrocatalysts for 

oxygen reduction/hydrogen evolution in fuel cells, high–performance electrodes in 

supercapacitors, ion (Li+, Na+, Al3+, etc.) batteries, lithium-sulfur batteries and lithium–air 

batteries.16-20 Graphene-based materials present good solubility and processability in water and 

several organic solvents. The electrical conductivity reported for pristine graphene is 64 

mS·cm−1,21 and the electrical conductivity of graphene-based materials can be broadly adjusted 

by controlling structural parameters such as the oxidation degree (a measurement of the C/O 

ratio), sheet size, interlayer distance (and interaction) and dopants. Furthermore, graphene-based 
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materials present high heterogeneous electron transfer activity toward redox-active molecules, 

good electrochemical stability22 and could exhibit high surface area, since the theoretical specific 

surface area for a single layer graphene sheet is 2630 m2·g−1.23 

One of the main challenges to overcome when it comes to producing an energy storage device—

probably the most explored application so far—containing graphene-based materials as an active 

or passive element, is the loss of specific surface area compared with the theoretical one. The 

main reason for such loss is the lack of exposure of the whole graphene area to the electrolyte, 

which affects the double layer charging. The envisioned solution to this problem is to synthesize 

three-dimensional (3D) structures. There are different synthetic approaches; the template 

methods, which can be classified in hard-templates (e.g. silica or polystyrene spheres, metal 

foams, and ice crystals) and soft-templates (polymeric or amphiphilic compounds); and the 

template-free methods. The easiest and more straightforward synthetic route is the self-assembly 

of two-dimensional (2D) GO (or modified GOs) dispersed in water by using a one-step 

hydrothermal method.24  

 

Figure 1. Schematic illustration of the hydrothermal synthesis of rGO aerogel. 1. transfer of the GO 

aqueous dispersion ~ 3–4 wt %, (photo a) to the autoclave system. 2. Thermal treatment at 180 ºC during 

12h (photo b, hydrogel after the hydrothermal process). 3. Hydrogel after the freeze-drying procedure 

(photo c). SEM images of the aerogel core (photos d–e) and wall (photo f). 
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One alternative is the preparation of hydrogels by chemical reduction of GO with different 

reducing agents under atmospheric pressure25 or using crosslinkers such as molecular species 

capable to interact with GO by non-covalent (e.g. hydrogen bonding, hydrophobic interactions) 

or covalent bonding.Although the mechanism involved in the hydrothermal formation of 3D 

structures is not well known,26 it is accepted that the interaction between graphene-based layers 

is triggered by a hydrothermal-assisted concurrent reduction of the GO (Figure 1). 

In addition, some applications in energy require the presence of a second material (e.g. metal or 

oxide nanocrystals, other 2D materials, carbon nanoparticles or nanotubes) to enhance the 

catalytic activity, capacity, conductivity, etc. 

In order to be effective and efficient, this second material has to be homogeneously distributed 

on the entire 3D structure, and because of its size, usually cannot be incorporated to the 

monolithic structure after the synthesis. Qiu et al. reported a one-step hydrothermal method to 

the growth of ultradispersed mesoporous TiO2 nanocrystals with (001) facets on GO aerogel.27 In 

another strategy, Wang et al. used a colloid sol as a precursor to produce monolithic 3D metal 

oxide/rGO aerogels by a solvothermal-induced self-assembly approach.28 Also, it has been 

reported the formation of 3D Fe2O3/rGO composites by a solvothermal route using 

Fe(CH3COO)2 as a precursor in water and ethanol.29 Using a similar approach, the one-pot 

solvothermal treatment of dispersions containing GO and the precursor, composites of rGO and 

V2O5,30 VO2,31 Co3O4,32 ZnO,33 CoS,34 MoS2
35 have been obtained. For instance, Zensich et al. 

reported a simple but effective strategy to fabricate practical high-loading Li2S cathodes for 

high-performance Li–S batteries in carbonate-based electrolyte by the irreversible 

electrochemical decomposition of a hydrothermally prepared 3D rGO-covered MoS2 particles 

composite to a Li2S@rGO (plus Mo nanoparticles) composite.36 The Li2S@rGO cathode 

containing high Li2S loadings of ≈5 mg·cm–2 showed a high reversibility in capacity and 

excellent electrochemical performance which was explained by the benefits of the synergetic 
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effect between the formed Li2S particles and the rGO substrate which provide superior charge 

transfer kinetics and ionic pathways in the composite.  

Graphene and GO materials provide great potential for commercial application and it is expected 

a strong development of 2D and 3D heterostructured graphene-based materials in the next years. 

 

2.2. Hierarchical porous carbons for fuel cell anodes 

Hierarchical porous carbons (HPC) are very interesting carbon-based porous materials. Anodes 

for fuel cell application require a high dispersion of the catalyst (small metal nanoparticles) 

over the surface of a conductive material. This situation results in a highly porous matrix 

composed by the supporting (conductive) material and the catalyst. It is known that the 

structure of the support material affects severely the mass transfer, in detriment of the fuel cell 

performance. In addition, with increasing thickness of the catalyst layer, the probability for re-

adsorption and further reaction of these intermediates increases, resulting in a structure-

depending reaction mechanism.37-39 Two possible approaches can be considered for the mass 

transport improvement: (i) short diffusion lengths or (ii) improved diffusion using thicker 

materials with hierarchical pore design.40-41 Considering the second approach, the use of a high 

surface monolithic carbon (a piece of carbon with dimensions on the scale of microns) allows a 

decrease of the ohmic drop originated in the interparticle contact.42 On the other hand, the use 

of new synthetic routes let stay the surface area high enough, beside to the improvement of the 

mass transport by the ad-hoc pore design in hierarchical levels. The most used synthetic routes 

imply the combination of different templates and there are many interesting reviews discussing 

these methods.43-46 Regardless of the approach used, after impregnation of the template with a 

carbon source (precursor) via polymerization or surface-grafting methods,47 the precursor it 

turned into carbon by a heat treatment (pyrolysis) at high temperature (above 800 ºC) in an 

inert atmosphere (i.e.: argon or nitrogen). Hard templates, like silica and metal oxides, survive 

to pyrolysis and must be removed before (or after) pyrolysis by chemical etching. If the 
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template is removed before pyrolysis (route A→B’→C’ in Figure 2), the whole process results 

in an inverse replica of the template without additional porosity. If the template is removed 

after pyrolysis (route A→B→C in Figure 2), a second level of porosity emerges.  

 

Figure 2. Schematic illustration of the pathways for the carbon synthesis. A-B-C: Synthesis of the 

mesoporous carbon with hierarchical porous structure (HPC). A-B’-C’: Synthesis of macroporous 

carbon. 

 

Baena-Moncada et al. reported a HPC supported Pt/Ru for methanol electrooxidation (Figure 

3). Compared with the supported commercial PtRuC (E-TEK) catalyst, the HPC-Pt/Ru catalyst 

exhibited improved electrooxidation activity due to the enhanced mass transport through the 

porous matrix of the HPC-based support.41 In addition, the porous structure affected not only 

the fuel feeding and current density but also the expulsion of reaction sub-products. The 

conversion efficiency from methanol to CO2 analyzed by calibrated differential electrochemical 

mass spectrometry (DEMS) showed that the HPC-Pt/Ru has higher current density than the 

conventional PtRuC E-TEK catalyst even with almost the same CO2 conversion efficiency.48 

Baena-Moncada et al. also obtained similar results for formic acid electrooxidation with PtPd 

supported on HPC.49 The observed high surface activity towards methanol and formic acid 

electrooxidation was mainly explained by the authors in terms of the reactant accessibility to 

the active sites.42 
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Figure 3. (a) SEM image and (b) HRTEM image of the HPC-Pt/Ru. (c)  Current transients for methanol 

electrooxidation on HPC-Pt/Ru at 0.55 VRHE, 1 M CH3OH/1 M H2SO4. T = 60 ºC. Inset: current transients 

for methanol electrooxidation on commercial PtRuC (E-TEK) at 0.55 VRHE, 1 M CH3OH. 

 

2.3. High-stable Li–S batteries with functional interlayers/hybrid separators. 

The lithium-sulfur (Li–S) battery is considered one of the most promising rechargeable energy 

storage technologies to meet the increasing demand for clean energy transportation systems 

owing to its notable high theoretical energy density of 2600 Wh·kg−1, nearly five-fold greater 

than state-of-the-art lithium-ion batteries.50 In addition, the use of elemental sulfur as active 

cathode material has the advantages of being naturally abundant, inexpensive and 

environmentally friendly. However, the commercialization of Li–S batteries is challenged by 

several hurdles, including the insulating nature of sulfur, the large volume changes of sulfur 

during cycling and, principally, the shuttling of soluble lithium polysulfide (LiPS) 

intermediates between electrodes, resulting in a fast capacity fading and poor cycling life.51-53 

The first Li–S battery was described in the 1960s.54 However, the advances on Li–S batteries 

reported cells with low capacity and fast capacity fading during the next decades. In 2009, 

Nazar’s group developed an innovative approach to physically encapsulate sulfur, boost its 

redox kinetics and accommodate the volumetric enlargement of sulfur during lithiation by 

infiltrating molten sulfur into a highly ordered, nanostructured mesoporous carbon host.55 This 
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approach has triggered an exhaustive research on using diverse porous, conductive, 

nanostructured carbon matrices as host cathodes.56-57 However, the morphology change of solid 

sulfur to liquid LiPS intermediates during cell operation and the weak interaction of non-polar 

carbons with polar LiPSs often result in the inevitable escape of soluble LiPS out of the 

cathode framework. This produces the misplacing of the initial contact with the carbon 

substrate and lead to the formation of Li2S/sulfur agglomeration/clusters on both the 

cathode/separator interface and the lithium anode surface, ending up with the sulfur activity and 

causing the degradation of the battery lifespan. 

Beyond conventional encapsulation of the elemental sulfur into porous carbonaceous host 

matrices, in the last few years, major progress has been made to address the challenges 

aforementioned by using conductive porous carbon interlayers (located between the separator 

and the cathode) and functional hybrid separators with a carbon coating layer which further 

face to the sulfur cathode.58 The ability of functional hybrid separators and interlayers to 

capture/retain migrating LiPS intermediates significantly reduces the parasitic reactions, as well 

as their capability to reactive “numb” sulfur-based species, also enhances the electrochemical 

performance and lifespan of Li–S cells. 

Balach et al. comprehensively investigated different mesoporous carbons derived from 

phenolic resins. Mesoporous carbons with a pore size around 12 nm and tuned pore volume 

from 1.1 to 3.2 cm3 g–1 were produced by a facile silica-templated casting process to further 

fabricate bifunctional interlayers and mesoporous carbon-coated separators for Li–S batteries 

with high areal sulfur loadings (Figure 4).59-63 All the cathodes were prepared by using a simple 

and scalable carbon black/elemental sulfur mixture without any further typical melt diffusion 

process, at 155 ºC. The mesoporous carbons not only possessed tunable pore volume,59 but 

could also be modified with N-dopants62 or N, S co-dopants.63 The authors found that undoped 

mesoporous carbon with the highest pore volume of 3.23 cm3·g−1 delivered the most important 

enhancement in the electrochemical performance (initial discharge capacities of 1364 mAh·g–1 
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and high reversible capacity of 1015 mAh·g–1 after 200 cycles at a current rate of 0.2 C; 1 C = 

1672 mA·g–1), highlighting the role of the pore volume rather than the specific surface area.59 

While for the heteroatom-doped mesoporous carbon with a comparable pore volume, N, S 

dual-doped mesoporous carbon-coated separators enabled the best battery performance even 

when the sulfur loading was as high as 5.4 mg·cm−2.63 At a current rate of 0.2 and 0.5 C, high 

areal capacities of 5.9 and 2.9 mAh·cm−2 were achieved, respectively. 

 
 
Figure 4. (a) Schematic illustration of the synthesis of mesoporous carbons. (b) Representative TEM 

images and (c) nitrogen physisorption isotherms and the corresponding pore size distributions of the 

mesoporous carbons. (d) Schematic configuration of the Li–S batteries with a mesoporous carbon-coated 

separator and digital images of the mesoporous carbon-coated separator. (e) Cross-sectional SEM image 

of the mesoporous carbon-coated separator. 

 

Although heteroatom doping significantly promotes the chemisorptivity of carbon materials, a 

multi-functional RuO2 nanoparticle-anchored mesoporous carbon-coated separator could also 
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be used as an electrocatalytic and adsorbing LiPS-net to enhance the redox reaction of 

migrating LiPS species, to improve active material utilization and boost the electrochemical 

performance of Li–S batteries.64 

2.4. Sulfonated carbonaceous materials as a heterogeneous catalyst to biodiesel 

production 

There is an increasing interest in improving the environmental conditions claiming of alternative 

sources of fuel.65 The biodiesel is one of the best candidates to replace the diesel fuel. 

Biodiesel—a mixture of methyl esters of long-chain fatty acids—is renewable, clean, and it can 

be used without modifications in the engines.66 The biodiesel is usually synthesized by using 

three kinds of catalysts (either homogeneous or heterogeneous ones): alkalis, acids and 

enzymes.66 The homogeneous alkaline catalysts (e.g. sodium hydroxide) are highly hygroscopic 

and absorb water from the air during storage, affecting their performance.67 The homogeneous 

acid catalyst (e.g. sulfuric acid) present the same drawbacks, with the additional problems related 

to its high corrosive characteristic that obligate to take extra cautions during its handling and 

storage.68 Moreover, heterogeneous catalysts are solid and could be quickly separated from the 

product by filtration and they are also capable to catalyze both the esterification and 

transesterification reactions in one step.69 In this regards, Tamborini et al. reported a 

heterogeneous acid catalyst based on a resorcinol-formaldehyde (RF)-based porous carbon 

functionalized with sulfonic groups.70 The RF resins used as carbon precursor were synthesized 

by the polycondensation of resorcinol and formaldehyde using both 

polydiallyldimethylammonium chloride (PDADMAC) and cetyltrimethylammonium bromide 

(CTAB) as porous stabilizers and sodium carbonate as the basic catalyst for the reaction.71-74 

Subsequently, the carbons were sulfonated by reacting with concentrated sulfuric acid.75 Textural 

properties of the sulfonated porous carbons are summarized in Table 1. These carbons were 

denoted as PCSx, where x represents the molar ratio of CTAB to PDAMAC (0.43, 1.28 and 

3.85). The CPSx samples as potential catalysts exhibited good specific surface area (100–400 
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m2·g–1) and a large mesopore size around 30 nm (Table 1). These physical properties are of great 

interest since a large pore size could allow an easy diffusion of the reagents and the products 

during the catalytic reaction. 

Table 1. Textural characteristic of CPSx 

Material SBET
a (m2·g–1) V0

b (cm3·g–1) Vmeso (cm3·g–1) Vtc (cm3·g–1) Dpd (nm) 

CPS0,43 100 0.038 0.570 0.608 34 

CPS1.28 95 0.038 0.550 0.589 30 

CPS3.85 405 0.190 0.550 0.740 30 

a Determined from BET theory. b Determined from Dubini-Radushkevich. c Volume adsorbed at 

P/P0=0.984. d Determined from the BJH desorption method.  

 

Furthermore, the sulfonation process employed to generate the catalytic active sites effectively 

produces the incorporation of the sulfonic group on the materials surface. The samples CPS0.43 

CPS1.28 and CPS3.85 revealed high content of sulfonic groups with 0.71, 1.31 and 0.60 mmol·g–1, 

respectively. 

The catalytic activity of the CPSs for the Fischer esterification of acetic acid in ethanol showed 

that the CPS0.43 achieved the highest conversion with 90% after 10 h (Figure 5a). Moreover, the 

CPS1.28 and CPS3.85 catalysts also achieved higher conversions (85% and 89%, respectively) than 

the commercial sulfonated catalysts Nafion® 117 (75%) and Amberlite IR-120 (65%) used as 

reference materials. After re-utilization of the CPS1.28 catalyst, the percentage of acetic acid 

conversion decreased after each esterification process, reaching conversions of 93%, 85%, 80% 

and 60% after the first, second, third and fourth cycles, respectively (Figure 5b). This decrease in 

the percentage of conversion was in agreement with the decrease in the content of sulfonic 

groups, which changed from 0.71 mmol·g–1 in the first cycle to 0.40 mmol·g–1 in the fourth 

cycle, due to the groups leaching and to the deactivation of active sites. 
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All in all, sulfonated porous carbons could be used as potential catalysts in the acetic acid-

ethanol Fischer esterification and they could be reused several times. 

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

 CPS0.43
 CPS1.28
 CPS3.85
 Nafion 117
 Amberlite IR-120

 

 

Ac
et

ic
 A

ci
d 

Co
nv

er
si

on
 (%

)

Reaction Time (h)

a)

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

 CPS0.43
 CPS1.28
 CPS3.85
 Nafion 117
 Amberlite IR-120

 

 

Ac
et

ic
 A

ci
d 

Co
nv

er
si

on
 (%

)

Reaction Time (h)

a)

cycle 1 cycle 2 cycle 3 cycle 4
0

20

40

60

80

100
 

Number of cycle (10 h)
Ac

id
 A

ce
tic

 C
on

ve
rs

io
n(

%
)

0,30

0,45

0,60

0,75

0,90

1,05

1,20

Su
lfo

ni
c 

Gr
ou

ps
 (m

m
ol

/g
 c

at
al

ys
t)b)

 

Figure 5. (a) acetic acid-ethanol esterification at 75 °C and (b) reusability of the CPS0.43 catalyst. 

 

3. Conclusions 

Through this minireview, we have provided an overview of the fabrication and application of 

nanostructured carbon materials for storage and conversion of energy. We have also reviewed 

our recent approaches for the rational synthesis of carbon nanomaterials with tuned properties for 

these applications. Beyond energy field, nanostructured carbons are highly versatile materials 

with the possibility to control their properties and they have proven to satisfy the requirements of 

other application fields. 

Several approaches can be considered for the designed carbon materials. They can be prepared 

from a polymer precursor and the final structural properties can be adjusted by using soft or hard 

template strategies. Even dual pore forming can be used to obtain hierarchical porous structures. 

Moreover, the properties of the carbon nanomaterials can be finely-tuned after manufacturing by 

chemically modifying both its structure and surface features.  

We believe that, based on the interdisciplinary knowledge of carbon nanomaterials, the 

innovation in nanotechnology could be promoted by integrating several areas of expertise, such 

as electrochemistry, materials science, physics and organic chemistry. The obtained knowledge 
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allows the understanding on the structure and texture control of the designed materials and thus, 

how they influence on the system’s performance. However, most of the materials made use non-

renewable resources, arising environmental concerns. The use of the synthetic methods with 

renewable feedstocks is a current challenge to decrease the carbon footprint of the materials and 

devices.  
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