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Abstract The present study analyses the spatial pattern of quaternary gravitational slope

deformations (GSD) and historical/present-day instabilities (HPI) inventoried in the Swiss

Rhone Valley. The main objective is to test if these events are clustered (spatial attraction) or

randomly distributed (spatial independency). Moreover, analogies with the cluster behaviour of

earthquakes inventoried in the same area were examined. The Ripley’s K-function was applied

to measure and test for randomness. This indicator allows describing the spatial pattern of a

point process at increasing distance values. To account for the non-constant intensity of the

geological phenomena, a modification of the K-function for inhomogeneous point processes

was adopted. The specific goal is to explore the spatial attraction (i.e. cluster behaviour) among

landslide events and between gravitational slope deformations and earthquakes. To discover if

the two classes of instabilities (GSD and HPI) are spatially independently distributed, the cross

K-function was computed. The results show that all the geological events under study are

spatially clustered at a well-defined distance range. GSD and HPI show a similar pattern

distribution with clusters in the range 0.75–9 km. The cross K-function reveals an attraction

between the two classes of instabilities in the range 0–4 km confirming that HPI are more prone

to occur within large-scale slope deformations. The K-function computed for GSD and

earthquakes indicates that both present a cluster tendency in the range 0–10 km, suggesting that

earthquakes could represent a potential predisposing factor which could influence the GSD

distribution.
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1 Introduction

Geological events such as landslides or earthquakes are more frequently clustered both in

space and time than randomly distributed (Mukhopadhyay et al. 2004; Jarman 2006). The
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analysis of their spatial distribution is of paramount importance to understand their

predisposing factors, and for prevention and forecasting purposes (Carrara et al. 1991;

Guzzetti et al. 1999). From an orogenic scale, geological events can be described as point

processes: this allows analysing their spatial distribution and discovering their pattern

behaviour. Point processes can be defined as mathematical models for irregular or random

point pattern (Stoyan 2006), or as defined by Diggle (2003) as ‘‘stochastic mechanisms

which generate a countable set of events.’’

Generally speaking, cluster analysis includes algorithms aiming at grouping objects

showing similar properties into the respective categories. A spatial cluster includes events

whose density is higher than expected in the surrounding area. This assumption can be

accepted or rejected based on the result of random simulations. This type of analysis allows

to better understand the data structure and to reject the hypothesis of independency among

events. Keefer (1984) showed that landslides triggered by earthquakes have a tendency to

occur at well-defined location around the epicentre.

Spatial clusters can be identified whenever the observed distance among point locations

in space is lower than the expected distance for a random distribution (e.g. Poisson model).

For geological events, which intensity is non-constant along the study area, their cluster

detection is not evident. A vast literature exists on the spatial analyses of these events,

especially for susceptibility map purpose, in particular for landslides (Lee et al. 2007;

Conoscenti et al. 2008; Bai et al. 2010; Nandi and Shakoor 2010; Oh and Lee 2011; Erener

and Düzgün 2012), and for earthquakes (Fischer and Horálek 2003; Faenza and Pier-

dominici 2007; Tsai and Shieh 2008; Ansari et al. 2009; Varga et al. 2012).

In this paper, the importance of applying statistical methods to assess whether or not the

spatial distribution of geological point processes satisfies a Poisson point process (Zuo

et al. 2009) is emphasised. Despite the large interest in spatial distribution and charac-

terisation of geological events, there is a lack in comprehensive studies as concern the use

of statistical methods to assess spatial attraction between the events. Here, a global cluster

indicator, namely the Ripley’s K-function (K(r)), was employed to measure and test for

randomness (Ripley 1976). As K(r) depends on the distance r between pairs of events, its

application allows describing the spatial point process at many distance values and defining

a range at which events are randomly distributed (independency), clustered (attraction) or

eventually dispersed (repulsion).

In the present study, the spatial pattern of quaternary gravitational slope deformations

(GSD, 294 events) and of historical/present-day instabilities (HPI, 400 events) inventoried

in the Swiss Rhone Valley is investigated. The main objective is to test if they are clustered

or randomly distributed over increasing distance scales, and if exists a spatial attraction

between landslides. Our hypothesis is that GSD and HPI are not randomly distributed and

that the two classes of landslides display similar pattern behaviour since they share the

same geological context. Moreover, it is well known that the slope instabilities are more

susceptible to take place where rock mass strength is reduced such as in ancient landslides.

The Ripley’s K-function estimation was adopted to validate this hypothesis: it represents a

powerful statistical summarising method to test for inter-point ‘‘attraction’’ and ‘‘cluster-

ing.’’ The K(r) was computed to assess the randomness of GSD and HPI distribution,

whilst the cross K-function was computed to prove the attraction between events belonging

to these two classes of landslides (Lotwick and Silverman 1982). The pairwise comparison

between the K-functions evaluated separately for each group of landslides helped to

highlight analogies in their individual spatial patterns. In a final step, the spatial cluster

behaviour of gravitational slope deformations and earthquakes was compared to explore if

the two datasets follow a similar trend, which could attest for an interaction between the
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two phenomena. To account for the natural non-homogeneous distribution of geological

events, a generalisation of K(r) to non-stationary point processes (i.e. non-constant

intensity at each location) was applied (Baddeley et al. 2000). In fact, it is well known that

the spatial pattern of landslides and earthquakes is conditioned from environmental factors

that affect their random occurrences. Among them, a common predisposing factor is the

tectonic history and the related tectonic fractures, as well as their orientation regarding a

free face like a valley slope (e.g. Abele 1974; Keefer 1984; Hermanns and Strecker 1999).

2 Geologic and geomorphologic setting

The study area is located in south-west of Switzerland, covering the entire upper sector of

the Rhone watershed, from the Rhône river delta on the Lake Geneva to the Rhone sources

located in central Swiss Alps. Its extension is of about 5000 km2 (Fig. 1).

The north-western sector of the study area is marked by the presence of the Prealps

nappes, characterised by sedimentary rocks (Mosar et al. 1996). The northern part is

dominated by the Helvetic nappes, mainly consisting of metamorphic and sedimentary

rocks. In the north-east side, the Aar massif basement dominates the zone. In the south, the

Penninic domain features the landscape; its outcrops belong to highly deformed crystalline,

metasedimentary and ophiolitic rocks. Two major tectonic structures are present in the

study area: the Rhone-Simplon fault and the Penninic thrust. The first one belongs to a

dextral strike slip fault system whose trace controlled the development of the Rhone Valley

(Steck 1984). The Rhone Valley represents among the most seismically active area in

central Swiss Alps (Maurer et al. 1997). From 1500 year up to nowadays, more than 2000

earthquakes with moment magnitude higher than two and at least six historical events with

Fig. 1 The study area: Swiss Rhone Valley and its main tectonic units
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an estimated magnitude higher than six were recorded in this area (Faeh et al. 2003). The

current landscape’s configuration was mainly driven by the alpine glaciation during the last

glacial maximum and paraglacial processes that took place after the glacial retreat (Hin-

derer 2001). Glacial erosion generated an important overdeepening of the Rhone Valley,

following the weakness zone of the Simplon fault (Preusser et al. 2010).

3 Methods

3.1 Data collection

A geodatabase storing information on location and characteristics of gravitational slope

deformations (GSD) was implemented at the University of Lausanne, Switzerland (Ped-

razzini 2012). Data have been extracted from four different sources:

• Review of scientific and technical studies as well as analysing and digitising features

described in the published 1:25000 geological maps (Swisstopo).

• Aerial photographs (1:20000 and 1:30000) and orthophotos (15 and 25 cm pixel size).

• Digital elevation model (Swisstopo) at 2 m/25 m cell size for areas below/above

2000 m asl.

• Google Earth images (� Google 2010).

• Local field mapping.

A lower size limit of 0.05 km2 was retained to provide an inventory as complete as

possible and to avoid scale discrepancy between GSD detected from remote sensing data

and those extracted from 1:25000 geological maps. A similar size limit was also chosen by

Korup (2005); he also proposed to map GSD according to their typology. It is often

difficult to assign specific GSD within complicated classical classifications such as

Hutchinson (1988) or Cruden and Varnes (1996). Complex sites that can fit several cat-

egories are common; hence, Jarman (2006) identified just five broad categories for the

Scottish Highlands. Here, landslides have been classified by a three-way simplification of

Hutchinson (1988):

1. Deep-seated creep/sagging (DSCS, 142 events) characterised by pronounced scarps

and counterscarps and by the presence of different minor landslides inside the

deformed mass.

2. Rockslide and rock avalanches (RRA, 91 events) characterised by monolithic masses

of rock with a failure surface marked by pre-existing discontinuity sets.

3. Large roto-translation landslides (LRT, 61 events) characterised by distinct heads-

carps, pronounced toe bulges and debris lobes.

For the scope of the analysis, the centroid of the area covered by each landslide event

was considered (Figs. 2, 3).

Historical/present-day instabilities (HPI) consisting in more than 400 events identified

during the last century and stored as points in two coordinates. Most of the information

derived from the catalogue of the main rock-falls in Switzerland elaborated by the

Research Centre on the Alpine Environment (CREALP) (Fig. 3).

Seismic data come from the Earthquake Catalogue of Switzerland 2009 (ECOS-09)

elaborated from the Swiss Seismological Service (SED). For the scope of the present

analysis, only instrumentally recorded earthquakes with magnitude higher than 3 were

considered (Fig. 3). According to Keefer (1984), which study is based on an inventory of
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Fig. 2 Gravitational slope deformations (GSD) inventoried along the Swiss Rhone Valley. The tree main
classes are represented: deep-seated creep/sagging (DSCS, in blue); large roto-translation landslides (LRT,
in red); and rockslide and rock avalanches (RRA, in green)

Fig. 3 Geological events. Blue dots represent the centroids of gravitational slope deformations (GSD); red
dots represent the historical/present-day instabilities (HPI); green dots represent instrumentally recorded
earthquakes with magnitude higher than 3
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historical events, this magnitude represents the lower limit for landslides triggered by

earthquakes.

3.2 Ripley’s K-function

A diagnostic of independence among geological events was performed by means of the

Ripley’s K-function (Ripley 1976). This statistic exploratory method allows detecting if a

point process (e.g. X,Y location of events) belonging to a given phenomenon is random

distributed or if, on the contrary, it exists an attraction (clustering) or a repulsion (dis-

persion) among data (Dixon 2002).

Analytically, the K-function K(r) equals the expected number of additional points n
within a distance r from a randomly distributed event u divided by the intensity k:

K rð Þ ¼ 1

k
E n X \ b u; rð Þn uf g j u 2 Xð Þ½ �

where the intensity k of the point process X is defined as the average number of points per

unit area and b(u,r) is a circle of radius r centred over a point u of X (Fig. 4a).

Fig. 4 The Ripley’s K-function analyses point patterns at increasing distance values, as represented by the
circles in a (see on the text for symbol explanation). The interaction between the different geological events
is represented in b: gravitational slope deformations (GSD); historical/present-day instabilities (HPI); and
earthquakes
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Under complete spatial randomness (CSR), which assumes independency among events

and a uniform Poisson distribution of events inside any specific sub-area (also referred to a

stationary or homogeneous point process), K(r) is equal to pr2.

K(r) can be plotted against the distance r, so that it is easy to compare the estimated

curve with the theoretical one (for CSR): if the estimated K(r) value for a given distance

r is higher than pr2, then events are spatially clustered, whilst smaller values indicate

repulsion between events. That way allows finding out at which range of distance r data

perform a non-random pattern distribution (e.g. cluster or dispersion).

The study area where geological events were observed was modelled as the polygon of

irregular shape delimiting the Rhone Valley. Since events falling outside this boundary are

not counted to calculate the intensity of the phenomenon, edge correction was applied and

introduced in the computation of the K-function. Essentially, if a circle falls only partially

inside the study area, only the overlapping surface is counted.

A variety of edge-corrected estimators have been proposed in literature. The most

commonly used is due to Ripley (1988). Including it in the computation, the K(r) assumes

the following form:

K rð Þ ¼ 1

k

X

i

X

i 6¼j

1

w lilj

� � I dij\r
� �

N

where the weight function, w(lilj), provides the edge correction and N represents the total

number of points. Considering dij the distance between two points ith and jth, the indicator

function (I) assumes the value of 1 when the circle of radius dij is completely inside the

study area. If part of the circle falls outside the study area, then w(lilj) corresponds to the

proportion of the circumference included inside.

It is important to notice that the intensity of spatial distributed geological events normally

varies along the study area, so that they cannot be considered as stationary point processes.

Indeed, landslides’ distribution is influenced from different morphological and geological factors

such as slope and lithology (Guzzetti et al. 1999; Carrara et al. 1991) whose distribution varies

along the space. To take into account the local variability of the intensity characterising the

phenomena under study, a modification of the K-function for a non-stationary (also said inho-

mogeneous) point process was adopted (Baddeley et al. 2000). The inhomogeneous K-function

assumes that each point xi is weighted by its local intensity k(xi). Independently on the location u

and considering the indicator function (I), the inhomogeneous K-function is defined as:

Kinhom rð Þ ¼ E
X

xi2X

1

k xið Þ
I 0\ k u� xi k � rf g j u 2 X

" #

As for the stationary case, if events are randomly distributed, then Kinhom(r) is equal to

pr2. Therefore, the same considerations about the comparison between the theoretical and

the estimated values assumed by the function are valid. Light of the inhomogeneous

distribution of geological events, the use of the inhomogeneous K-function enables to

overcome to a misinterpretation between the natural non-constant intensity and a veritable

attraction of events (Hering et al. 2009) which represents a clustering.

The assumption of inhomogeneity in landslides and earthquakes distribution was proved

via chi-squared test of CSR, using irregular Voronoi tessellation. The study region was

divided into sub-regions, and the number of points observed inside each one was compared

with the expected number of events under the assumption of homogeneous intensity. This

way allows rejecting the null hypothesis at a pre-fixed confidence level.
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Many studies attest of landslides reactivations of ancient deposits (Bertolini et al. 2005) and

how deep-seated gravitational slope deformations can evolve into hazardous slope collapses

(Bonnard et al. 2004). To verify this assumption for our case study, the cross K-function was

applied and the spatial dependency of the first class of events (HPI) from the second one (GSD)

was considered. Computationally, the pair K(r)-cross function counts the number of events

belonging to one process arising at a distance r from an event belonging to a second process. As

for the standard K(r) function, if the first process is spatially independent from the second one

(i.e. randomly distributed around it), then the K(r)-cross assume the value pr2, whilst deviations

between the estimated and the theoretical curve may suggest a spatial interaction (attraction or

repulsion) between the two processes.

Actually in the present study, we computed a transformation of the Ripley’s K-function,

namely the L-function (Besag 1977) which makes it easier to compare the estimated with the

theoretical curves and to evaluate departures from this last one. The L-function is defined as:

L rð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
K rð Þ

p

r

The square root has the effect of stabilising the variance of the estimator. For a com-

pletely random point pattern distribution, the theoretical value of the L-function minus

r always assumes the value zero.

To test for CSR, 999 Monte Carlo simulations of a realisation of an inhomogeneous

random point process were performed, and for each simulation, the L(r) function was

computed. This provides a pointwise minimum–maximum Monte Carlo envelopes,

allowing to judge about data randomisation (the null hypothesis) for each value of

r. Events are assumed to be random distributed if, for a fixed value of the distance r, the

empirical L(r) function is included between the upper and the lower simulated curves (i.e.

the maximum–minimum envelope). Moreover, the null hypothesis can be rejected if the

estimated curve lies outside the envelope. The significance level of this test at each value of

r is equal to 2/(1 ? number of simulations), that is, 0.2 % in our case.

To resume, the K-function was applied to explore if (a) gravitational slope deformations

(GSD), historical/present-day instabilities (HPI) and earthquakes inventoried dataset are

spatially clustered or randomly distributed; (b) if GSD and HPI are attracted each other;

(c) if GSD and earthquakes show similar cluster tendency (Fig. 4b).

All the computations were carried out using R free software for statistical computing

and graphics (R Development Core Team 2012). R is a free software environment inte-

grating facilities for data manipulation, calculation and graphical display. The R base can

be extended via packages available through the Comprehensive R Archive Network

(CRAN) which covers a very wide range of modern statistics. More specifically, the spatial

point pattern analyses of the geological events considered in the present study and their

cluster detection were supported by the package spatstat (Baddeley and Turner 2005).

4 Results

4.1 Inhomogeneous data distribution

Geologic events are not-stationary processes whose probability distribution changes in

space and in time. For this reason, the inhomogeneous K-function is more appropriate to

give a measure of clustering of geological point processes. First of all, the inhomogeneous

distribution of the entire dataset (GSD, HPI and earthquakes) was proved via chi-squared
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dispersion test (X2) for spatial pattern based on quadrat counts. The number of observed

events (Ni) and of expected events ( �N) under the assumption of CSR (that implies

homogeneity in the spatial distribution of the phenomenon) was calculated for each tes-

sellation on which the study area was subdivided. Then, the X2 test was calculated as

follows:

X2 ¼
Xn

i¼1

Ni � �Nð Þ2
�N

The values of X2 were computed and compared with the values stated on X2 table.

Considering the irregular shape and the orientation of the study area, Dirichlet/Voronoi

tessellation instead of regular quadrats was considered. We established to divide the area in

6 sub-regions, which correspond to five degree of freedom, as a compromise to account for

global and regional inhomogeneity. Results are shown on Table 1: the null hypothesis of

CSR can be rejected with a confidence level (p value) of at least 0.05 or better. Conse-

quently, the intensity of events is to be considered non-constant along the study area.

4.2 Gravitational slope deformations

Gravitational slope deformations (GSD) inventoried over the study area were further

classified into three groups as described above. L(r) trend for deep-seated creep/sagging

(DSCS, 142 events), rockslide and rock avalanches (RRA, 91 events) and large roto-

translational landslides (LRT, 61 events) shows that each group of landslides is clustered at

a distance ranging from 500 m up to about 11 km with a peak at about 1.5 km (Fig. 5).

Each class of instabilities can be individually explored to detect its significant attraction

among events over 999 random simulations. The observed L(r) function for each class lies

above the upper simulated envelopes in a close range of distance values as follows:

1–1.6 km for LRT, 0.9–2.5 km for the RRA and 1.5–5.5 km for DSCS. The simulation

band width is quite high due to the small number of events belonging to each class and the

high number of simulations; this is especially evident in the case of LRT. Nevertheless, this

analysis assures a significant level of 0.002 at these values of distance.

4.3 Gravitational slope deformations and historical/present-day instabilities

The L(r) function computed over the entire dataset representing the gravitational slope

deformations (GSD) well describes at which values of distance r events display cluster

behaviour. This happens in the range 0.75–9.5 km, whilst events are dispersed above about

18 km and included between the upper and the lower simulated curves in between,

meaning a random distribution. Historical/present-day instabilities (HPI) show a similar

Table 1 The chi-squared test (X2) for the considered geological phenomena

Geological events X2 p value

GSD 23.7881 0.0002384

HPI 11.3291 0.04523

Earthquakes (M [ 3) 13.7639 0.01718

The statistical p value is also reported
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pattern distribution as can be observed by plotting together the L(r) function for the two

dataset (Fig. 6): events are clustered from about 0.75 km up to 8.5 km, dispersed above

12.5 km and randomly distributed in between. The comparable trend of the two curves

indicates that events belonging to the two types of instabilities could be affected from the

same predisposing factors and could be attracted each other and not be independently

distributed. Moreover, on our inventoried dataset, 32 % of all HPI follow inside the area

covered by GSD.

To test the hypothesis of an attraction between HPI and GSD, the inhomogeneous cross-

L(r) function was computed (Fig. 7). The trend of the curve shows a cluster behaviour in

the range 0–4 km, proving that at this distance the number of HPI in the neighbourhood of

GSD (and vice versa) is higher than expected for an inhomogeneous random distribution of

events. From 4 km up to about 7.5 km, the two types of instabilities are independently

distributed, whilst above 7.5 km, they are dispersed, meaning repulsion among the dif-

ferent events.

4.4 Gravitational slope deformations and earthquakes

The L(r) function was computed to give a measure of clustering of GSDs and earthquakes

taking place along a huge time period in the same area, the Rhone Alps Valley. The

L(r) trend (Fig. 8) shows that the spatial distribution of landslides and earthquakes is not

random and that both geological phenomena are clustered from close to 0 up to about

10 km. This similar trend in the cluster behaviour of the two geological processes can

attest an interaction and demonstrate a predisposing factor of earthquakes for GSD.
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Fig. 5 The empirical L(r) function computed for large roto-translation landslides (LRT, red line), rockslide
and rock avalanches (RRA, green line), and deep-seated creep/sagging (DSCS, blue line). Dashed lines
represent the minimum–maximum Monte Carlo envelopes computed over 999 simulations. The black
dashed line represents the theoretical L(r) function
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Fig. 6 The empirical L(r) function computed for historical/present-day instabilities (HPI, red line) and
gravitational slope deformations (GSD, blue line). Dashed lines represent the minimum–maximum Monte
Carlo envelopes computed over 999 simulations. The black dashed line represents the theoretical
L(r) function
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computed over 999 simulations. The black dashed line represents the theoretical L(r) function
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5 Discussion and conclusions

In this paper, we analysed the spatial pattern of landslides and earthquakes recorded in the

Swiss Rhone Valley. For the scope of the analyses, geological events were treated as

punctual data. Under the assumption of spatial inhomogeneity of the patterns, as naturally

is for geological events, the K-function showed evidence of punctual events attraction at

well-defined distance values.

The main results coming from the estimated K-function are as follows: (1) gravitational

slope deformations, historical/present-day instabilities and earthquakes are spatially clus-

tered over specific ranges of distance; (2) historical/present-day instabilities are spatially

attracted from gravitational slope deformations; (3) gravitational slope deformations and

earthquakes display a similar pattern behaviour.

The abovementioned results attest for events interaction and lead to interesting inter-

pretations as concern the properties and the genesis of the geological phenomena. The

results clearly indicate that landslides are not randomly distributed but spatially attracted in

clusters at well-defined distance range and this cluster behaviour is demonstrate over a

huge number of simulation envelopes (Monte Carlo test). This analysis represents a global

indicator of a cluster spatial distribution; moreover, the detected critical distance values

can be retained for future local cluster analyses aiming to locate clusters in space.

The cross K-function trend confirms that the two classes of landslides (gravitational

slope deformations and historical/present-day instabilities) are not independently distrib-

uted. Indeed, it is well known that modern instabilities are likely to occur within ancient

landslides (Bertolini et al. 2005). The revealed spatial relationship between the two classes

indicates that the decrease of rock mass strength from quaternary landslide deposits acts as
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Fig. 8 The empirical L(r) function computed for gravitational slope deformations (GSD, blue line) and
earthquakes (green line). Dashed lines represent the minimum–maximum Monte Carlo envelopes computed
over 999 simulations. The black dashed line represents the theoretical L(r) function
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predisposing factor for new instabilities. This observation of the increase in susceptibility

due to the remobilisation of materials in old landslide deposits is relevant for hazard

analysis and prevention purposes. In fact, remobilisations represent a well-known threat for

infrastructures in Alpine areas, which have produced important economic losses in the past

(Bonnard et al. 2004).

Finally, the comparison between the K-functions evaluated separately for gravitational

slope deformations and earthquakes reveals a similar cluster behaviour. The comparable

spatial pattern of geological phenomena could be indicating that repeated low-magnitude

seismic activity acts as a long-term predisposing factor causing a progressive reduction of

rock mass strength, in a zone where rocks are also highly fractured due to tectonic efforts

along fault zone, and slopes affected by lateral release after the retreat of glaciers. How-

ever, the discussion about trigger factors for landslides in the study area is beyond the

scope of this study which focuses on their spatial pattern distribution.
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Deutschen und Österreichischen Alpenvereins 25:231

Ansari A, Noorzad A, Zafarani H (2009) Clustering analysis of the seismic catalog of Iran. Comput Geosci
35(3):475–486

Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw
12(6):1–42

Baddeley A, Moller J, Waagepetersen R (2000) Non- and semiparametric estimation of interaction in
inhomogeneous point patterns. Stat Neerl 54:329–350
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