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ABSTRACT  

An intercalibration exercise using blind-liquid sam-
ples containing Cr+6 and Zn+2 as well as environmental 
sediment samples was carried out between two laborato-
ries using H. curvispina as test organism. For liquid sam-
ples, LC50 96-h values were in the same order of magni-
tude for both metals in each laboratory. The tested sedi-
ments in each laboratory included a control sediment, two 
heavily contaminated sediments (Riachuelo and Oeste Ca-
nal) and a moderately contaminated sediment (Lujan River). 
In the whole-sediment tests, an acceptable level of survival 
for the controls was obtained by both laboratories. Con-
taminated sediment samples exhibited high toxicity in 
both laboratories, while moderately contaminated sediment 
samples did not exhibit lethality, being survival >80%; 
nevertheless, growth was significantly lower compared 
with negative controls in test organisms exposed to sedi-
ments of this stream. This study provides relevant informa-
tion for the validation of H. curvispina as a test organism in 
sediment monitoring studies at regional level.   
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1. INTRODUCTION 

Sediments are ecologically important because they 
mediate chemical exchange among the particulate, dissolved 
and biological phases. Sediments provide a valuable indica-
tion of overall environmental contamination, hence the 
relevance of conducting ambient sediment toxicity tests 
within the frame of risk assessment programs [1, 2]. In-
formation from chemical analysis of contaminant levels  
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should be complemented with that referred to toxicologi-
cal quality [3]. In recent years, important efforts to deter-
mine sediment ecotoxicity have been made by scientists 
and authorities. Thus, many bioassays have been developed 
with benthic species. Amphipods are usually one of the 
most sensitive taxa to toxic substances in acute tests. 
Hyalella spp. are generally chosen due to their short life 
span and because they can be easily cultured in laboratory 
[4, 5]. There are freshwater standardized assays for Hyalella 
azteca (Crustacea, Amphipoda) and Chironomus tentans 
(Chironomidae, Insecta) [6]. 

Recently, efforts have began in Argentina towards de-
veloping toxicity tests to assess biological effects of sedi-
ments containing contaminants using representative species 
of the region, being H. curvispina one of the most used 
[7-9] due to its taxonomic closeness to H. azteca and to its 
abundance in freshwater bodies of the Pampas plains of 
the country. Recently, it has been informed that another 
native amphipod, H. pseudoazteca, was also found to be 
appropriate as test organism for sediment toxicity bioas-
says [10]. The present study has been carried out within 
the frame of an interlaboratory intercalibration exercise of 
toxicity tests with Neotropical species for monitoring con-
taminated sediments. Development and validation of sedi-
ment toxicity tests at a local level represent a contribution 
to the implementation of effective tools to assess sediment 
ecotoxicity in environmental management strategies. This 
study was conducted between two laboratories (A: CIMA, 
B: PRODEA) with reference toxicants and environmental 
sediment samples, using H. curvispina as test organism 
with water-only and whole-sediment tests, respectively. 

 
 
2. MATERIALS AND METHODS 

An intercalibration exercise was conducted, in which 
both laboratories received two blind-liquid samples, and five 
environmental sediment samples. For all assays, H. cur-
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vispina species were obtained from laboratory cultures. 
Dechlorinated tap water was used for cultures (Labora-
tory A: hardness 220 mg/L CaCO3, pH 8.2, conductiv-
ity 1.10 mS/cm; Laboratory B: hardness 80 mg/L CaCO3, 
pH 8.5 and conductivity 0.86 mS/cm). The amphipods 
were fed with fish food and boiled lettuce every three days. 
The cultures and tests were done in chambers with constant 
photoperiod (16L: 8D h) and temperature (20±1 °C). Test 
amphipods were juveniles (3-4 mm length), obtained by 
gently siphoning the culture media onto a nylon net.  

Both laboratories received two blind-liquid samples, 
with Cr+6 and Zn+2. Stock solutions of pure compounds 
were prepared from analytical reagents: zinc, ZnSO4 
(Baker®); chromium, K2Cr2O7 (Analar®). The effective con-
centrations of metals were determined by atomic absorption 
spectrometry (Varian Spectra AA, air-acetylene flame) [11]. 
Traceable certified standards for the analysis of metals 
were from AccuStandard, Inc. (1000 mg/L standard stock 
solutions, traceable to National Institute of Standards and 
Technology, USA). In order to establish the range of con-
centrations, non-replicate preliminary tests were carried 
out for each sample with the following dilutions: 0 (con-
trol), 0.1, 1, 10, 50 and 100 % (v/v); definitive tests were 
done using 8-9 dilutions series between 0–2 % for Cr+6 
solution and between 0-50% for Zn+2 solution. Water-only 
toxicity tests (acute, lethality) were carried out following 
USEPA standardized protocol [12]. In liquid samples tests, 
Moderate Hard Water (MHW) was used with the following 
composition (mg/L): NaHCO3, 96; CaSO4 2H2O, 60; 
MgSO4, 60; KCl, 4; pH, 7.4-7.8; hardness CaCO3, 80-100) 
[13]. Three replicate test chambers (300-ml beakers con-

taining 200 ml of test water and 10 test organisms) were 
used for each test. The number of dead organisms was 
registered at 96-h exposure. The following parameters 
were determined at the beginning and the end of all as-
says: DO, pH, hardness, ammonia and conductivity. 

Tested sediments included two unpolluted controls and 
three contaminated samples from streams of the Pampas 
region of Argentina. The control sediments were from Juan 
Blanco and Las Flores streams (laboratories A and B, re-
spectively). The tested sediments for each laboratory in-
cluded a control, two heavily contaminated (Riachuelo and 
Canal Oeste) and a moderatly contaminated sample (Lujan 
River). Sampling point locations are shown in Figure 1. 
Description of sample sites and chemical information of 
sediments was previously reported [14]. Ten-day whole-
sediment tests were conducted following a modified stan-
dardized protocol [12]. Five replicates were used for each 
sediment sample in laboratories A and B, 100 ml of sedi-
ment and 175 ml of overlying water were placed in each 
replicate, with 10 individuals each. Test organisms were 
previously separated and acclimatized to test conditions 
during 48 h, and fed with fish food and boiled lettuce. 
Test containers were placed in a culture chamber. Tempera-
ture and DO were determined daily. Conductivity, pH and 
hardness from the overlying water were also measured at 
the beginning and at the end of testing. Measured endpoints 
were survival and growth (length). Animal sub-samples 
(n=20) were taken for characterization of the initial group 
(length). Length measurement was done with a digital cali-
per (± 0.01 mm). Performance criteria for the control sedi-
ment required 80% survival.  

 
 
 

 
FIGURE 1 - Study area and sampling point locations. 
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For intercalibration with blind-liquid samples, signifi-
cance of the regression and correlation coefficients and com-
parison of two linear regression equations were tested fol-
lowing Zar [15]. The LC50 were estimated by fitting data to 
a Probit model [16] using software from the USEPA [17]. 
For the whole-sediment test, the statistical significance 
between treatments and control for growth was analyzed 
with the t-test [13]; length data were log-transformed before 
analysis. The significance level was set at p<0.05. Statisti-
cal analysis of chemical data results and mortality data 
were performed using principal component analysis 
(PCA) [18].    

 
 
3. RESULTS AND DISCUSSION 

Both laboratories were made aware of the identity and 
nominal concentration of blind samples after the test was 
carried out: Cr+6 50 mg/L and Zn+2 25 mg/L. The values 
of physicochemical parameters recorded in the tests were 
within the acceptable values in both laboratories. The 
LC50 96-h are shown in Table 1, with its respective 95% 
confidence limits. Control survival of >90% was found in 
both laboratories. Regression lines comparison shows 
significant differences in chromium slopes as well as 
those of zinc (p = 0.0217 and 0.0109, respectively). Dif-
ferences between the two laboratories are not highly sig-
nificant (α=0.01), as can be seen in LC50 values since they 
were of the same order of magnitude for both metals; this 
may be due to differences between  the cultures of H. 
curvispina in each laboratory.  

H. curvispina LC50s 96-h shows the following trend: 
Cd+2> Hg+2 > Cu+2 > Cr+6 > Zn+2, [9, 19, 20]. Comparing 
H. curvispina  sensitivity profile to metals with published 
data for H. azteca for Zn, H. curvispina and H. azteca var-
ied in one order of magnitude [21, 22], as regards Cd, Hg, 
Cu and Cr, responses in both species are of the same order 
[22, 23]. Chromium and zinc LC50 values for H. cur-
vispina were compared among several invertebrates from 
EPA AQUIRE data base [24]. H. curvispina was the most 
sensitive to both metals among other species, such as am-
phipods, chironomids (Cr: 1-4 ; Zn: 10-20 mg/L) and Tubifex 
tubifex (Cr: 2.9; Zn: 100 mg/L), whereas sensitivity val-
ues were one order of magnitude greater than those found 
for cladocerans, such as Daphnia spp. and Ceriodaphnia 
dubia for both metals.  

 
TABLE 1 - Intercalibration LC50 values and 95% confidence limits. 

 LC50 

(mg/L) 
Lower limit Upper limit 

Lab A B A B A B 
Chromium 0.20 0.55 0.15 0.47 0.28 0.65 
Zinc 2.36 2.19 2.17 0.71 2.54 2.95 

 
In the whole-sediment tests with environmental sam-

ples, acceptable control survival was met by the two labo-
ratories. Sediment from Lujan River did not exhibit lethal 
effects, being survival of >80%; nevertheless, growth 

(length) was significantly lower in animals exposed to 
sediments from this stream (Laboratories A and B: p= 
0.0001 and p= 0.001, respectively) compared with negative 
controls. In Riachuelo and Canal Oeste samples, no sur-
vival was observed. Table 2 shows survival and growth 
results whereas Table 3 shows physicochemical parame-
ters measured at the end of testing; in both laboratories 
dissolved oxygen values remained higher than the re-
quired levels (>2.5 mg/L) [12]. Principal component analy-
sis (PCA) (Fig. 1) based on chemical data from Ronco et al. 
[14] shows a clear differentiation between Canal Oeste and 
Riachuelo sediments as opposed to the rest. The group of 
Las Flores, Lujan River and Juan Blanco split from Ria-
chuelo and Canal Oeste by component 1, mainly deter-
mined by the majority of the variables. Riachuelo and Ca-
nal Oeste are separated from each other by effect of com-
ponent 2. The PCA did not include pesticides and hydro-
carbons, since in the majority of samples these were be-
low the detection limits, and therefore yielding a mean-
ingless PCA. The heavy metal concentrations in the Ria-
chuelo and Canal Oeste samples exceed the probable effect 
levels (PEL), values provided by the Canadian Council of 
Ministers of the Environment [25]; this is in agreement 
with the low survival observed for H. curvispina. 

  
TABLE 2 - Survival and length (mean value ± SD; n = 40) for H. 
curvispina in 10-d whole-sediments tests in laboratories A and B. 

 Survival  
(%) 

Length  
(mm) 

Lab A B A B 
Controls 96   98   2.92 (± 0.40) 3.09 (± 0.21) 
Río Luján 90 97 2.58 (± 0.37) 2.81 (± 0.22) 
Riachuelo 0 0 - - 
Canal Oeste 0 0 - - 

 
 

TABLE 3 - Physicochemical parameters in overlying water at the end 
of exposure time in Laboratories A and B (mean values ± SD; n = 5). 

 pH Conductivity 
(mS/cm) 

Hardness 
(mg/L 

CaCO3) 
Site A B A B A B 

Las Flores a - 8.7 
(±0.03) - 1.37 

(±0.01) - 200 

Juan 
Blanco a 

8.1 
(±0.04) - 1.04 

(±0.02) - 180 - 

Riachuelo 8.4 
(±0.06) 

8.5 
(±0.09) 

1.02 
(±0.02)  

1.17 
(±0.05) 220 100 

Canal Oeste 8.2  
(± 0.04) 

8.5  
(± 0.1) 

1.22 
(±0.04) 

1.27 
(±0.05) 200 120 

Río Luján 8.4  
(± 0.10) 

8.6  
(± 0.06) 

0.86 
(±0.01) 

0.85 
(±0.04) 200 140 

a reference-control samples 
 
Lujan River sediment only induced sublethal effects 

(Table 2), possibly associated to the presence of pesti-
cides. These values are comparable to those detected in 
sediments from streams near to areas with high agricultural 
activity [26]. These results suggest that sublethal endpoints 
should be included in sediment tests, providing further 
information by assessing sublethal endpoints in 10-d tests. 
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Also the 10-d tests could be used for the screening of 
toxicity of samples before long-term tests are conducted. 

The toxicity testing protocols used in this study pro-
vided reliable results in agreement with detected pollutants 
in highly contaminated sediments, allowing the differentia-
tion of those with low levels of contamination. The present 
study provides relevant information for the validation of 
Hyalella curvispina as a test organism in sediment moni-
toring studies at regional level.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2 – Two-dimension plots from Principal Component 
Analysis (PCA), with two components explaining 96.96 % of the 
total variance. 
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