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Conditional pair distributions in many-body systems: Exact results for Poisson ensembles
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We introduce a conditional pair distribution function (CPDF) which characterizes the probability density of
finding an object (e.g., a particle in a fluid) to within a certain distance of each other, with each of these two
having a nearest neighbor to a fixed but otherwise arbitrary distance. This function describes special four-body
configurations, but also contains contributions due to the so-called mutual nearest neighbor (two-body) and shared
neighbor (three-body) configurations. The CPDF is introduced to improve a Helmholtz free energy method based
on space partitions. We derive exact expressions of the CPDF and various associated quantities for randomly
distributed, noninteracting points at Euclidean spaces of one, two, and three dimensions. Results may be of
interest in many diverse scientific fields, from fluid physics to social and biological sciences.
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I. INTRODUCTION

Spatial distributions of objects are ubiquitous in nature. The
pattern of distribution of a population can be characterized
by statistical relationships between each component and its
nearby companions. Methods based on neighbor relationships
and two-point correlations are some of the simplest and most
popular techniques for statistical pattern recognition. The
analysis of spatial patterns is especially useful in modeling
and describing a wide variety of natural [1–8] and social
phenomena [9–13].

Methods for spatial structure studies of many-body systems
have been developed and extensively applied in the physics of
condensed matter [14,15]. Similar techniques are employed
to understand the associations of galaxies and the large-scale
structures of the universe [16,17]. The main spatial structure
function in the study of liquids is the pair distribution function
(PDF). For statistically homogeneous and isotropic systems,
which are the focus of this paper, the PDF is a radial
function g(r), translationally invariant, which characterizes the
probability density of finding a particle at some given distance
r from a reference particle. Assuming pairwise particle
interactions, g(r) can be used to obtain equations involving
macroscopic thermodynamic variables [15]. An additional
description can be obtained from kth-nearest-neighbor PDFs
gk(r) [18–22]. The first nearest neighbor distribution g1(r) is
particularly useful to understand local fields around a particle
in a fluid [23–26], or a star in a stellar cluster or galaxy [27], and
it has applications in other problems in physics [28]. However,
further detailed microscopic information is sometimes re-
quired to statistically characterize physical properties of fluids
and materials. For instance, mutual-nearest-neighbor (MNN)
pair descriptors are used in the study of solute relaxation
processes in fluids [29], phonon spectral analysis of disordered
systems [30], and for explaining the behavior of glass-forming
liquids [31]. In general, the probability that particles in a fluid
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form MNN pairs cannot be exactly deduced from the standard
g(r) or individual PDFs gk(r). Therefore, a superior spatial
structure descriptor is highly desirable.

We propose here the introduction of a more complete
description of the microscopic neighborhood structure around
a reference particle. We introduce a conditional pair distri-
bution function (CPDF) which gives the probability density
of finding a particle to a certain distance from another in
a fluid, with each of these two having a nearest neighbor
to a fixed but otherwise arbitrary distance. This function
describes special four-body configurations, but also contains
contributions due to the mutual nearest neighbor (two-body)
and shared neighbor (three-body) configurations. The new
PDF is a spatial descriptor at the two-point distribution level
but contains nontrivial higher-order structural information. In
particular, it is a superior descriptor sensitive to topological
connectedness information regarding the point pattern and
could resolve a variety of degenerate point configurations
associated with the standard PDF g(r) [32].

The primary purpose of introducing the CPDF is to establish
a correct expression for evaluating the interparticle potential
energy in the so-called thermostatistical space partition (TSP)
formalism for fluids. The TSP approach, which was introduced
in Ref. [33] for the case of pure substances and extended
to mixtures in Ref. [34], was motivated by difficulties with
the calculation and qualitative prediction of optical properties
in white dwarf stars, currently based on the occupation
probability formalism of Hummer and Mihalas [35] and
whose consistency has been discussed in Ref. [36]. The TSP
method combines the free-energy minimization technique [37]
with space partitions that assign to each particle a volume
v, which is determined by the distance of the particle to
its closest neighbor, and roughly measures the free space
surrounding each particle. The CPDF introduced in the
present paper, denoted gvv′ (r), is a PDF where the volumes
v and v′ of both pair particles are specified. It will be
shown here that this CPDF is needed for an appropriate
representation of the potential energy of fluids within the TSP
formalism.
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Explicit evaluation of the CPDF gvv′ (r) is considerably
more complicated than the computation of the conventional
PDF g(r). In the pairwise additive assumption for the potential
energy of a fluid, the CPDF can be evaluated using a hierarchy
of integral equations for s-body correlation functions, for
instance, the Yvon-Born-Green hierarchy [15], truncated by
introducing some appropriate closure approximation. In the
general case, with gvv′ (r) representing four-particle configu-
rations, the hierarchy expansion can be truncated in factors
with correlation functions higher than s = 5 (in analogy with
the mean-field approximation used in Ref. [29] to assess the
MNN pair distribution of Lennard-Jones fluids). A method
of calculating gvv′ (r) by means of this scheme is currently
being prepared in detail. In the present contribution we will
restrict ourselves to the evaluation of gvv′(r) for random, non-
interacting systems or so-called Poisson ensembles, which can
be directly derived from simple and well-known probabilistic
properties (e.g., [4,38,39]). The aim is twofold. First, the study
of the CPDF for random points may prove to be a useful guide
for investigating this function in other systems, apart from
its own importance at a fundamental level. Second, Poisson
statistics is an especially powerful tool for studies of a wide
variety of systems, and its CPDF may provide a new method
of analysis. In fact, Poisson statistics emerges as a useful
alternative in view of the practical limitations of a rigorous
treatment for the complex natural systems. Random samples
are employed very widely by comparison or contrast in the
analysis of observed event data [40], or as a convenient first
approximation to describe the spatial distribution of a variety
of natural systems, from biological species [1–8] to stars in the
sky [41–43]. The present work is part of an effort dedicated to
improving the TSP formalism and to providing a well-defined
and very demanding test model of the CPDF for further
research.

The paper is structured as follows. In Sec. II the con-
ditional pair distribution function is formulated and gen-
eral results are presented. Its implication within the TSP
formalism is described in Sec. III. Section IV contains
a derivation of the CPDF for Poisson patterns in one,
two, and three spatial dimensions. Some derived results
are examined there. Concluding remarks are contained in
Sec. VI.

II. DEFINITIONS AND GENERAL RELATIONS

Consider a system of N identical particles distributed
in a D-dimensional Euclidean space with volume V . For
conciseness, the radial distance r from a reference particle
will be expressed in terms of the volume ω = αrD of a
D-dimensional sphere of radius r centered in the particle,
with

α ≡ πD/2

�
(
1 + D

2

) , (2.1)

where � is the gamma function. The conventional PDF,
henceforth expressed as g(ω), describes the probability density
of finding a particle on the surface of a sphere of volume ω

centered in the reference particle. More exactly, g(ω) is defined

such that

ng(ω)dω ≡ mean number of particles between the
surfaces of ω and ω + dω centered at the
reference particle, (2.2)

where n = N/V is the mean density in the fluid.
It is assumed here that for any reference particle there is one

and only one nearest neighbor. This means that if two or more
particles are equidistant from the reference, one of them will
be arbitrarily designated as the first neighbor. The distance a

between a particle and its nearest neighbor will be expressed
by the volume v of a D-dimensional sphere of radius a. The
volume v will be referred to as the available volume (AV)
of the particle because it roughly measures the free-particle
space surrounding it. The size distribution of AV in the fluid
is given by the distribution nv , where nvdv is the number
density of particles with available volume between v and
v + dv. The quantity (nv/n)dv is clearly the probability that
the nearest neighbor lies in the volume dv of a spherical shell
centered in the reference particle. Therefore, nv/n is equivalent
to the so-called first neighbor distribution [24–26]. In the
thermodynamic limit (N,V → ∞, keeping N/V constant),
it follows that

n =
∫ ∞

0
nvdv. (2.3)

The conditional pair distribution functions gv(ω) and
gvv′(ω) are defined by the following quantities:

ngv(ω)dω ≡ mean number of particles between the surfaces
of ω and ω + dω centered at the reference
particle with AV v, (2.4)

nv′gvv′(ω)dv′dω ≡ mean number of particles with AV
between v′ and v′ + dv′ lying between
the spherical volumes ω and ω + dω

centered at a particle with AV v. (2.5)

According to the meaning of nv , it is clear that g(ω) is just a
weighted average of gv(ω) over the whole range of v, that is,

ng(ω) =
∫ ∞

0
nvgv(ω)dv. (2.6)

Similarly, the integration of (2.5) over v′ covering the whole
range of available volume gives (2.4), i.e.,

ngv(ω) =
∫ ∞

0
nv′gvv′(ω)dv′. (2.7)

From (2.6) and (2.7) it follows that

n2g(ω) =
∫ ∞

0

∫ ∞

0
nvnv′gvv′(ω)dvdv′. (2.8)

From the definitions given above, we can see that the
function gv(ω) is the probability density that a particle lies
at the surface of a spherical volume ω centered in a randomly
chosen particle with AV v. Similarly, gvv′ (ω) is the probability
density of finding a particle with AV v′ in the surface of a
spherical volume ω centered in a particle with AV v. The
conditional character of the probability densities gv(ω) and
gvv′(ω) appear due to the specification of the AV v and v′ for
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FIG. 1. (Color online) Left: Example of a point pattern with a
characterization of the evaluation of the pair distribution functions
g(ω), gv(ω), and gvv′ (ω). The point P ′ lies in the surface of the
spherical volume ω centered at the reference point P . Nearest
neighbors of P and P ′ lie in the surfaces of spherical volumes v

and v′ centered in P and P ′, respectively. Right: Representation of
the four classes of (v,v′) pairs (see text). Here, v+ ≡ max(v,v′) and
v− ≡ min(v,v′).

one or both particles of each pair. Due to the symmetry of the
problem, the function gvv′ (ω) is symmetric in the variables v

and v′. Figure 1 (left) displays a schematic point pattern with
characterizations of the standard PDF g(ω) and the CPDFs
gv(ω) and gvv′(ω). The function gvv′ (ω) and the distribution nv

are the central quantities of the present issue, since knowledge
of them allows one to calculate gv(ω) and g(ω) with (2.7) and
(2.8).

The function gvv′ (ω) describes in general four-body con-
figurations, i.e., pairs (v,v′) composed of two particles with a
third particle in the surface of the volume v centered in the
first one and a fourth particle in the surface of v′ centered in
the second one. However, there are also other configurations
of pairs (v,v′) formed by only two or three particles. As is
illustrated in Fig. 1 (right) and detailed in Table I, there are
four independent classes of pairs (v,v′):

(1) Class (i) denotes mutual nearest neighbors, i.e., each
particle of the pair (v,v′) is the nearest neighbor of the other.

TABLE I. Classes of pairs (v,v′) and some properties.

Configuration n body ω range

(i) Mutual nearest neighbor 2 bodies ω = v = v′

(ii) Simple nearest neighbor 3 bodies ω = v+ ≡ max(v,v′)
(iii) Shared nearest neighbor 3 bodies v+ < ω < ωvv′

(iv) Other 4 bodies v+ < ω

(2) Class (ii) corresponds to the configuration where one
and only one particle of the pair (v,v′) is the nearest neighbor
of the other.

(3) Class (iii) refers to the shared nearest neighbor config-
uration, i.e., both particles of the pair (v,v′) have the same
nearest neighbor.

(4) Class (iv) denotes pairs (v,v′) which involve a configu-
ration with four different particles.

Because classes (i–iv) are mutually exclusive and exhaus-
tive, we have

gvv′(ω) = g
(i)
vv′ (ω) + g

(ii)
vv′ (ω) + g

(iii)
vv′ (ω) + g

(iv)
vv′ (ω), (2.9)

where g
(ν)
vv′ (ω) is the contribution to gvv′ (ω) due to pairs (v,v′)

of class (ν).
Geometrical considerations which involve the available

volume v of a particle or, equally, the distance to its nearest
neighbor, can be employed to derive some general properties
of the contributions to gvv′ (ω) on the right-hand side of (2.9).
As can be seen from Fig. 1, class (i) pairs only occur for
ω = v = v′ and, therefore, the mathematical representation
of the term g

(i)
vv′(ω) must have singularities. Indeed, taking

into account (2.5), it is easily demonstrated that this term is
proportional to the product of two Dirac δ functions,

g
(i)
vv′ (ω) ∝ δ(v − v′)δ(ω − v). (2.10)

A similar behavior is deduced for the second term on the
right-hand side of (2.9). Pairs (v,v′) of class (ii) occur only for
ω = v+, with

v+ ≡ max(v,v′), (2.11)

and therefore

g
(ii)
vv′ (ω) ∝ δ(ω − v+). (2.12)

Since two particles cannot share the nearest neighbor when
their volumes v and v′ do not overlap, the third term on the
right of (2.9) vanishes for ω > ωvv′ , where

ωvv′ ≡ (v1/D + v′1/D)D. (2.13)

The third term vanishes also at ω < v+, because no particle
lies at a lower distance than the nearest neighbor. Thus

g
(iii)
vv′ (ω) = 0, ω /∈ (v+,ωvv′ ). (2.14)

Similarly, the fourth term vanishes for ω < v+,

g
(iv)
vv′ (ω) = 0, ω < v+. (2.15)

Therefore gvv′ (ω) vanishes at ω < v+ and has singularities for
pair configurations with ω = v = v′ and ω = v+.

At the fluid context and in analogy to the standard PDF,
one may expect that at sufficiently large interparticle distances
(large ω), pairs (v,v′) are uncorrelated and the CPDF must then
reduce to unity:

lim
ω→∞ gvv′(ω) = 1. (2.16)

III. THE ROLE PLAYED BY gvv′ (ω)
IN THE TSP FORMALISM

Let us define uvv′ (ω) as the interparticle potential between
two particles forming a pair (v,v′), with a particle centered
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in the volume ω and another one located on the surface of
ω. The potential uvv′ (ω), where the AV v and v′ for both
pair particles are specified, is a generalization of the usual
pairwise interparticle potential u(ω). uvv′ (ω) formally takes
into account perturbative effects on the two-body interaction
potential introduced by the nearest neighbor of each particle in
the pair. Many-body contributions to effective pair potentials
are known for liquid hydrogen [44–46] and have been theo-
retically considered for fluid helium [47]. However, potential
energy surfaces of four-particle systems are needed for a full
knowledge of uvv′ (ω) in a fluid. For the moment, ab initio
potential evaluations are limited to three-body systems at few
geometrical configurations and for some atomic, molecular,
and colloidal systems [48–50].

Multiplication of Eq. (2.5) with uvv′ (ω) and integration over
all ω, v, and v′ yields the total potential energy of the system,

� = 1

2V

∫ V

0

∫ V

0
NvNv′

[∫
uvv′ (ω)gvv′(ω)dω

]
dv′dv, (3.1)

where Nv = nvV , Nv′ = nv′V , and the factor 1/2 avoids the
double count of pairs (v,v′). If one writes

uv(ω) =
∫

nv′uvv′ (ω)gvv′(ω)dv′∫
nv′gvv′ (ω)dv′ , (3.2)

then (3.1) can alternatively be written as

� = N

2V

∫ V

0
Nv

[∫
uv(ω)gv(ω)dω

]
dv. (3.3)

Similarly, if we define an averaged pair potential as

u(ω) =
∫

nvuv(ω)gv(ω)dv∫
nvgv(ω)dv

, (3.4)

then the total potential expression reduces to that typically
used in physics of liquids, which is based on the conventional
PDF g(ω), i.e.,

� = N2

2V

∫
u(ω)g(ω)dω. (3.5)

For systems with two-particle potential without many-body
effects, uvv′ (ω) = uv(ω) = u(ω). Otherwise, the CPDF gvv′ (ω)
can be used to calculate effective pair potentials [Eqs. (3.2) and
(3.4)] directly from ab initio many-body potentials uvv′ (ω)
(when these become available), and thus the conventional
evaluation of the total potential energy in liquid theory is
preserved Eq. (3.5).

The thermostatistical space partition (TSP) formalism is
a mathematical model for moderately dilute gases which
combines the free-energy minimization method [37] with
space partitions. It was developed for one-component [33] and
multicomponent [34] fluids. Applications to simple gas models
(hard spheres, van der Waals fluids, attractive particles, and
partially ionized hydrogen gas) have shown that TSP provides
a useful tool to evaluate self-consistently thermodynamic and
structural properties of gases at low densities as found in
white dwarf atmospheres, where conventional techniques fail
to reproduce gas opacities affected by nonideal effects (e.g.,
the Lyman continuum opacity [36,51]). The novel feature
of the TSP formalism is that it allows one to evaluate, in a
thermodynamically self-consistent way, populations of atoms

and molecules in internal energy states as a function of the
available volume v, a variable linked directly with different
degrees of interparticle perturbation.

For one-component fluids, the TSP formalism is defined
in terms of a Helmholtz free-energy model A based on the
occupation number distribution Nv of the variable v [33],

A =
∫ V

0

Nv

β
ln

(
Nvλ

D

N

)
dv + �, (3.6)

where β = 1/(kT ), λ =
√

h2β/(2πm), D is the space dimen-
sion, k the Boltzmann constant, h the Planck constant, m the
particle mass, and T the temperature. The first term on the
right-hand side of Eq. (3.6) is the ideal free energy as given
by the TSP formalism. The space distribution Nv for a particle
system at equilibrium is determined by minimization of A

subjected to total particle number and total volume constraints
(see Ref. [33] for details):

N =
∫ V

0
Nvdv, (3.7)

V =
∫ V

0
vNvdv. (3.8)

In Ref. [33], the interparticle interactions in the fluid were
incorporated into the TSP approach via the potential uv(ω)
and the PDF gv(ω). Therefore, the total potential energy �

was written in Ref. [33] as (3.3), but assuming that uv(ω) is
independent of Nv . In such a case, � is a linear functional of
Nv and the minimization free energy procedure yields

Nv = N

λD
exp

[
−β

(
γ v + φv

2
+ �

N
− μ

)]
(3.9)

with

φv = n

∫
uv(ω)gv(ω)dω, (3.10)

where μ, the chemical potential, and γ = P − �/V , the
pressure minus the potential energy density, are the Lagrange
multipliers for our constraints.

However, if we adopt the more general potential energy
expression given by Eq. (3.1), � is a quadratic functional of
Nv . In this case, it is easily deduced that the minimization
technique leads to

Nv = N

λD
exp [−β(γ v + φv − μ)] , (3.11)

with φv and uv(ω), respectively, given by Eqs. (3.10) and (3.2)
or, equivalently,

φv =
∫ ∫

nv′uvv′ (ω)gvv′(ω)dv′dω. (3.12)

The main difference between Eqs. (3.9) and (3.11) is the
dependence of Nv on φv . It is important to note that the
results obtained in Ref. [33] from the TSP approach for hard
systems and van der Waals fluids remain unchanged if one
uses (3.11) instead (3.9). This is because of the special form
of the two-particle potentials for these systems. However,
Eq. (3.11) is the correct one and must be used in general.
In particular, Eq. (3.11) is supported by results corresponding
to attractive hard spheres (AHSs). The implementation of the
TSP approach to the AHS model is shown in Appendix D. We
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FIG. 2. (Color online) Contact values g(a+) of the PDF for
attractive hard spheres in the TSP formalism based on Eq. (3.11)
(solid lines) are compared with exact values in the limit of zero
density (triangles), Monte Carlo simulations [52] (circles), results of
a perturbative theory [53] (dashed lines), and results derived from
Eq. (3.9) (dotted lines). Here T ∗ = kT /ε is the reduced temperature,
ρ = nd3 the reduced number density, and λ the potential range in
units of the particle diameter d [i.e., ξ = a(λ3 − 1) and a = 4πd3/3
in Eq. (D1)].

obtain the following contact value of the conventional PDF for
this model:

g(ω = a+) = βγ

nB
eβε(1+nξ ), (3.13)

with βγ and B given by Eqs. (D5) and (D6). A density
expansion of Eq. (3.13) yields

g(a+) = eβε{1 + [b + (2 + βε − 2eβε)ξ ]n+O(n2)}, (3.14)

in agreement with the value expected at zero density, g(a+) =
e−βu(a+) = eβε . On the contrary, it may be deduced that
the contact value at zero density resulting from Eq. (3.9)
is incorrectly eβε/2. Although the TSP approach is being
developed mainly for the low densities found in stellar
atmospheres, Fig. 2 shows that Eq. (3.13) can also reproduce
satisfactorily the results at moderately low densities obtained
from Monte Carlo simulations [52]. In conclusion, the correct
expression (3.11) for the space distribution Nv at equilibrium
in the TSP formalism is reached with the minimization of a
free energy model based on the quadratic functional (3.1) for
the system potential energy and the use of the CPDF gvv′ (ω).

IV. POISSON ENSEMBLES

In this section we deduce an exact expression of gvv′(ω)
for an infinite system composed of independent and randomly
distributed points, the so-called Poisson ensemble. This system
is equivalent to the thermodynamic limit of a fluid with
noninteracting particles (the perfect or ideal gas, sometimes
called Poisson fluid in the mathematics literature). The Poisson
ensemble serves as a prototype of more general point systems.

The nearest neighbor distribution for random configurations
of noninteracting points in three dimensions was derived by

Hertz [23]. In the present notation, the distribution nv for
Poisson ensembles in arbitrary dimension is given by

nv = n2e−nv. (4.1)

This distribution can also be derived from the TSP method
[33]. Indeed, (4.1) is the minimum Helmholtz energy solution
[Eq. (3.11) with φv = 0] for the distribution of available
volume with the constraints of particle conservation (3.7) and
space normalization (3.8) in the thermodynamic limit.

For the evaluation of gvv′(ω), we use two basic properties
which characterize to a Poisson point process in arbitrary
dimension and with average density n:

(A) the probability that a given volume � is found
empty of points, except by a prescribed and
finite number of them, is e−n�, (4.2)

(B) the probability of finding a point within an
infinitesimal volume d� is nd�. (4.3)

We now apply these properties in the evaluation of the
occurrence probability of pairs (v,v′) in classes (i–iv). We call
δp the probability for the occurrence of a pair (v,v′) with
the second point (say P ′), which has an AV between v′ and
v′ + δv′, lying between the surfaces of volumes ω and ω + δω

centered in the reference point (say P ), which has an AV
between v and v + δv. By definition of gvv′(ω) [Eq. (2.5)], it
is evident that the probability δp can be expressed as follows:

δp = n−1nvnv′g
(ν)
vv′ (ω)δvδv′δω. (4.4)

On the other hand, in the case of configurations class (iv) and
according to Eqs. (4.2) and (4.3), the probability δp equals the
product of the following four probabilities (see Fig. 3):

(a) the probability (nδω) that the point P ′ (P ) lies between
the surfaces of ω and ω + δω centered in P (P ′),

(b) the probability (nξvδv) of finding a point between the
surfaces of v and v + δv centered at P , where ξv is the fraction

FIG. 3. (Color online) Pairs (v,v′) showing various geometrical
quantities involved in the evaluation of the CPDF gvv′ (ω) for Poisson
ensembles in one and two dimensions.
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of δv that is not shared with v′,

ξv ≡ 1 − δv ∩ v′

δv
, (4.5)

(c) the probability (nξv′δv′) of finding a point between the
surfaces of v′ and v′ + δv′ centered at P ′, ξv′ being the fraction
of δv′ that is not shared with v,

ξv′ ≡ 1 − δv′ ∩ v

δv′ , (4.6)

(d) the probability (e−nv∪v′
) that no points, apart from P and

P ′, lie in the union volume v ∪ v′.
For notational simplicity, explicit ω and v′ (v) dependence

has been omitted for ξv (ξv′). In (b) and (c) we have used the
fact that due to the meaning of available volume, there is no
point into portions of δv and δv′ which overlap with v′ and v,
respectively. Thus, for pairs in class (iv) we obtain

δp = e−nv∪v′
(nξvδv)(nξ ′

vδv
′)(nδω)�(ω − v+), (4.7)

where �(x) is the usual Heaviside step function, which here
takes into account that pair configurations with ω < max{v,v′}
are forbidden Eq. (2.15). Therefore, using (4.1) and that v ∪
v′ = v + v′ − v ∩ v′, it follows from Eqs. (4.4) and (4.7) that

g
(iv)
vv′ (ω) = ξvξv′env∩v′

�(ω − v+). (4.8)

A similar procedure applies immediately to pairs (v,v′) in
classes (i–iii). In the case (iii) we must replace the assumptions
(b) and (c) by the probability (nδv ∩ δv′) of finding the shared
nearest neighbor inside of intersection volume (δv ∩ δv′) of the
spherical shells δv and δv′ surrounding P and P ′, respectively
(Fig. 4). Then

g
(iii)
vv′ (ω) = ηvv′

n
env∩v′

�(ω − v+), (4.9)

where ηvv′ represents the ratio between the volume of inter-
section and the volume product of both shells,

ηvv′ ≡ δv ∩ δv′

δvδv′ (4.10)

FIG. 4. (Color online) Shared neighbor configuration for D � 2.

(the ω dependence of ηvv′ is omitted for brevity). For pairs of
class (i), i.e., mutual neighbors, the probabilities (b) and (c)
are considered by just (a) and must be replaced by Dirac δ

distributions as expressed by Eq. (2.10). Then

g
(i)
vv′ (ω) = 1

n2
δ(v − v′)δ(ω − v)enζv, (4.11)

where ζ is the fraction of the overlap volume (v ∩ v′/v) of two
spheres with equivalent size and whose centers are separated
by a distance equal to their radii (notice that ζ depends
exclusively on the dimensionality D). Similarly, in the case of
pairs of class (ii), the probability of finding a nearest neighbor
as given by either (b) or (c) is included in the probability (a)
and, according to Eq. (2.12), we have

g
(ii)
vv′ (ω) = ξv−

n
δ(ω − v+)env∩v′

(4.12)

with

v− ≡ min(v,v′). (4.13)

Substitution of expressions (4.8), (4.9), (4.11), and (4.12)
into Eq. (2.9) yields the CPDF for Poisson ensembles:

gvv′(ω) = env∩v′
[ (

δ(v − v′)
n2

+ ξv−

n

)
δ(ω − v+)

+
(

ηvv′

n
+ ξvξv′

)
�(ω − v+)

]
. (4.14)

The cross section v ∩ v′ between v and v′ for one-dimensional
pairs (v,v′) is easily deduced to be (v + v′ − ω)/2 at ω �
v + v′ and zero otherwise. Results for D = 2 and D = 3 can
be also deduced by simple geometry. Specifically, one finds
that [54]

v ∩ v′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (v + v′ − ω), (D = 1)

v
π

[
θ − 1

2 sin(2θ )
]

+ v′
π

[
φ − 1

2 sin(2φ)
]
, (D = 2)

v
4 (2 − 3 cos θ + cos3 θ )

+ v′
4 (2 − 3 cos φ + cos3 φ), (D = 3)

(4.15)

for v+ � ω � ωvv′ and v ∩ v′ = 0 for ω > ωvv′ , where the
angles θ and φ are given by (D � 2)

cos θ = ω2/D + v2/D − v′2/D

2(ωv)1/D
, (4.16)

cos φ = ω2/D + v′2/D − v2/D

2(ωv′)1/D
. (4.17)

The quantities ξv , ξv′ , ηvv′ in Eq. (4.14) can be evaluated in
terms of elementary functions. For ω > ωvv′ , with ωvv′ given
by Eq. (2.13), we have ξv = ξv′ = 1, ηvv′ = 0, v ∩ v′ = 0, and
therefore

gvv′(ω) = g
(iv)
vv′ (ω) = 1, ω > ωvv′ . (4.18)
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For v+ � ω � ωvv′ , it can be shown easily (with the help of
Figs. 3 and 4) that

ξv =

⎧⎪⎨
⎪⎩

1
2 ,

1 − θ/π,

1
2 (1 + cos θ ),

ξv′ =

⎧⎪⎨
⎪⎩

1
2 , (D = 1)

1 − φ/π, (D = 2)
1
2 (1 + cos φ), (D = 3)

(4.19)
and

ηvv′ =

⎧⎪⎨
⎪⎩

1
2δ(ω − v − v′), (D = 1)

(2π
√

vv′ sin[θ + φ])−1, (D = 2)

sin θ [6v1/3v′2/3 sin(θ + φ)]−1 (D = 3).

(4.20)

Some guidelines for the derivation of ηvv′ are given in
Appendix A. Although ηvv′ was written in a particular way
for D = 3, it is actually symmetric with respect to v and v′.
Notice also that the prefactor 1/2 in Eqs. (4.19) and (4.20) for
D = 1 is related to the “edge surface” of the one-dimensional
“volumes” v and v′ (see Fig. 3).

A. Explicit expressions for D = 1 and D → ∞
Substantial simplifications in Eq. (4.14) occur in the limits

of one and infinitely many space dimensions. In particular,
the combination of Eq. (4.14) with results (4.15), (4.19), and
(4.20) at D = 1 gives the CPDF for one-dimensional Poisson
systems:

gvv′ (ω) =
[
e(nv)/2

n2
δ(v − v′) + e(nv−)/2

2n

]
δ(ω − v+)

+ en(v+v′−ω)/2

4
�(v + v′ − ω)�(ω − v+)

+ 1

2n
δ(ω − v − v′) + �(ω − v − v′). (4.21)

On the other hand, as the spatial dimension tends to infinite, the
intersection volume of two off-center hyperspheres (v ∩ v′),
the overlap space between two off-center hyperspherical shells
(δv ∩ δv′), and the cross section between a hyperspherical
shell and a hypersphere (δv ∩ v′) not centered, all go to
zero. Consequently, ξv = ξv′ → 1 and ηvv′ → 0 everywhere
as D → ∞, and therefore (4.14) reduces to

gvv′ (ω) =
[

1

n2
δ(v − v′) + 1

n

]
δ(ω − v+) + �(ω − v+).

(4.22)

One of the main differences between the CPDF of Poisson
ensembles at one and infinite space dimensions concerns the
shared neighbor contribution. For D = 1, giii

vv′(ω) is a singular
function that corresponds to a single point of contact between v

and v′, while that at D = ∞, the probability density of finding
a pair sharing the first neighbor, tends to zero everywhere
because ηvv′ → 0.

B. Discussion

In Fig. 5 we depict evaluations of gvv′ (ω) based on
Eq. (4.14) for D = 1,2,3, and ∞, at (nv,nv′) = (0.2,0.2)
and (nv,nv′) = (1,0.5) (dotted and solid lines, respectively).
For the same conditions, Fig. 6 shows the contributions to
gvv′(ω) originated by pairs (v,v′) in classes (iii) and (iv), as

FIG. 5. (Color online) Evaluations of gvv′ (ω) at dimensions
D = 1,2,3,∞ for (nv,nv′) = (0.2,0.2) (dotted lines) and (nv,nv′) =
(1,0.5) (solid lines).

given by Eqs. (4.9) and (4.8). The contribution which shows
the largest variations is g

(iii)
vv′ (ω), a direct consequence of the

complex dependence of the overlap shell volume ηvv′ with the
parameters v, v′, and ω.

As observed in Fig. 5, gvv′ (ω) vanishes for all dimensions
at ω < v+, which means that there are not very close pairs
(v,v′) as a consequence of the exclusion zones imposed by
the AV v and v′. The main striking features on the plots are
the strong correlations between pairs (v,v′) at ω = v+ for all
dimensions and at ω = ωvv′ for D = 1 and 2. For, respectively,

FIG. 6. (Color online) Contributions g
(iii)
vv′ (ω) and g(iv)(ω) (dashed

and solid lines, respectively) to gvv′ (ω) at v+ < ω < ωvv′ , for
D = 1,2,3,∞, and for the two (v,v′) conditions shown in Fig. 5.
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D = 1,2, and 3, ωvv′ = 0.4, 0.8, and 1.6 in the case of pairs
(nv,nv′) = (0.2,0.2), and ωvv′ = 1.5, 2.914, and 5.771 in the
case (nv,nv′) = (1,0.5).

The singularity at ω = v+, denoted by vertical lines in
Fig. 5, is produced by pairs where at least one of the two
points is the nearest neighbor of the other one, i.e., it has its
origin in pairs of type (ii), together with pairs of type (i) for the
example with v = v′ (mutual nearest neighbors). The second
strong correlation originated at one and two dimensions is
due to the shared nearest neighbor configuration, i.e., pairs
in class (iii). For D = 1, the singularity introduced by the
δ(ω − v − v′) function in Eq. (4.21), seen as vertical lines in
Fig. 6, is a consequence of the fact that the shared neighbor
must be located in the intersection of the outer edges of v

and v′, which for D = 1 corresponds to a single point in
space. In the case of two-dimensional Poisson ensembles, the
scaled overlap volume ηvv′ gives nonzero values in the range
v+ < ω < ωvv′ and has a singularity at ω = ωvv′ , which is
reflected in a dramatic rise of gvv′ (ω) (Fig. 5, D = 2).

At D = 3, the overlapping ηvv′ of the outer edges of v

and v′ is less sensitive to variation of ω and therefore the
contribution g

(iii)
vv′ (ω) remains bounded for all ω (Fig. 6). In this

dimension, the discontinuity in gvv′(ω) at ω = ωvv′ (Fig. 5) is
yielded by the sudden fall of the occurrence of shared neighbor
pairs. For D = ∞, the contribution of shared nearest neighbor
configurations is everywhere negligible (dashed line in Fig. 6)
and that from pairs of class (iv) is uniform and equals unity
(solid line), the total resulting CPDF being flat at ω > v+
(Fig. 5).

V. THE CPDF gv(ω) AT POISSON ENSEMBLES

An expression for gv(ω) corresponding to Poisson en-
sembles can be obtained in a similar, but simpler and more
straightforward way than that previously used for gvv′ (ω) (its
derivation is left to the reader). This CPDF was previously
introduced and analyzed in Ref. [33] and reads

gv(ω) = 1

n
δ(ω − v) + �(ω − v). (5.1)

Here, the Dirac δ function accounts for the nearest neighbor
contribution of a reference point with AV v, and the Heaviside
function describes the probability density of finding points
(other than the nearest one) lying in the surface of ω > v

centered in the reference one. It should be noted that (5.1)
could be derived from Eqs. (2.7) and (4.14), but this procedure
involves some analytically intractable integrals for D � 2.

On the other hand, substitution of (5.1) into Eq. (2.6)
provides the expected PDF for Poisson ensembles, i.e.,

g(ω) = 1. (5.2)

This result reflects the well-known fact that no correlation
exists between pairs of arbitrary points at Poisson ensembles.
Clearly the departures from unity in gv(ω) and gvv′ (ω) result
because the available volumes v and v′ introduce correlations
between pairs at short distances, which correspond to ω � v

and ω � ωvv′ for gv(ω) and gvv′ (ω), respectively.

A. Relative importance of the different
contributions to the CPDF gv(ω)

The results obtained in the derivation of gvv′ (ω) can be
used to evaluate various statistical neighboring functions. In
particular, expressions (2.6) and (2.7) can be applied to each
class [ν = (i), (ii), (iii), and (iv)] of pairs (v,v′):

g(ν)
v (ω) = 1

n

∫ ∞

0
nv′g

(ν)
vv′ (ω)dv′, (5.3)

g(ν)(ω) = 1

n

∫ ∞

0
nvg

(ν)
v (ω)dv. (5.4)

The quantities in Eqs. (5.3) and (5.4) express partial probability
densities that describe the spatial distributions of specific pair
configurations. For mutual neighbor pairs, from Eqs. (4.11),
(5.3), and (5.4) we obtain

g(i)
v (ω) = 1

n
e(ζ−1)nvδ(ω − v), (5.5)

g(i)(ω) = e(ζ−2)nω. (5.6)

Here, it is useful to separate pairs in class (ii) into subclasses
(iia) and (iib). Pairs (v,v′) where the point with AV v′ is the
(nonmutual) nearest neighbor of the point with AV v belong to
the subclass (iia); otherwise they belong to the subclass (iib).
Then Eq. (5.3) yields

g(ii)
v (ω) = g(iia)

v (ω) + g(iib)
v (ω), (5.7)

with

g(iia)
v (ω) = δ(ω − v)

∫ v

0
ξv′e−nCv′ dv′ (5.8)

and

g(iib)
v (ω) = [ξve

−nCv′ ]v′=ω�(ω − v), (5.9)

where Cv′ = v′ − v ∩ v′ is the volume of a crescent in the
intersection of v and v′. The term g(iia)

v (ω) is the probability
density of finding a nonmutual, first neighbor in the surface of
ω centered in a reference point with AV v. The term g(iib)

v (ω) is
the contribution to gv(ω) due to pairs where the reference point
with AV v is the nonmutual nearest neighbor of the other one.
Note that the Dirac δ term in Eq. (5.1) arises from contributions
due to g(i)

v (ω) and g(iia)
v (ω) through (2.7), which then implies

that the integral in Eq. (5.8) is given by∫ v

0
ξv′e−nCv′ dv′ = 1

n
[1 − e(ζ−1)nv]. (5.10)

The contribution to the PDF g(ω) due to pairs in subclasses
(iia) and (iib) may be found from Eqs. (5.4), (5.8), and (5.9).
Thus, using (5.10), one obtains

g(iia)(ω) = e−nω − e(ζ−2)nω. (5.11)

By symmetry, pairs in subclasses (iia) and (iib) have equivalent
PDFs, i.e., g(iib)(ω) = g(iia)(ω), which implies

g(iib)(ω) =
∫ ω

0
n[ξve

−nv∪v′
]v′=ωdv = e−nω − e(ζ−2)nω.

(5.12)

A similar analysis applies to pairs in classes (iii) and (iv), but
their contributions to gv(ω) and g(ω) cannot be determined
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analytically except for D = 1 and D = ∞. In general, these
functions are expressed as integral forms:

g(iii)
v (ω) =

∫ ω

0
ηvv′e−nCv′ dv′�(ω − v), (5.13)

g(iv)
v (ω) = n

∫ ω

0
ξvξv′e−nCv′ dv′�(ω − v), (5.14)

g(iii)(ω) = n

∫ ω

0

∫ ω

0
ηvv′e−nv∪v′

dv′dv, (5.15)

g(iv)(ω) = n2
∫ ω

0

∫ ω

0
ξvξv′e−nv∪v′

dv′dv. (5.16)

Again, by virtue of (2.7), the Heaviside term in Eq. (5.1) comes
from Eqs. (5.9), (5.13), and (5.14); therefore

g(iii)
v (ω) + g(iv)

v (ω) = [1 − (ξve
−nCv′ )v′=ω]�(ω − v), (5.17)

which implies∫ ω

0
(ηvv′ + nξvξv′)e−nCv′ dv′ = 1 − [ξve

−nCv′ ]v′=ω. (5.18)

Similarly, with (5.12) and (5.17) we obtain

g(iii)(ω) + g(iv)(ω) = 1 − 2e−nω + e(ζ−2)nω. (5.19)

Explicit mathematical formulas for g(ν)
v (ω) and g(ν)(ω)

functions at D = 1 and D = ∞ have been collected in
Appendixes B and C.

The explicit expression for g(i)(ω) at D = 3 [as given by
Eq. (5.6)] was previously obtained by Larsen and Stratt [29].

B. Discussion

Figures 7–10 depict the partial probability densities
g(iib)

v (ω) (solid lines), g(iii)
v (ω) (dashed lines), and g(iv)

v (ω)

FIG. 7. (Color online) Contributions due to (iib), (iii), and (iv)
pair configurations (solid, short-dashed, and long-dashed lines, re-
spectively) to the CPDF gv(ω) as a function of v for one-dimensional
Poisson ensembles and different distances as measured by ω (values
nω indicated on the plots). The total CPDF is shown by the dotted line.

FIG. 8. (Color online) Same as Fig. 7, for D = 2.

(long-dashed lines) as functions of the AV v (0 � v < ω) for
different volume ω and dimensions D. These evaluations come
from Eqs. (5.9), (5.13), and (5.14). It is worthy of notice that
the sum of these three contributions gives the unity (dotted
lines in the figures), which is actually the value of the total
CPDF gv(ω) for v < ω [Eq. (5.1)].

At finite dimension and short pair separations (nω � 1),
the CPDF gv(ω) is almost entirely composed of contributions
due to pairs in classes (iib) and (iii), i.e., the reference point
with AV v is the nearest neighbor of the other point at ω or both
have a shared nearest neighbor. In the one-dimensional system
(Fig. 7), shared neighbor configurations (short-dashed lines)
are somewhat more likely than those in class (iib), while for
D > 1 the major contribution arises from the class (iib) pair

FIG. 9. (Color online) Same as Fig. 7, for D = 3.
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FIG. 10. (Color online) Same as Fig. 7, for D = ∞.

(solid lines, Figs. 8 and 9). Pairs sharing the nearest neighbor
become highly unlikely at high space dimensionalities for any
pair separation (Fig. 10). As expected, class (iv) (long-dashed
lines) is the dominant pair configuration at any D for great
distances (nω > 1) from the reference point.

At finite dimension, as the available volume v of the
reference point increases with fixed ω, the surface fraction
ξv in Eq. (5.9) increases and the exclusion volume Cv′=ω

decreases. Consequently, the probability of finding pairs at
class (iib) increases monotonically with v. On the contrary, the
chances of finding four-point configurations [pairs at class (iv)]
reduce with increasing v (or decreasing ω) because the surface
fraction ξv′ at the integrand of Eq. (5.14) takes on average
lower values (which are not fully compensated by the increase
of the other terms in the integrand). The higher the Euclidean
space dimensionality, the weaker the v dependence of the
geometrical quantities (ξv , ηvv′ , Cv′ ), and the partial probability
densities g(ν)

v (ω) analyzed here become independent of v at the
limit D → ∞ (Fig. 10).

C. Relative importance of the different
contributions to the PDF g(ω) = 1

Figure 11 illustrates the behavior of the partial probability
densities g(ν)(ω) given by Eqs. (5.6), (5.11), (5.12), (5.15),
and (5.16). Note that g(ii)(ω) is given by the sum of (5.11)
and (5.12). The term g(i)(ω) dominates the regime of low
volume (nω � 1) at any D, i.e., most points with a first
neighbor at very short distance (lower than the mean separation
between points in the ensemble) form pairs of mutual nearest
neighbors. At intermediate distances from a reference point
(which correspond to nω ≈ 1), there is a relatively narrow
ω range where pairs in class (ii) are the main contribution
to g(w) for any D. As the distance from the reference point
increases (nω > 1), pairs in class (iv) become the dominant
contribution to g(ω). Indeed, g(iv)(ω) is a monotonically
increasing function of ω and tends asymptotically to unity,

FIG. 11. (Color online) Contributions g(ν)(ω) due to ν = (i), (ii),
(iii) and (iv) pair configurations (solid, short-dashed, long-dashed,
and point-dashed lines, respectively) to the PDF g(ω) vs the volume
ω for Poisson ensembles at dimensions D = 1,2,3, and ∞. The total
PDF is shown by a dotted line.

while the remaining contributions go to zero for ω large
enough. The term g(iii)(ω) corresponding to pairs with the
shared nearest neighbor is never dominant and has a maximum
contribution of 18.39%, 16.72%, and 14.54% at nω = 1,
1.226, and 1.370 for D = 1, 2, and 3, respectively. This
maximum value gradually decreases and shifts to larger ω with
increasing dimension D. The converse behavior is followed by
g(ii)(ω). Indeed, the maximum probability for the occurrence
of pairs where one and only one of the two points is the nearest
neighbor of the other occurs at nω = 0.811 (29.63%), 0.781
(34.67%), 0.761 (38.06%), and 0.694 (50%) for D = 1,2,3,

and ∞.

D. Pair fractions and mean separations

Finally, we mention that one can use gvv′(ω) to obtain other
useful measures of the structure of Poisson ensembles or many-
body systems in general. For example, the fraction f (ν) of
points in classes ν = (i), (ii), and (iii), averaged over the whole
ensemble, and the mean pair separation 〈r〉(ν) in each class.
They are defined as

f (ν) =
∫ ∞

0
ng(ν)(ω)dω (5.20)

and

〈r〉(ν) = 1

f (ν)

∫ ∞

0
nr(ω)g(ν)(ω)dω, (5.21)

with r(ω) = (ω/α)1/D . Results for pairs in classes (i) and (ii)
at Poisson ensembles are found analytically using Eqs. (5.6),
(5.11), and (5.12). Thus

f (i) = 1

2 − ζ
, (5.22)

051109-10



CONDITIONAL PAIR DISTRIBUTIONS IN MANY-BODY . . . PHYSICAL REVIEW E 85, 051109 (2012)

TABLE II. Average fractions of pairs in various classes.

D α ζ f (i) f (iia) = f (iib) f (iii) f (iii)a

1 2 1/2 0.667 0.333 0.500 0.50
2 π 4π−33/2

6π
0.622 0.378 0.618 0.63

3 4π/3 5/16 0.593 0.407 0.709 0.71
∞ 0 0 0.500 0.500 – 1.00

aValues listed in Ref. [58].

f (iia) = f (iib) = 1 − ζ

2 − ζ
, (5.23)

〈r〉(i) = �
(
1 + 1

D

)
[nα(2 − ζ )]1/D

, (5.24)

〈r〉(ii) = �
(
1 + 1

D

)
[(2 − ζ )1+1/D − 1]

[nα(2 − ζ )]1/D(1 − ζ )
. (5.25)

Notice that the nearest neighbor of any point is either mutual or
a nonmutual one and therefore f (i) + f (iia) = 1. Mean values
〈ω〉(ν) can be also computed in a similar form to 〈r〉(ν),

〈ω〉(i) = 1

n(2 − ζ )
, 〈ω〉(ii) = 1

n
+ 〈ω〉(i). (5.26)

Clearly, results based on the volume ω are more concise than
those upon the distance r .

The fraction f (i) of mutual nearest neighbors at Poisson
ensembles was initially studied by Clark [55], although the
exact evaluation [equivalent to that given by Eq. (5.22)] was
obtained by Dacey [56] and Cox [57]. The fraction f (iii) of
pairs sharing the nearest neighbor has also been computed by
Schilling [58]. All these authors have used techniques different
from those adopted in the present work, which are based on
conditional pair distribution functions. Our evaluations of f (ν),
〈r〉(ν), and 〈ω〉(ν), together with values of the parameter α

and the overlap volume ζ , are listed in Tables II and III.
Results corresponding to pairs in class (iii) were evaluated
by numerical integration of (5.20) and (5.21). The fractions
f (iii) computed here are in agreement with those obtained by
Schilling [58] (see Table II). Interestingly enough, Schilling
showed that f (iii) tends to unity as D → ∞. This implies that
whereas g

(iii)
vv′ (ω) tends to zero everywhere (see Sec. IV A) with

D → ∞, its integral over ω [Eq. (5.20)] converges to unity.

VI. CONCLUSIONS

A mathematical descriptor of spatial structures in many-
body systems has been proposed. Specifically, we have intro-

TABLE III. Mean ω volumes and average distances between
points of pairs in classes (i), (ii), and (iii). 〈r〉 and 〈ω〉 are expressed
in units of mean distance between points n−1/D and mean volume per
point n−1, respectively.

D 〈r〉(i) 〈r〉(ii) 〈r〉(iii) 〈ω〉(i) 〈ω〉(ii) 〈ω〉(iii)

1 0.333 0.833 1.000 0.667 1.667 2.000
2 0.394 0.674 0.880 0.622 1.622 2.797
3 0.466 0.683 0.909 0.593 1.593 3.961

duced a two-point distribution function, denoted by gvv′(ω)
and defined by Eq. (2.5), which describes the probability
density of finding pairs of objects with each object having
a nearest neighbor at a certain distance. For simplicity in
the mathematical framework, distances between objects have
been substituted by spherical volumes whose radii denote the
separation between two objects of a pair (volume ω) and
between each object and its nearest neighbor (volumes v and
v′).

The conditional pair distribution function (CPDF) gvv′(ω)
reveals richer structural information than that provided by
the conventional PDF g(ω). Indeed, the volumes v and v′
introduce correlations in the CPDF which are not implicit in
g(ω). Moreover, nearest neighbor information from v and v′
let us to identify four types of pairs (mutual nearest neighbors
and neighbor sharing pairs, among others) which provide
a considerable amount of information concerning the local
microscopic density and spatial relationships in many-body
systems.

General relations were established among gvv′ (ω), the
standard PDF g(ω), and gv(ω). The function gv(ω), previously
introduced in Ref. [33], is a CPDF in which the nearest
neighbor information is only considered for one object of each
pair. We have shown that by using appropriate many-body
interaction potentials, gv(ω) and gvv′(ω) can be used to
evaluate the total potential energy of a fluid, which reduces
to that typically adopted in liquid theory with an averaged
pairwise potential. It was also shown that the potential energy
expression based on gvv′ (ω) is the correct one to be used in
the so-called thermostatistical space partition (TSP) formalism
[33,34].

We have studied the function gvv′(ω) for Poisson ensembles
and derived its exact expression in any space dimension. We
have obtained explicit results for gvv′ (ω) at D = 1,2,3,∞ and
found simple close forms for both D = 1 and D = ∞. Fur-
thermore, functions gvv′ (ω), gv(ω), and g(ω) corresponding to
Poisson systems have been deconvoluted into contributions
from the four pair classes. Our theoretical results should
have interesting and practical applications in the study of
neighborhood structures in a variety of areas, such as physical
and biological sciences, and sociology. The extension of
present evaluations to non-Poisson processes is open to future
efforts.
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APPENDIX A: COVOLUME OF TWO SHELLS

In this Appendix we give a brief derivation of the scaled
overlap volume ηvv′ of shells δv and δv′ surrounding the
available volumes v and v′ [Eq. (4.20)]. This quantity is
directly related to the shared neighbor configuration in pairs
(v,v′). The shared nearest neighbor of a pair (v,v′) must be
located at the intersection of the outer edges of v and v′. For
D = 1, this intersection corresponds to a single point in space
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which yields the Dirac δ function at (4.20) with a prefactor
1/2, because the shared neighbor is located in one of the two
sides of v. At D = 2, δv ∩ δv′ is the overlap surface of two
off-center circular rings with thickness δa and δb, as shown in
Fig. 4. It is shown easily by simple geometry that

δv ∩ δv′ = 2δaδb

sin(θ + φ)
, (D = 2), (A1)

where θ and φ are defined in Fig. 4 and expressed by Eqs. (4.16)
and (4.17). In the case D = 3, δv ∩ δv′ is the overlap volume
of two spherical shells with internal radii a and b, thickness δa

and δb, and centers separated at a distance r . This intersection
volume is a torus with section area δaδb/ sin(θ + φ) and
perimeter 2πR, where θ and φ are defined as before and
R = a sin θ = b sin φ. Therefore, we can write

δv ∩ δv′ = 2πa sin θδaδb

sin(θ + φ)
, (D = 3). (A2)

Equation (4.20) at D = 2 and D = 3 results from Eqs. (4.10),
(A1), and (A2), once the radii (a and b) and thickness (δa
and δb) are written in terms of v = αaD , v′ = αbD , δv =
DαaD−1δa, and δv′ = DαbD−1δb, with α given by Eq. (2.1).

APPENDIX B: PARTIAL PROBABILITY
DENSITIES AT D = 1

For one-dimensional Poisson ensembles (D = 1),
Eqs. (4.21), (5.3), and (5.4) yield

g(i)
v (ω) = 1

n
e−nv/2δ(ω − v), (B1)

g(iia)
v (ω) = 1

n
(1 − e−nv/2)δ(ω − v), (B2)

g(iib)
v (ω) = 1

2
e−nω+nv/2�(ω − v), (B3)

g(iii)
v (ω) = 1

2
e−n(ω−v)�(ω − v), (B4)

g(iv)
v (ω) =

[
1 − 1

2
(e−n(ω−v) + e−nω+nv/2)

]
�(ω − v), (B5)

and

g(i)(ω) = e−3nω/2, (B6)

g(iia)(ω) = g(iib)(ω) = e−nω − e−3nω/2, (B7)

g(iii)(ω) = nω

2
e−nω, (B8)

g(iv)(ω) = 1 − nω

2
e−nω − 2e−nω + e−3nω/2. (B9)

Clearly, the sum of terms g(ν)
v (ω) and g(ν)(ω) over all pair

classes [ν = (i), (iia), (iib), (iii), and iv)] let us recover the
exact expressions for gv(ω) and g(ω), Eqs. (5.1) and (5.2),
respectively.

APPENDIX C: PARTIAL PROBABILITY
DENSITIES AT D = ∞

For Poisson ensembles at infinity dimensions, Eqs. (4.21),
(5.3), and (5.4) yield

g(i)
v (ω) = 1

n
e−nvδ(ω − v), (C1)

g(iia)
v (ω) = 1

n
(1 − e−nv)δ(ω − v), (C2)

g(iib)
v (ω) = e−nω�(ω − v), (C3)

g(iii)
v (ω) = 0, (C4)

g(iv)
v (ω) = (1 − e−nω)�(ω − v), (C5)

and

g(i)(ω) = e−2nω, (C6)

g(iia)(ω) = g(iib)(ω) = e−nω − e−2nω, (C7)

g(iii)(ω) = 0, (C8)

g(iv)(ω) = 1 − 2e−nω + e−2nω. (C9)

As in the case D = 1 (Appendix B), Eqs. (5.1) and (5.2) are
recovered from (C1)–(C5) and (C6)–(C9), respectively.

APPENDIX D: ATTRACTIVE HARD SPHERES
IN THE TSP APPROACH

The model of attractive hard spheres can be used to check
the role played by the CPDF in the evaluation of the potential
energy contribution within the TSP approach. We consider
a pair interaction potential which consists of a hard core
repulsion together with an attractive square well:

u(ω) =

⎧⎪⎨
⎪⎩

∞, ω � a,

−ε, a < ω < a + ξ,

0, ω � a + ξ,

(D1)

with a, ξ , and ε constants. For the present purpose, we may
use the expression of gv(ω) given in Ref. [33] [Eq. (41)] at the
low-density limit, i.e.,

gv(ω) = 1

n
δ(ω − v − a∗) + �(ω − v − a∗), (D2)

where �(x) is the Heaviside step function and a∗ = a/2 is a
reduction of the AV of hard particles in the limit of low density.
Thus, with (D1) into Eq. (3.10) we obtain

φv =

⎧⎪⎨
⎪⎩

+∞, v � b,

−ε [1 + n(b + ξ − v)] , b < v < b + ξ,

0, ω � b + ξ,

(D3)

where b = a − a∗. With help of Eqs. (3.7) and (3.8), in the
thermodynamic limit (N,V → ∞ with N/V = n constant)
one finds

nv = nβγ

B
eβ[γ (v−b)+φv ] (D4)
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and

βγ = n
B

C
, (D5)

with

B = e−βγ ξ + βγ eβε(1+nξ )

[
1 − e−β(γ+nε)ξ

β(γ + nε)

]
(D6)

and

C = [1 + βγ (b + ξ )]eβγ ξ +
[

βγ

β(γ + nε)

]2

eβε(1+nξ )

×{1 + β(γ + nε)b − [1 + β(γ + nε)(b + ξ )]e−β(γ+nε)ξ }.
(D7)

The contact value g(ω = a+) of the PDF given in Eq. (3.13)
is directly obtained from Eq. (2.6).

[1] W. H. Burt, J. Mammal. 24, 346 (1943).
[2] P. J. Clark and F. C. Evans, Ecology 35, 445 (1954).
[3] P. J. Clark and F. C. Evans, Science 121, 397 (1955).
[4] F. D. K. Roberts, Biometrika 56, 401 (1969).
[5] J. L. Brown and G. H. Orians, Annu. Rev. Ecol. Syst. 1, 239

(1970).
[6] E. J. Temeles, Anim. Behav. 47, 339 (1994).
[7] H. J. Schenk, R. M. Callaway, and B. E. Mahall, Adv. Ecol. Res.

28, 145 (1999).
[8] S. Getzin, T. Wiegand, K. Wiegand, and F. He, J. Ecol. 96, 807

(2008).
[9] N. Miller and J. Dollard, Social Learning and Imitation (Yale

University Press, New Haven, CT, 1941).
[10] A. Bandura, Social Learning Theory (General Learning Press,

New York, 1977).
[11] V. Bala and S. Goyal, Rev. Econ. Stud. 65, 595 (1998).
[12] D. A. Moore and T. E Carpenter, Epidemiol. Rev. 21, 143 (1999).
[13] R. Cowana and N. Jonard, J. Econ. Dynam. Control 28, 1557

(2004).
[14] R. Balescu, Equilibrium and Nonequilibrium Statistical

Mechanics (Wiley, Toronto, 1975).
[15] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,

3rd ed. (Academic Press, London, 2006).
[16] R. L. Liboff, Phys. Rev. A 39, 4098 (1989).
[17] P. J. E. Peebles, Principles of Physical Cosmology (Princeton

University Press, Princeton, NJ, 1993).
[18] R. L. McGreevy, A. Baranyai, and I. Ruff, Phys. Chem. Liq. 16,

47 (1986).
[19] U. F. Edgal, J. Chem. Phys. 94, 8191 (1991).
[20] S. Mazur, J. Chem. Phys. 97, 9267 (1992).
[21] T. Keyes, J. Chem. Phys. 110, 1097 (1999).
[22] B. Bhattacharjee, Phys. Rev. E 67, 041208 (2003).
[23] P. Hertz, Math. Ann. 67, 387 (1909).
[24] H. Reiss and R. V. Casberg, J. Chem. Phys. 61, 1107 (1974).
[25] J. R. Macdonald, Mol. Phys. 44, 1043 (1981).
[26] S. Torquato, B. Lu, and J. Rubinstein, Phys. Rev. A 41, 2059

(1990).
[27] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[28] H. Margeneau and M. Lewis, Rev. Mod. Phys. 31, 569

(1959).
[29] R. E. Larsen and R. M. Stratt, Chem. Phys. Lett. 297, 211 (1998).
[30] T.-M. Wu, S. L. Chang, and K. H. Tsai, J. Chem. Phys. 122,

204501 (2005).

[31] A. C. Pan, J. P. Garrahan, and D. Chandler, Chem. Phys. Chem.
6, 1783 (2005).

[32] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 011105
(2010).

[33] R. D. Rohrmann, Physica A 347, 221 (2005).
[34] R. D. Rohrmann and J. Zorec, Phys. Rev. E 74, 041120 (2006).
[35] D. Hummer and D. Mihalas, Astrophys. J. 331, 794 (1988).
[36] R. D. Rohrmann, A. M. Serenelli, L. G. Althaus, and O. G.

Benvenuto, Mon. Not. R. Astron. Soc. 335, 499 (2002).
[37] H. C. Graboske Jr., D. J. Harwood, and F. J. Rogers, Phys. Rev.

186, 210 (1969).
[38] J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).
[39] E. N. Gilbert, Ann. Math. Stat. 33, 958 (1962).
[40] P. J. Diggle, Statistical Analysis of Spatial Point Patterns,

2nd ed. (Arnold, London, 2003).
[41] J. Bahcall and R. M. Soneira, Astrophys. J. 246, 122 (1981).
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